
octoBer 2009 | vol. 52 | no. 10 | CommuniCAtions of the ACm 97

Finding the Frequent
Items in Streams of Data
By Graham Cormode and Marios Hadjieleftheriou

Doi:10.1145/1562764.1562789

Abstract
The frequent items problem is to process a stream of items
and find all those which occur more than a given fraction of
the time. It is one of the most heavily studied problems in
mining data streams, dating back to the 1980s. Many other
applications rely directly or indirectly on finding the frequent
items, and implementations are in use in large-scale indus-
trial systems. In this paper, we describe the most important
algorithms for this problem in a common framework. We
place the different solutions in their historical context, and
describe the connections between them, with the aim of
clarifying some of the confusion that has surrounded their
properties.

To further illustrate the different properties of the algo-
rithms, we provide baseline implementations. This allows
us to give empirical evidence that there is considerable vari-
ation in the performance of frequent items algorithms. The
best methods can be implemented to find frequent items
with high accuracy using only tens of kilobytes of memory,
at rates of millions of items per second on cheap modern
hardware.

1. introDuCtion
Many data generation processes can be modeled as data
streams. They produce huge numbers of pieces of data, each
of which is simple in isolation, but which taken together
lead to a complex whole. For example, the sequence of que-
ries posed to an Internet search engine can be thought of
as a stream, as can the collection of transactions across all
branches of a supermarket chain. In aggregate, this data can
arrive at enormous rates, easily in the realm of hundreds of
gigabytes per day or higher. While this data may be archived
and indexed within a data warehouse, it is also important to
process the data “as it happens,” to provide up to the minute
analysis and statistics on current trends. Methods to achieve
this must be quick to respond to each new piece of informa-
tion, and use resources which are very small when compared
to the total quantity of data.

These applications and others like them have led to
the formulation of the so-called “streaming model.” In
this abstraction, algorithms take only a single pass over
their input, and must accurately compute various func-
tions while using resources (space and time per item)
that are strictly sublinear in the size of the input—ideally,
poly nomial in the logarithm of the input size. The output
must be produced at the end of the stream, or when que-
ried on the prefix of the stream that has been observed so
far. (Other variations ask for the output to be maintained
continuously in the presence of updates, or on a “sliding

window” of only the most recent updates.) Some problems
are simple in this model: for example, given a stream of
transactions, finding the mean and standard deviation of
the bill totals can be accomplished by retaining a few “suf-
ficient statistics” (sum of all values, sum of squared val-
ues, etc.). Others can be shown to require a large amount
of information to be stored, such as determining whether
a particular search query has already appeared anywhere
within a large stream of queries. Determining which prob-
lems can be solved effectively within this model remains
an active research area.

The frequent items problem (also known as the heavy hit-
ters problem) is one of the most heavily studied questions in
data streams. The problem is popular due to its simplicity
to state, and its intuitive interest and value. It is important
both in itself, and as a subroutine within more advanced
data stream computations. Informally, given a sequence of
items, the problem is simply to find those items which occur
most frequently. Typically, this is formalized as finding all
items whose frequency exceeds a specified fraction of the
total number of items. This is shown in Figure 1. Variations
arise when the items are given weights, and further when
these weights can also be negative.

This abstract problem captures a wide variety of settings.
The items can represent packets on the Internet, and the
weights are the size of the packets. Then the frequent items
represent the most popular destinations, or the heaviest band-
width users (depending on how the items are extracted from
the flow identifiers). This knowledge can help in optimizing
routing decisions, for in-network caching, and for planning
where to add new capacity. Or, the items can represent queries

figure 1. A stream of items defines a frequency distribution over
items. in this example, with a threshold of f = 20% over the 19 items
grouped in bins, the problem is to find all items with frequency at
least 3.8—in this case, the green and red items (middle two bins).

A previous version of this paper was published in
Proceedings of the International Conference on Very Large
Data Bases (Aug. 2008).

98 CommuniCAtions of the ACm | octoBer 2009 | vol. 52 | No. 10

research highlights

made to an Internet search engine, and the frequent items are
now the (currently) popular terms. These are not simply hypo-
thetical examples, but genuine cases where algorithms for
this problem have been applied by large corporations: AT&T11
and Google,23 respectively. Given the size of the data (which is
being generated at high speed), it is important to find algo-
rithms which are capable of processing each new update very
quickly, without blocking. It also helps if the working space
of the algorithm is very small, so that the analysis can hap-
pen over many different groups in parallel, and because small
structures are likely to have better cache behavior and hence
further help increase the throughput.

Obtaining efficient and scalable solutions to the frequent
items problem is also important since many streaming
applications need to find frequent items as a subroutine of
another, more complex computation. Most directly, min-
ing frequent itemsets inherently builds on finding frequent
items as a basic building block. Finding the entropy of a
stream requires learning the most frequent items in order
to directly compute their contribution to the entropy, and
remove their contribution before approximating the entropy
of the residual stream.8 The HSS (Hierarchical Sampling
from Sketches) technique uses hashing to derive multiple
substreams, the frequent elements of which are extracted
to estimate the frequency moments of the stream.4 The fre-
quent items problem is also related to the recently popular
area of Compressed Sensing.

