Lecture 9: More on Turing Machines: The Church-Turing Thesis, Recognizability, Decidability
Definition: A Turing Machine is a 7-tuple \(T = (Q, \Sigma, \Gamma, \delta, q_0, q_{\text{accept}}, q_{\text{reject}}) \), where:

- \(Q \) is a finite set of states
- \(\Sigma \) is the input alphabet, where \(\square \notin \Sigma \)
- \(\Gamma \) is the tape alphabet, where \(\square \in \Gamma \) and \(\Sigma \subseteq \Gamma \)
- \(\delta : Q \times \Gamma \rightarrow Q \times \Gamma \times \{L, R\} \)
- \(q_0 \in Q \) is the start state
- \(q_{\text{accept}} \in Q \) is the accept state
- \(q_{\text{reject}} \in Q \) is the reject state, and \(q_{\text{reject}} \neq q_{\text{accept}} \)
Turing Machine Configurations

corresponds to the configuration:

\[11010q_7001110 \in (Q \cup \Gamma)^*\]
Defining Acceptance and Rejection for TMs

Let C_1 and C_2 be configurations of M

Definition. $C_1 \text{ yields } C_2$ if M is in configuration C_2 after running M in configuration C_1 for one step.

Let $w \in \Sigma^*$ and M be a Turing machine. M **accepts** w if there are configs C_0, C_1, \ldots, C_k, s.t.

- $C_0 = q_0w$ [the initial configuration]
- $C_i \text{ yields } C_{i+1}$ for $i = 0, \ldots, k-1$, and
- C_k contains the accept state q_{accept}

$L(M) = \text{set of strings accepted by } M$
A TM M \textit{recognizes} a language L if M \textit{accepts} exactly those strings in L

A language L is \textit{recognizable} (\textit{a.k.a. recursively enumerable}) if some TM \textit{recognizes} L

A TM M \textit{decides} a language L if M \textit{accepts} all strings in L and \textit{rejects} all strings not in L

A language L is \textit{decidable (a.k.a. recursive)} if some TM \textit{decides} L
A Turing machine for deciding \(\{ 0^{2^n} \mid n \geq 0 \} \)

Turing Machine PSEUDOCODE:

1. Sweep from left to right, cross out every other 0
2. If in step 1, the tape had only one 0, accept
3. If in step 1, the tape had an odd number of 0’s, reject
4. Move the head back to the first input symbol.
5. Go to step 1.

Why does this work?

Idea: Every time we return to stage 1, the number of 0’s on the tape has been halved.
\{ 0^{2^n} | n \geq 0 \}
\{ 0^{2^n} \mid n \geq 0 \}
Multitape Turing Machines

\[\delta : Q \times \Gamma^k \rightarrow Q \times \Gamma^k \times \{L,R\}^k \]
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine
Theorem: Every Multitape Turing Machine can be transformed into a single tape Turing Machine.
Theorem: L is decidable iff both L and $\neg L$ are recognizable.

L is decidable (recursive)

L is recognizable (recursively enumerable)
Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable
iff both L and $\neg L$ are recognizable

Given: a TM M_1 that recognizes L and
a TM M_2 that recognizes $\neg L$, we want to build a new machine M that decides L

How? Any ideas?

Hint: M_1 always accepts x, when x is in L
M_2 always accepts x, when x isn’t in L
Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable
iff both L and $\neg L$ are recognizable

Given: a TM M_1 that recognizes L and
a TM M_2 that recognizes $\neg L$,
we want to build a new machine M that decides L

$M(x)$: Run $M_1(x)$ and $M_2(x)$ on separate tapes.
Alternate between simulating one step
of M_1, and one step of M_2.
If M_1 ever accepts, then accept
If M_2 ever accepts, then reject
Nondeterministic Turing Machines

Have multiple transitions for a state, symbol pair

Theorem: Every nondeterministic Turing machine N can be transformed into a Turing Machine M that accepts precisely the same strings as N.

Proof Idea (more details in Sipser p.178-179)
Pick a natural ordering on all strings in $(Q \cup \Gamma \cup \#)^*$

$M(w)$: For all strings $D \in (Q \cup \Gamma \cup \#)^*$ in the ordering,
Check if $D = C_0\# \cdots \#C_k$ where C_0, \ldots, C_k is some accepting computation history for N on w. If so, accept.
Fact: We can encode Turing Machines as *bit strings*

\[0^n 10^m 10^k 10^s 10^t 10^r 10^u 1 \ldots \]

- **n states**
- **m tape symbols** (first k are input symbols)
- **start state**
- **reject state**
- **accept state**
- **blank symbol**

\[
((p, i), (q, j, L)) = 0^p 10^i 10^q 10^j 10
\]

\[
((p, i), (q, j, R)) = 0^p 10^i 10^q 10^j 100
\]
Similarly, we can encode DFAs and NFAs as *bit strings*, and \(w \in \Sigma^* \) as *bit strings*

For \(x \in \Sigma^* \) define \(b_\Sigma(x) \) to be its binary encoding.

