Lecture 9:
More on Turing Machines:
The Church-Turing Thesis, Recognizability, Decidability
Definition: A Turing Machine is a 7-tuple $T = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}})$, where:

- Q is a finite set of states
- Σ is the input alphabet, where $\square \notin \Sigma$
- Γ is the tape alphabet, where $\square \in \Gamma$ and $\Sigma \subseteq \Gamma$
- $\delta : Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$
- $q_0 \in Q$ is the start state
- $q_{\text{accept}} \in Q$ is the accept state
- $q_{\text{reject}} \in Q$ is the reject state, and $q_{\text{reject}} \neq q_{\text{accept}}$
Turing Machine Configurations

11010q_7 corresponds to the configuration:

\[11010q_700110 \in (Q \cup \Gamma)^* \]
Defining Acceptance and Rejection for TMs

Let C_1 and C_2 be configurations of M

Definition. C_1 yields C_2 if M is in configuration C_2 after running M in configuration C_1 for one step.

Let $w \in \Sigma^*$ and M be a Turing machine

M accepts w if there are configs C_0, C_1, ..., C_k, s.t.
- $C_0 = q_0w$ [the initial configuration]
- C_i yields C_{i+1} for $i = 0$, ..., $k-1$, and
- C_k contains the accept state q_{accept}

$L(M) = \text{set of strings accepted by } M$
A TM M recognizes a language L if M accepts exactly those strings in L.

A language L is recognizable (a.k.a. recursively enumerable) if some TM recognizes L.

A TM M decides a language L if M accepts all strings in L and rejects all strings not in L.

A language L is decidable (a.k.a. recursive) if some TM decides L.

A Turing machine for deciding \(\{ 0^{2^n} \mid n \geq 0 \} \)

Turing Machine PSEUDOCODE:

1. Sweep from left to right, cross out every other 0
2. If in step 1, the tape had only one 0, *accept*
3. If in step 1, the tape had an **odd number** of 0’s, *reject*
4. Move the head back to the first input symbol.
5. Go to step 1.

Why does this work?

Idea: Every time we return to stage 1, the number of 0’s on the tape has been halved.
\[\{ 0^{2^n} \mid n \geq 0 \} \]

Diagram:

- **Step 1**: $0 \rightarrow \square, R$
 - $\square \rightarrow \square, R$
 - $x \rightarrow x, R$
 - $x \rightarrow x, R$
 - $0 \rightarrow 0, L$
 - $x \rightarrow x, R$

- **Step 2**: $0 \rightarrow x, R$
 - $\square \rightarrow \square, R$
 - $0 \rightarrow x, R$
 - $x \rightarrow x, R$
 - $0 \rightarrow 0, R$
 - $0 \rightarrow x, R$

- **Step 3**: $\square \rightarrow \square, R$
 - $\square \rightarrow \square, R$
 - $x \rightarrow x, R$
 - $\square \rightarrow \square, R$

- **Step 4**: $x \rightarrow x, L$
 - $0 \rightarrow 0, L$
 - $x \rightarrow x, R$

States:

- q_0
- q_1
- q_2
- q_3
- q_4
- q_{accept}
- q_{reject}
\{ 0^{2^n} \mid n \geq 0 \}
Multitape Turing Machines

={$\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L,R\}^k$}
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: \(L \) is decidable iff both \(L \) and \(\neg L \) are recognizable.
Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable

iff both L and $\neg L$ are recognizable

Given: a TM M_1 that recognizes L and

a TM M_2 that recognizes $\neg L$,

we want to build a new machine M that decides L

How? Any ideas?

Hint: M_1 always accepts x, when x is in L

M_2 always accepts x, when x isn’t in L
Recall: Given \(L \subseteq \Sigma^* \), define \(\neg L := \Sigma^* \setminus L \)

Theorem: \(L \) is decidable

iff both \(L \) and \(\neg L \) are recognizable

Given: a TM \(M_1 \) that recognizes \(L \) and

a TM \(M_2 \) that recognizes \(\neg L \),

we want to build a new machine \(M \) that *decides* \(L \)

M(x): Run \(M_1(x) \) and \(M_2(x) \) on separate tapes.

Alternate between simulating one step of \(M_1 \), and one step of \(M_2 \).

If \(M_1 \) ever accepts, then accept

If \(M_2 \) ever accepts, then reject
Nondeterministic Turing Machines

Have multiple transitions for a state, symbol pair

Theorem: Every nondeterministic Turing machine N can be transformed into a Turing Machine M that accepts precisely the same strings as N.

Proof Idea (more details in Sipser p.178-179)
Pick a natural ordering on all strings in $(Q \cup \Gamma \cup \#)^*$

$M(w)$: For all strings $D \in (Q \cup \Gamma \cup \#)^*$ in the ordering,
Check if $D = C_0\# \cdots \#C_k$ where C_0, \ldots, C_k is some accepting computation history for N on w. If so, accept.
Fact: We can encode Turing Machines as *bit strings*

\[0^n 10^m 10^k 10^s 10^t 10^r 10^u 1 \ldots \]

- n states
- start state
- reject state
- start state
- accept state
- blank symbol
- m tape symbols (first k are input symbols)

\[((p, i), (q, j, L)) = 0^p 10^i 10^q 10^j 10 \]

\[((p, i), (q, j, R)) = 0^p 10^i 10^q 10^j 100 \]
Similarly, we can encode DFAs and NFAs as *bit strings*, and $w \in \Sigma^*$ as *bit strings*