Other work solves generalized versions of frequent items
problems by building on algorithms for the “vanilla” version
of the problem. Several techniques for finding the frequent
items in a “sliding window” of recent updates (instead of
all updates) operate by keeping track of the frequent items
in many sub-windows.2, 13 In the “heavy hitters distinct”
problem, with applications to detecting network scanning
attacks, the count of an item is the number of distinct pairs
containing that item paired with a secondary item. It is typi-
cally solved extending a frequent items algorithm with dis-
tinct counting algorithms.25 Frequent items have also been
applied to models of probabilistic streaming data,17 and
within faster “skipping” techniques.3

Thus the problem is an important one to understand and
study in order to produce efficient streaming implementa-
tions. It remains an active area, with many new research
contributions produced every year on the core problem and
its variations. Due to the amount of work on this problem,
it is easy to miss out some important references or fail to
appreciate the properties of certain algorithms. There are
several cases where algorithms first published in the 1980s
have been “rediscovered” two decades later; existing work
is sometimes claimed to be incapable of a certain guaran-
tee, which in truth it can provide with only minor modifica-
tions; and experimental evaluations do not always compare
against the most suitable methods.

In this paper, we present the main ideas in this area, by
describing some of the most significant algorithms for the core
problem of finding frequent items using common notation
and terminology. In doing so, we also present the historical
development of these algorithms. Studying these algorithms
is instructive, as they are relatively simple, but can be shown

to provide formal guarantees on the quality of their output as a
function of an accuracy parameter e. We also provide baseline
implementations of many of these algorithms against which
future algorithms can be compared, and on top of which algo-
rithms for different problems can be built. We perform experi-
mental evaluation of the algorithms over a variety of data sets
to indicate their performance in practice. From this, we are
able to identify clear distinctions among the algorithms that
are not apparent from their theoretical analysis alone.

2. Definitions
We first provide formal definition of the stream and the fre-
quencies fi of the items within the stream as the number of
times item i is seen in the stream.

Definition 1. Given a stream S of n items t1 … tn, the fre-
quency of an item i is fi = |{ j|tj = i}|. The exact f-frequent
items comprise the set {i| fi > fn}.

Example. The stream S = (a, b, a, c, c, a, b, d) has fa = 3, fb = 2,
fc = 2, fd = 1. For f = 0.2, the frequent items are a, b, and c.

A streaming algorithm which finds the exact f-frequent
items must use a lot of space, even for large values of f, based
on the following information-theoretic argument. Given
an algorithm that claims to solve this problem for f = 50%,
we could insert a set S of N items, where every item has fre-
quency 1. Then, we could also insert N − 1 copies of item i.
If i is now reported as a frequent item (occurring more than
50% of the time) then i ∈ S, else i ∉ S. Consequently, since cor-
rectly storing a set of size N requires W(N) space, W(N) space
is also required to solve the frequent items problem. That is,
any algorithm which promises to solve the exact problem on a
stream of length n must (in the worst case) store an amount of
information that is proportional to the length of the stream,
which is impractical for the large stream sizes we consider.

Because of this fundamental difficulty in solving the exact
problem, an approximate version is defined based on a tol-
erance for error, which is parametrized by e.

Definition 2. Given a stream S of n items, the e-approximate
frequent items problem is to return a set of items F so that for
all items i ∈ F, fi > (f − e)n, and there is no i ∉ F such that fi > fn.

Since the exact (e = 0) frequent items problem is hard
in general, we use “frequent items” or “the frequent items
problem” to refer to the e-approximate frequent items prob-
lem. A closely related problem is to estimate the frequency
of items on demand.

Definition 3. Given a stream S of n items defining frequen-
cies fi as above, the frequency estimation problem is to pro-
cess a stream so that, given any i, an f̂i is returned satisfying
fi ≤ f̂i ≤ fi + en.

A solution to the frequency estimation problem allows the
frequent items problem to be solved (slowly): one can estimate
the frequency of every possible item i, and report those i’s
whose frequency is estimated above (f − e)n. Exhaustively enu-
merating all items can be very time consuming (or infeasible,

octoBer 2009 | vol. 52 | no. 10 | CommuniCAtions of the ACm 99

e.g., when the items can be arbitrary strings). However, all
the algorithms we study here solve both the approximate fre-
quent items problem and the frequency estimation problem
at the same time. Most solutions are deterministic, but we
also discuss randomized solutions, which allow a small user-
specified probability of making a mistake.

3. freQuent items ALGorithms
We discuss two main classes of algorithms for finding the
frequent items. Counter-based algorithms track a subset of
items from the input, and monitor counts associated with
these items. We also discuss sketch algorithms, which are
(randomized) linear projections of the input viewed as a vec-
tor, and solve the frequency estimation problem. They there-
fore do not explicitly store items from the input. Furthermore,
sketch algorithms can support deletion of items (correspond-
ing to updates with a negative weight, discussed in more
detail below), in contrast with counter-based schemes, at the
cost of increased space usage and update time.