For \(x, y \in \Sigma^* \), define the *pair of \(x \) and \(y \)* to be

\[
(x, y) := 0|b_\Sigma(x)|1 b_\Sigma(x) b_\Sigma(y)
\]

Then we define the following languages over \{0,1\}

\[
A_{DFA} = \{ (B, w) \mid B \text{ encodes a DFA over some } \Sigma, \\
\text{ and } B \text{ accepts } w \in \Sigma^* \}
\]

\[
A_{NFA} = \{ (B, w) \mid B \text{ encodes an NFA, } B \text{ accepts } w \}
\]

\[
A_{TM} = \{ (M, w) \mid M \text{ encodes a TM, } M \text{ accepts } w \}
\]
\[A_{TM} = \{ (M, w) \mid M \text{ encodes a TM over some } \Sigma, \]
\[\text{w encodes a string over } \Sigma \]
\[\text{and } M \text{ accepts } w \} \]

Technical Note:

We’ll use an decoding of pairs, TMs, and strings so that *every* binary string decodes to *some* pair \((M, w)\)

If \(z \in \{0,1\}^*\) doesn’t decode to \((M, w)\) in the usual way, then we *define* that \(z\) decodes to the pair \((D, \varepsilon)\)

where \(D\) is a “dummy” TM that accepts nothing.

\[\neg A_{TM} = \{ z \mid z \text{ decodes to } (M, w) \text{ and } M \text{ does not accept } w \} \]
Universal Turing Machines

Theorem: There is a Turing machine U which takes as input:
- the code of an arbitrary TM M
- and an input string w
such that U accepts $(M, w) \iff M$ accepts w.

This is a *fundamental* property of TMs:
There is a Turing Machine that can run arbitrary Turing Machine code!

Note that DFAs/NFAs do not have this property. That is, A_{DFA} and A_{NFA} are not regular.
A_{DFA} = \{ (D, w) | D is a DFA that accepts string w \}

Theorem: A_{DFA} is decidable

Proof: A DFA is a special case of a TM. Run the universal U on (D, w) and output its answer.

$A_{NFA} = \{ (N, w) | N is an NFA that accepts string w \}$

Theorem: A_{NFA} is decidable. (Why?)

$A_{TM} = \{ (M, w) | M is a TM that accepts string w \}$

Theorem: A_{TM} is recognizable
The Church-Turing Thesis

Everyone’s Intuitive Notion of Algorithms = Turing Machines

This is not a theorem – it is a falsifiable scientific hypothesis.

And it has been thoroughly tested!
Thm: There are *unrecognizable* languages

Assuming the Church-Turing Thesis, this means there are problems that *NO* computing device can solve!

We will prove that there is no *onto* function from the set of all Turing Machines to the set of all languages over \{0,1\}. *(But the proof will work for any *finite* \(\Sigma\))*

That is, every mapping from Turing machines to languages *fails to cover* all possible languages
“There are more problems to solve than there are programs to solve them.”

Languages over \{0,1\}
Let L be any set and 2^L be the power set of L.

Theorem: There is *no* onto function from L to 2^L.

Proof: Assume, for a contradiction, there is an onto function $f : L \rightarrow 2^L$.

Define $S = \{ x \in L \mid x \not\in f(x) \} \in 2^L$.

If f is onto, then there is a $y \in L$ with $f(y) = S$.

Suppose $y \in S$. By definition of S, $y \not\in f(y) = S$.

Suppose $y \not\in S$. By definition of S, $y \in f(y) = S$.

Contradiction!
Let L be any set and 2^L be the power set of L.

Theorem: There is no onto function from L to 2^L.

Proof: Let $f : L \rightarrow 2^L$ be an arbitrary function.

Define $S = \{ x \in L \mid x \not\in f(x) \} \in 2^L$.

For all $x \in L$,
- If $x \in S$ then $x \not\in f(x)$ [by definition of S].
- If $x \not\in S$ then $x \in f(x)$.

In either case, we have $f(x) \neq S$. (Why?)

Therefore f is not onto!
What does this mean?

No function from \(L \) to \(2^L \) can “cover” all the elements in \(2^L \)

No matter what the set \(L \) is, \(\text{the power set } 2^L \text{ always} \) has strictly larger cardinality than \(L \)
Suppose every language is recognizable.

Then for every language \(L' \) over \{0,1\} there is a TM \(M \) such that \(L(M) = L' \).

This means that the function \(f(M) = L(M) \) from \{Turing Machines\} to \{Languages\} is \textit{onto}:

For every \(L' \) in \{Languages\}, there is an \(M \) in \{Turing Machines\} such that \(f(M) = L' \)
Thm: There are *unrecognizable* languages

Assuming every language is recognizable, there’s an onto function

\[f : \{\text{Turing Machines}\} \rightarrow \{\text{Languages}\} \]

\[
\begin{align*}
\{\text{Turing Machines}\} & \quad \{\text{Languages}\} \\
\text{In} & \quad \uparrow \\
\{0,1\}^* & \quad \{\text{Sets of strings of 0s and 1s}\} \\
\text{Set } S & \quad \text{Set of all subsets of } S: 2^S
\end{align*}
\]

Since \(f \) is onto, there is also an onto \(g \) from \(S \) to \(2^S \).

But there is *no* onto function from \(S \) to \(2^S \). *Contradiction!*

This is an *extremely* generic argument!
A Concrete Undecidable Problem: The Acceptance Problem for TMs

$$A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \}$$

Theorem [Turing’30s]

$$A_{TM}$$ is recognizable but **NOT** decidable