For $x \in \Sigma^*$ define $b_\Sigma(x)$ to be its binary encoding

For $x, y \in \Sigma^*$, define the *pair of x and y* to be

$$(x, y) := 0^{\|b_\Sigma(x)\|}1 b_\Sigma(x) b_\Sigma(y)$$

Then we define the following languages over \{0,1\}

$$A_{DFA} = \{ (B, w) \mid B \text{ encodes a DFA over some } \Sigma, \text{ and } B \text{ accepts } w \in \Sigma^* \}$$

$$A_{NFA} = \{ (B, w) \mid B \text{ encodes an NFA, } B \text{ accepts } w \}$$

$$A_{TM} = \{ (M, w) \mid M \text{ encodes a TM, } M \text{ accepts } w \}$$
$$A_{TM} = \{ (M, w) \mid M \text{ encodes a TM over some } \Sigma, \ w \text{ encodes a string over } \Sigma \text{ and } M \text{ accepts } w \}$$

Technical Note:
We’ll use an decoding of pairs, TMs, and strings so that every binary string decodes to some pair \((M, w)\)

If \(z \in \{0,1\}^*\) doesn’t decode to \((M, w)\) in the usual way, then we define that \(z\) decodes to the pair \((D, \varepsilon)\) where \(D\) is a “dummy” TM that accepts nothing.

$$\neg A_{TM} = \{ z \mid z \text{ decodes to } (M, w) \text{ and } M \text{ does not accept } w \}$$
Universal Turing Machines

Theorem: There is a Turing machine U which takes as input:
- the code of an arbitrary TM M
- and an input string w
such that U accepts \((M, w) \Leftrightarrow M \text{ accepts } w\).

This is a \textit{fundamental} property of TMs:
There is a Turing Machine that can run arbitrary Turing Machine code!

Note that DFAs/NFAs do \textit{not} have this property. That is, \(A_{\text{DFA}}\) and \(A_{\text{NFA}}\) are not regular.
\[A_{DFA} = \{ (D, w) \mid D \text{ is a DFA that accepts string } w \} \]
Theorem: \(A_{DFA} \) is decidable
Proof: A DFA is a special case of a TM. Run the universal U on (D, w) and output its answer.

\[A_{NFA} = \{ (N, w) \mid N \text{ is an NFA that accepts string } w \} \]
Theorem: \(A_{NFA} \) is decidable. (Why?)

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]
Theorem: \(A_{TM} \) is recognizable
The Church-Turing Thesis

Everyone’s
Intuitive Notion = Turing Machines
of Algorithms

This is not a theorem –
it is a falsifiable scientific hypothesis.

And it has been thoroughly tested!
Thm: There are *unrecognizable* languages

Assuming the Church-Turing Thesis, this means there are problems that *NO* computing device can solve!

We will prove that there is no onto function from the set of all Turing Machines to the set of all languages over \{0,1\}. (But the proof will work for any *finite* \(\Sigma\))

That is, every mapping from Turing machines to languages *fails to cover* all possible languages
“There are more problems to solve than there are programs to solve them.”

Languages over \{0,1\}
Let L be any set and 2^L be the power set of L

Theorem: There is no onto function from L to 2^L

Proof: Assume, for a contradiction, there is an onto function $f : L \to 2^L$

Define $S = \{ x \in L \mid x \not\in f(x) \} \in 2^L$

If f is onto, then there is a $y \in L$ with $f(y) = S$

Suppose $y \in S$. By definition of S, $y \not\in f(y) = S$.
Suppose $y \not\in S$. By definition of S, $y \in f(y) = S$.

Contradiction!
Let \(L \) be any set and \(2^L \) be the power set of \(L \)

Theorem: There is *no* onto function from \(L \) to \(2^L \)

Proof: Let \(f : L \to 2^L \) be an arbitrary function

Define \(S = \{ x \in L \mid x \notin f(x) \} \in 2^L \)

For all \(x \in L \),

If \(x \in S \) then \(x \notin f(x) \) \[\text{[by definition of } S\text{]}\]

If \(x \notin S \) then \(x \in f(x) \)

In either case, we have \(f(x) \neq S \). (Why?)

Therefore \(f \) is not onto!
What does this mean?

No function from L to 2^L can “cover” all the elements in 2^L.

No matter what the set L is, the power set 2^L always has strictly larger cardinality than L.
Suppose every language is recognizable.

Then for every language L' over $\{0,1\}$ there is a TM M such that $L(M) = L'$.

This means that the function $f(M) = L(M)$ from $\{\text{Turing Machines}\}$ to $\{\text{Languages}\}$ is onto:

For every L' in $\{\text{Languages}\}$, there is an M in $\{\text{Turing Machines}\}$ such that $f(M) = L'$
Thm: There are *unrecognizable* languages

Assuming every language is recog., there’s an onto function

\[f: \{\text{Turing Machines}\} \rightarrow \{\text{Languages}\} \]

\[
\begin{array}{c}
\{\text{Turing Machines}\} \\
\cap \\
\{0,1\}^* \\
\end{array}
\quad
\begin{array}{c}
\{\text{Languages over \{0,1\}}\} \\
\quad \uparrow \\
\quad \{\text{Sets of strings} \\
of \text{0s and 1s}\} \\
\end{array}
\]

\begin{array}{c}
\text{Set } S \\
\end{array}
\quad
\begin{array}{c}
\text{Set of all subsets of } S: 2^S \\
\end{array}

Since \(f \) is onto, there is also an onto \(g \) from \(S \) to \(2^S \).

But there is *no* onto function from \(S \) to \(2^S \). Contradiction!

This is an *extremely* generic argument!
A Concrete Undecidable Problem: The Acceptance Problem for TMs

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Theorem [Turing’30s]
\[A_{TM} \text{ is recognizable but NOT decidable} \]