These are by no means the only solutions possible for this
problem. Other solutions are based on various notions of ran-
domly sampling items from the input, and of summarizing
the distribution of items in order to find quantiles, from which
the frequent items can be discovered. These solution types
have attracted less interest for the frequent items problem, and
are less effective based on our full experimental evaluations.10

3.1. Counter-based algorithms
Counter-based algorithms decide for each new arrival
whether to store this item or not, and if so, what counts to
associate with it. A common feature of these algorithms is
that when given a new item, they test whether it is one of k
being stored by the algorithm, and if so, increment its count.
The cost of supporting this “dictionary” operation depends
on the model of computation assumed. A simple solution is
to use a hash table storing the current set of items, but this
means that an otherwise deterministic solution becomes
randomized in its time cost, since it takes expected O(1)
operations to perform this step. Other models assume that
there is hardware support for these operations (such as
Content Addressable Memory), or else that deterministic
“dynamic dictionary algorithms” are used. We sidestep this
issue in this presentation by just counting the number of
 “dictionary” operations in the algorithms.
Majority Algorithm: The problem of frequent items dates
back at least to a problem proposed by Moore in 1980. It was
published as a “problem” in the Journal of Algorithms in the
June 1981 issue, as

[J.Alg 2, P208–209] Suppose we have a list of n num-
bers, representing the “votes” of n processors on the
result of some computation. We wish to decide if there
is a majority vote and what the vote is.

Moore, with Boyer, also invented the Majority algorithm
in 1980, described in a technical report from early 1981.6 To
them, this was mostly of interest from the perspective of
automatically proving the correctness of the solution (the
details of this were published in 1991, along with a partial

history7). In the December 1982, Journal of Algorithms, a
solution provided by Fischer and Salzburg was published.15
Their proposed algorithm, although presented differently,
was essentially identical to Majority, and was accompa-
nied by an analysis of the number of comparisons needed to
solve the problem. Majority can be stated as follows: store
the first item and a counter, initialized to 1. For each sub-
sequent item, if it is the same as the currently stored item,
increment the counter. If it differs, and the counter is zero,
then store the new item and set the counter to 1; else, decre-
ment the counter. After processing all items, the algorithm
guarantees that if there is a majority vote, then it must be the
item stored by the algorithm. The correctness of this algo-
rithm is based on a pairing argument: if every nonmajority
item is paired with a majority item, then there should still
remain an excess of majority items. Although not posed as a
streaming problem, the algorithm has a streaming flavor: it
takes only one pass through the input (which can be ordered
arbitrarily) to find a majority item. To verify that the stored
item really is a majority, a second pass is needed to simply
count the true number of occurrences of the stored item.
Without this second pass, the algorithm has a partial guar-
antee: if there is an exact majority item, it is found at the end
of the first pass, but the algorithm is unable to determine
whether this is the case. Note that as the hardness results for
Definition 1 show, no algorithm can correctly distinguish
the cases when an item is just above or just below the thresh-
old in a single pass without using a large amount of space.
The “Frequent” Algorithm: Twenty years later, the prob-
lem of streaming algorithms was an active research area,
and a generalization of the Majority algorithm was shown
to solve the problem of finding all items in a sequence
whose frequency exceeds a 1/k fraction of the total count.14, 18
Instead of keeping a single counter and item from the input,
the Frequent algorithm stores k − 1 (item, counter) pairs.
The natural generalization of the Majority algorithm is to
compare each new item against the stored items T, and
increment the corresponding counter if it is among them.
Else, if there is some counter with a zero count, it is allocated
to the new item, and the counter set to 1. If all k − 1 counters
are allocated to distinct items, then all are decremented by 1.
A grouping argument is used to argue that any item which
occurs more than n/k times must be stored by the algorithm
when it terminates. Figure 2 illustrates some of the opera-
tions on this data structure. Pseudocode to illustrate this
algorithm is given in Algorithm 1, making use of set notation
to represent the dictionary operations on the set of stored
items T: items are added and removed from this set using set
union and set subtraction, respectively, and we allow rang-
ing over the members of this set (any implementation will
have to choose how to support these operations). We also
assume that each item j stored in T has an associated coun-
ter cj. For items not stored in T, then cj is implicitly defined as
0 and does not need to be explicitly stored.

In fact, this generalization was first proposed by Misra and
Gries as “Algorithm 3”22 in 1982: the papers published in 2002
(which cite Fischer15 but not Misra22) were actually rediscover-
ies of their algorithm. In deference to its initial discovery, this
algorithm has been referred to as the “Misra–Gries” algorithm

100 CommuniCAtions of the ACm | octoBer 2009 | vol. 52 | No. 10

research highlights

in more recent work on streaming algorithms. In the same
paper, an “Algorithm 2” correctly solves the problem but has
only speculated worst-case space bounds. Some works have
asserted that the Frequent algorithm does not solve the fre-
quency estimation problem accurately, but this is erroneous.
As observed by Bose et al.,5 executing this algorithm with k =
1/e ensures that the count associated with each item on termi-
nation is at most en below the true value.

The time cost of the algorithm is dominated by the O(1)
dictionary operations per update, and the cost of decre-
menting counts. Misra and Gries use a balanced search tree,
and argue that the decrement cost is amortized O(1); Karp et
al. propose a hash table to implement the dictionary18; and
Demaine et al. show how the cost of decrementing can be
made worst-case O(1) by representing the counts using off-
sets and maintaining multiple linked lists.14

LossyCounting: The LossyCounting algorithm was pro-
posed by Manku and Motwani in 2002,19 in addition to a
randomized sampling-based algorithm and techniques for
extending from frequent items to frequent itemsets. The

algorithm stores tuples which comprise an item, a lower
bound on its count, and a “delta” (∆) value which records the
difference between the upper bound and the lower bound.
When processing the ith item in the stream, if information
is currently stored about the item then its lower bound is
increased by one; else, a new tuple for the item is created with
the lower bound set to one, and ∆ set to i/k. Periodically,
all tuples whose upper bound is less than i/k are deleted.
These are correct upper and lower bounds on the count of
each item, so at the end of the stream, all items whose count
exceeds n/k must be stored. As with Frequent, setting
k = 1/e ensures that the error in any approximate count is at
most en. A careful argument demonstrates that the worst-
case space used by this algorithm is , and for cer-
tain time-invariant input distributions it is .

Storing the delta values ensures that highly frequent items
which first appear early on in the stream have very accurate
approximated counts. But this adds to the storage cost. A vari-
ant of this algorithm is presented by Manku in a presentation
of the paper,20 which dispenses with explicitly storing the delta
values, and instead has all items sharing an implicit value of
∆(i) = i/k. The modified algorithm stores (item, count) pairs.
For each item in the stream, if it is stored, then the count is
incremented; otherwise, it is initialized with a count of 1.
Every time ∆(i) increases, all counts are decremented by 1,
and all items with zero count are removed from the data struc-
ture. The same proof suffices to show that the space bound
is . This version of the algorithm is quite similar
to Algorithm 2 presented in Misra22; but in Manku,20 a space
bound is proven. The time cost is O(1) dictionary operations,
plus the periodic compress operations which require a linear
scan of the stored items. This can be performed once every

 updates, in which time the number of items
stored has at most doubled, meaning that the amortized cost
of compressing is O(1). We give pseudocode for this version of
the algorithm in Algorithm 2, where again T represents the set
of currently monitored items, updated by set operations, and
cj are corresponding counts.
SpaceSaving: All the deterministic algorithms presented so
far have a similar flavor: a set of items and counters are kept,
and various simple rules are applied when a new item arrives
(as illustrated in Figure 2). The SpaceSaving algorithm intro-
duced in 2005 by Metwally et al. also fits this template.21 Here, k
(item, count) pairs are stored, initialized by the first k distinct

0

+1

+1

+1

1

2

6

figure 2. Counter-based data structure: the blue (top) item is already
stored, so its count is incremented when it is seen. the green
(middle) item takes up an unused counter, then a second occurrence
increments it.

Algorithm 1: FREQUENT(k)

foreach i do

if i ∈T then

else if T < k−1 then

else forall j ∈T do

if cj = 0 then T ← T \{ j};

n ← 0;
T ← Ø;

T ← T ∪ {i};

n ← n + 1;

ci ← ci + 1;

cj ← cj − 1;

ci ← 1;

Algorithm 3: SPACESAVING(k)

foreach i do

if i ∈T then ci ← ci + 1;
else if T < k then

n ← 0;
T ← Ø;

T ← T ∪ {i};

T ← T ∪ {i} \ { j};

n ← n + 1;

ci ← cj + 1;
j ← arg minj∈T cj

;

ci ← 1;

Algorithm 2: LOSSYCOUNTING(k)

foreach i do

if i ∈T then ci ← ci + 1;

 if ci < ∆ then T ← T \ { j};
forall j ∈T do

if n/K ≠ ∆ then
∆ ← n/k;

n ← 0; ∆ ← 0; T ← Ø;

T ← T ∪ {i};

n ← n + 1;

ci ← 1+ ∆;

else

else

octoBer 2009 | vol. 52 | no. 10 | CommuniCAtions of the ACm 101

items and their exact counts. As usual, when the next item in
the sequence corresponds to a monitored item, its count is
incremented; but when the next item does not match a mon-
itored item, the (item, count) pair with the smallest count
has its item value replaced with the new item, and the count
incremented. So the space required is O(k) (respectively),
and a short proof demonstrates that the counts of all stored
items solve the frequency estimation problem with error
n/k (respectively en). It also shares a useful property with
LossyCounting, that items which are stored by the algo-
rithm early in the stream and are not removed have very accu-
rate estimated counts. The algorithm appears in Algorithm 3.
The time cost is bounded by the dictionary operation of find-
ing if an item is stored, and of finding and maintaining the
item with minimum count. Simple heap implementations
can track the smallest count item in O(log 1/e) time per
update. When all updates are unitary (+1), a faster approach
is to borrow ideas from the Demaine et al. implementation of
Frequent, and keep the items in groups with equal counts.
By tracking a pointer to the group with smallest count, the
find minimum operation takes constant time, while incre-
menting counts take O(1) pointer operations (the “Stream-
Summary” data structure desribed by Metwally et al.21).

3.2. sketch algorithms
Here, we use the term “sketch” to denote a data structure
which can be thought of as a linear projection of the input.
That is, if we imagine the stream as implicitly defining a vec-
tor whose ith entry is fi, the sketch is the product of this
 vector with a matrix. For the algorithm to use small space,
this matrix will be implicitly defined by a small number of
bits. The sketch algorithms described here use hash func-
tions to define a (very sparse) linear projection. Both views
(hashing or linear projection) can be helpful in explaining
the methods, and it is usually possible to alternate between
the two without confusion. Because of their linearity, it fol-
lows immediately that updates with negative values can
easily be accommodated by such sketching methods. This
allows us to model the removal of items (to denote the con-
clusion of a packet flow; or the return of a previously bought
item, say) as an update with negative weight.

The two sketch algorithms outlined below solve the fre-
quency estimation problem. They need additional data infor-
mation to solve the frequent items problem, so we also describe
algorithms which augment the stored sketch to find frequent
items quickly. The algorithms are randomized, which means
that in addition to the accuracy parameter e, they also take a
failure probability d so that (over the random choices made
in choosing the hash functions) the probability of failure is at
most d. Typically, d can be chosen to be very small (e.g., 10−6)
while keeping the space used by the sketch low.
CountSketch: The first sketch in the sense that we use the
term was the AMS or Tug-of-war sketch due to Alon et al.1
This was used to estimate the second frequency moment,
F2 = Σi fi

2. It was subsequently observed that the same data
structure could be used to estimate the inner product of two
frequency distributions, i.e., Σi fi fi′ for two distributions given
(in a stream) by fi and fi′. But this means that if fi is defined by
a stream, at query time we can find the product with fi′	=	1and

fi′	 =	 0 for all j ≠ i. Then, the true answer to the inner prod-
uct should be exactly fi. The error guaranteed by the sketch
turns out to be with probability of at least 1 − d
for a sketch of size . The ostensibly dissimilar
technique of “Random Subset Sums”16 (on close inspection)
turns out to be isomorphic to this instance of the algorithm.

Maintaining the AMS data structure is slow, since it requires
updating the whole sketch for every new item in the stream.
The CountSketch algorithm of Charikar et al.9 dramatically
improves the speed by showing that the same underlying
technique works if each update only affects a small subset of
the sketch, instead of the entire summary. The sketch con-
sists of a two-dimensional array C with d rows of w counters
each. There are two hash functions for each row, hj which
maps input items onto [w], and gj which maps input items
onto {−1, +1}. Each input item i causes gj(i) to be added on to
entry C[j, hj (i)] in row j, for 1 ≤ j ≤ d. For any row j, the value gj(i)
C[j, hj (i)] is an unbiased estimator for fi. The estimate f̂i is the
median of these estimates over the d rows. Setting
and

ensures that fi has error at most with

probability of at least 1 − d. This guarantee requires that the
hash functions are chosen randomly from a family of “four-
wise independent” hash functions.24 The total space used is

, and the time per update is worst case.
Figure 3 shows a schematic of the data structure under the
update procedure: the new item i gets mapped to a different
location in each row, where gj(i) is added on to the current
counter value in that location. Pseudocode for the core of the
update algorithm is shown in Algorithm 4.
CountMin Sketch: The CountMin sketch algorithm of
Cormode and Muthukrishnan12 can be described in simi-
lar terms to CountSketch. An array of d × w counters is
maintained, along with d hash functions hj. Each update is
mapped onto d entries in the array, each of which is incre-
mented. Now f̂i = min1≤ j≤d C[j, hj(i)]. The Markov inequality
is used to show that the estimate for each j overestimates by
less than n/w, and repeating d times reduces the probabil-
ity of error exponentially. So setting

and

ensures that f̂i has error at most en with probability of at
least 1 − d. Consequently, the space is and the
time per update is . The data structure and update
procedure is consequently much like that illustrated for the
CountSketch in Figure 3, with gj(i) always equal to 1. The
update algorithm is shown in Algorithm 5.
Finding Frequent Items Using a Hierarchy: Since sketches
solve the case when item frequencies can decrease, more

+ctg1(i)

+ctgd(i)

hd(i)
it

h1(i)

figure 3. sketch data structure: each new item is mapped to a set of
counters, which are incremented.

102 CommuniCAtions of the ACm | octoBer 2009 | vol. 52 | No. 10

research highlights

complex algorithms are needed to find the frequent items.
Here, we assume a “strict” case, where negative updates
are possible but no negative frequencies are allowed. In
this strict case, an approach based on divide-and-conquer
will work: additional sketches are used to determine which
ranges of items are frequent.12 If a range is frequent, then it
can be split into b nonoverlapping subranges and the fre-
quency of each subrange estimated from an appropriate
sketch, until a single item is returned. The choice of b trades
off update time against query time: if all items i ∈ {1 . . . U},
then [logb U] sketches suffice, but each potential range is
split into b > 1 subranges when answering queries. Thus,
updates take

hashing operations, and O(1)

counter updates for each hash. Typically, moderate constant
values of b are used (between 2 and 256, say); choosing b to
be a power of two allows fast bit-shifts to be used in query
and update operations instead of slower divide and mod
operations. This results in CountMin sketch Hierarchical
and CountSketch Hierarchical algorithms.
Finding Frequent Items Using Group Testing: An alter-
nate approach is based on “combinatorial group testing”
(CGT), which randomly divides the input into buckets so
that we expect at most one frequent item in each group.
Within each bucket, the items are divided into subgroups
so that the “weight” of each group indicates the identity of
the frequent item. For example, separating the counts of the
items with odd identifiers and even identifiers will indicate
whether the heavy item is odd or even; repeating this for all
bit positions reveals the full identity of the item. This can
be seen as an extension of the CountMin sketch, since the
structure resembles the buckets of the sketch, with addi-
tional information on subgroups of each bucket (based on
the binary representation of items falling in the bucket); fur-
ther, the analysis and properties are quite close to those of
a Hierarchical CountMin sketch. This increases the space
to when the binary representation takes log
U bits. Each update requires hashes as before, and
updating O(log U) counters per hash.

4. eXPerimentAL ComPArison

4.1. setup
We compared these algorithms under a common imple-
mentation framework to test as accurately as possible their
relative performance. All algorithms were implemented
using C++, and used common subroutines for similar tasks
(e.g., hash tables) to increase comparability. We ran experi-
ments on a 4 Dual Core Intel(R) Xeon(R) 2.66 GHz with 16GB
of RAM running Windows 2003 Server. The code was com-
piled using Microsoft’s Visual C++ 2005 compiler and g++
3.4.4 on cygwin. We did not observe significant differences
between the two compilers. We report here results obtained
using Visual C++ 2005. The code is available from http://
www.research.att.com/~marioh/frequent–items/.

For every algorithm we tested a number of implementa-
tions, using different data structures to implement the basic
set operations. For some algorithms the most robust imple-
mentation choice was clear; for others we present results of
competing solutions. For counter-based algorithms we exam-
ine: Frequent using the Demaine et al. implementation tech-
nique of linked lists (F), LossyCounting keeping separate
delta values for each item (LCD), LossyCounting without del-
tas (LC), SpaceSaving using a heap (SSH), and SpaceSaving
using linked lists (SSL). We also examine sketch-based meth-
ods: hierarchical CountSketch (CS), hierarchical CountMin
sketch (CMH), and the CGT variant of CountMin.

We ran experiments using 10 million packets of HTTP traf-
fic, representing 24 hours of traffic from a backbone router in a
major network. Experiments on other real and synthetic data-
sets are shown in an extended version of this article.10 We varied
the frequency threshold f, from 0.0001 to 0.01. In our experi-
ments, we set the error guarantee e = f, since our results showed
that this was sufficient to give high accuracy in practice.

We compare the efficiency of the algorithms with respect to

• Update throughput, measured in number of updates
per millisecond.

• Space consumed, measured in bytes.
• Recall, measured in the total number of true heavy hit-

ters reported over the number of true heavy hitters
given by an exact algorithm.

• Precision, measured in total number of true heavy hit-
ters reported over the total number of answers reported.
Precision quantifies the number of false positives
reported.

• Average relative error of the reported frequencies: We
measure separately the average relative error of the fre-
quencies of the true heavy hitters, and the average rela-
tive error of the frequencies of the false positive answers.
Let the true frequency of an item be f and the measured
frequency f~. The absolute relative error is defined
by . We average the absolute relative errors
over all measured frequencies.

For all of the above, we perform 20 runs per experiment (by
dividing the input data into 20 chunks and querying the algo-
rithms once at the end of each run). We report averages on all
graphs, along with the 5th and 95th percentiles as error bars.

Algorithm 4: COUNTSKETCH(w, d)

for j ← 1 to d do

for j ← 1 to d do

foreach i do

Initialize gj, hj;

n ← n + 1;

C[1, 1]. . . C[d, w] ← 0;

C[j, hj(i)] ← C[j, hj(i), j] + gj (i);

Algorithm 5: COUNTMin(w, d)

C[1, 1]. . . C[d, w] ← 0;
for j ← 1 to d do

Initialize gj ;

foreach i do
n ← n + 1;
for j ← 1 to d do

C[j, hj(i)] ← C[j, hj(i)] + 1;

octoBer 2009 | vol. 52 | no. 10 | CommuniCAtions of the ACm 103

4.2. Counter-based algorithms
Space and Time Costs: Figure 4(a) shows the update through-
put of the algorithms as a function of increasing frequency
threshold (f). The SpaceSaving and Frequent algorithms
are fastest, while the two variations of LossyCounting are
appreciably slower. On this data set, SSL and SSH are equally
very fast, but on some other data sets SSL was significantly
faster than SSL, showing how data structure choices can affect
performance. The range of frequency thresholds (f) consid-
ered did not affect update throughput (notice the log scale on
the horizontal axis). The space used by these algorithms at the
 finest accuracy level was less than 1MB. SSL used 700KB for f =
0.0001, while the other algorithms all required approximately
400KB. Since the space cost varies with 1/f, for f = 0.01, the
cost was 100 times less, i.e., a matter of kilobytes. This range
of sizes is small enough to fit within a mod ern second level
cache, so there is no obvious effect due to crossing memory
boundaries on the architectures tested on. A naive solution
that maintains one counter per input item would consume
many megabytes (and this grows linearly with the input size).
This is at least 12 times larger than SSH for f = 0.0001 (which is
the most robust algorithm in terms of space), and over a thou-
sand times larger than all algorithms for f = 0.01. Clearly, the
space benefit of these algorithms, even for small frequency
thresholds, is substantial in practice.
Precision, recall, and Error: All algorithms tested guar-
antee perfect recall (they will recover every item that is fre-
quent). Figure 4(b) plots the precision. We also show the 5th
and 95th percentiles in the graphs as error bars. Precision
is the total number of true answers returned over the total
number of answers. Precision is an indication of the number
of false positives returned. Higher precision means smaller
number of false positive answers. There is a clear distinc-
tion between different algorithms in this case. When using
e = f, F results in a very large number of false positive answers,
while LC and LCD result in approximately 50% false positives
for small f parameters, but their precision improves as skew-
ness increases. Decreasing e relative to f would improve this
at the cost of increasing the space used. However, SSL and
SSH yield 100% accuracy in all cases (i.e., no false positives),
with about the same or better space usage. Note that these
implement the same algorithm and so have the same output,
only differing in the underlying implementation of certain

data structures. Finally, notice that by keeping additional per-
item information, LCD can sometimes distinguish between
truly frequent and potentially frequent items better than LC.

Figure 4(c) plots the average relative error in the frequency
estimation of the truly frequent items. The graph also plots
the 5th and 95th percentiles as error bars. The relative error
of F decreases with f, while the error of LossyCounting
increases with f. Note that F always returns an underesti-
mate of the true count of any item; LC and LCD always return
overestimates based on a ∆ value, and so yield inflated esti-
mates of the frequencies of infrequent items.
Conclusions: Overall, the SpaceSaving algorithm appears con-
clusively better than other counter-based algorithms, across
a wide range of data types and parameters. Of the two imple-
mentations compared, SSH exhibits very good performance in
practice. It yields very good estimates, typically achieving 100%
recall and precision, consumes very small space, and is fairly
fast to update (faster than LC and LCD). Alternatively, SSL is
the fastest algorithm with all the good characteristics of SSH,
but consumes twice as much space on average. If space is not a
critical issue, SSL is the implementation of choice.

4.3. sketch algorithms
The advantage of sketches is that they support deletions, and
hence are the only alternative in fully dynamic environments.
This comes at the cost of increased space consumption and
slower update performance. We used a hierarchy with branch-
ing factor b = 16 for all algorithms, after running experiments
with several values and choosing the best trade-off between
speed, size, and precision. The sketch depth is set to d = 4
throughout, and the width to w = 2/f, based on the analysis of
the CountMin sketch. This keeps the space usage of CS and
CMH relatively similar, and CGT is larger by constant factors.
Space and Time Cost: Figure 5(a) shows the update
throughput of the algorithms. Update throughput is mostly
unaffected by variations in f, though CMH does seem to
become slower for larger values of f. CS has the slowest
update rate among all algorithms, due to the larger num-
ber of hashing operations needed. Still, the fastest sketch
algorithm is from 5 up to 10 times slower than the fastest
counter-based algorithm. Figure 5(b) plots the space con-
sumed. The size of the sketches is fairly large compared to
counter-based algorithms: of the order of several megabytes

 0

 5000

 10000

 15000

 20000

 25000

30000

 0.0001 0.001 0.01

U
pd

at
es

/m
s

f (log scale) f (log scale) f (log scale)

F LC LCD SSL SSH

(a) HTTP: Speed vs. f.

 0
 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.0001 0.001 0.01

P
re

ci
si

on
 (

%
)

SSL, SSH

LC, LCD

F LC LCD SSL SSH

(b) HTTP: Precision vs. f.

 0

 0.05

 0.1

 0.15

 0.2

 0.0001 0.001 0.01

A
R

E

F LC LCD SSL SSH

(c) HTTP: ARE vs. f of frequent items.

figure 4. Performance of counter-based algorithms on real network data (a) speed, (b) precision, and (c) average relative error.

104 CommuniCAtions of the ACm | octoBer 2009 | vol. 52 | No. 10

research highlights

for small values of f. CMH is the most space efficient sketch
and still consumes space three times as large as the least
space efficient counter-based algorithm.
Precision, recall, and Error: The sketch algorithms all
have near perfect recall, as is the case with the counter-based
algorithms. Figure 5(c) shows that they also have good preci-
sion, with CS reporting the largest number of false positives.
Nevertheless, on some other datasets we tested (not shown
here), the results were reversed. We also tested the average
relative error in the frequency estimation of the truly fre-
quent items. For sufficiently skewed distributions all algo-
rithms can estimate item frequencies very accurately, and the
results from all sketches were similar since all hierarchical
sketch algorithms essentially correspond to a single instance
of a CountSketch or CountMin sketch of equal size.
Conclusions: There is no clear winner among the sketch
algorithms. CMH has small size and high update through-
put, but is only accurate for highly skewed distributions.
CGT consumes a lot of space but it is the fastest sketch and
is very accurate in all cases, with high precision and good fre-
quency estimation accuracy. CS has low space consumption
and is very accurate in most cases, but has slow update rate
and exhibits some random behavior.

5. ConCLuDinG remArKs
We have attempted to present algorithms for finding frequent
items in streams, and give an experimental comparison
of their behavior to serve as a baseline for comparison. For
insert-only streams, the clear conclusion of our experiments
is that the SpaceSaving algorithm, a relative newcomer,
has surprisingly clear benefits over others. We observed that
implementation choices, such as whether to use a heap or
lists of items grouped by frequencies, trade-off speed, and
space. For sketches to find frequent items over streams
including negative updates, there is not such a clear answer,
with different algorithms excelling at different aspects of the
problem. We do not consider this the end of the story, and
continue to experiment with other implementation choices.
Our source code and experimental test scripts are available
from http://www.research.att.com/~marioh/frequent–items/
so that others can use these as baseline implementations.

We conclude by outlining some of the many variations of
the problem

• In the weighted input case, each update comes with an
associated weight (such as a number of bytes, or num-
ber of units sold). Here, sketching algorithms directly
handle weighted updates because of their linearity. The
SpaceSaving algorithm also extends to the weighted
case, but this is not known to be the case for the other
counter-based algorithms discussed.

• In the distributed data case, different parts of the input
are seen by different parties (different routers in a net-
work, or different stores making sales). The problem is
then to find items which are frequent over the union of
all the inputs. Again due to their linearity properties,
sketches can easily solve such problems. It is less clear
whether one can merge together multiple counter-
based summaries to obtain a summary with the same
accuracy and worst-case space bounds.

• Often, the item frequencies are known to follow some
statistical distribution, such as the Zipfian distribution.
With this assumption, it is sometimes possible to prove
a smaller space requirement on the algorithm, as a func-
tion of the amount of “skewness” in the distribution.9, 21

• In some applications, it is important to find how many
distinct observations there have been, leading to a distinct
heavy hitters problem. Now the input stream S is of the
form (i, j), and fi is defined as |{j|(i, j) ∈ S}|. Multiple
oc currences of (i, j) only count once towards fi. Techniques
for “distinct frequent items” rely on combining frequent
items algorithms with “count distinct” algorithms.25

• While processing a long stream, it may be desirable to
weight more recent items more heavily than older ones.
Various models of time decay have been proposed to
achieve this. In a sliding window, only the most recent
items are considered to define the frequent items.2
More generally time decay can be formalized via a func-
tion which assigns a weight to each item in the stream
as a function of its (current) age, and the frequency of
an item is the sum of its decayed weights.

Each of these problems has also led to considerable effort
from the research community to propose and analyze algo-
rithms. This research is ongoing, cementing the position of
the frequent items problem as one of the most enduring and
intriguing in the realm of algorithms for data streams.

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

4500

 0.0001 0.001 0.01

U
pd

at
es

/m
s

f (log scale)

CS CMH CGT

(a) HTTP: Speed vs. f.

 0

 5e+06

 1e+07

 1.5e+07

 2e+07

 2.5e+07

 3e+07

 3.5e+07

 4e+07

 0.0001 0.001 0.01

B
yt

es

f (log scale)

CS CMH CGT

(b) HTTP: Size vs. f.

 70

 75

 80

 85

 90

 95

 100

 0.0001 0.001 0.01

P
re

ci
si

on
 (

%
)

f (log scale)

CS CMH CGT

(c) HTTP: Precision vs. f.

figure 5. Performance of sketch algorithms on real network data (a) speed, (b) size, and (c) precision.

octoBer 2009 | vol. 52 | no. 10 | CommuniCAtions of the ACm 105

References

 1. alon, n., Matias, y., szegedy, M. the
space complexity of approximating
the frequency moments. in ACM
Symposium on Theory of Computing,
(1996), 20–29. Journal version in J.
Comp. Syst. Sci. 58 (1999), 137–147.

 2. arasu, a., Manku, g.s. approximate
counts and quantiles over sliding
windows. in ACM Principles of
Database Systems (2004).

 3. Bhattacharrya, s., Madeira, a.,
Muthukrishnan, s., ye, t. how to
scalably skip past streams. in
Scalable Stream Processing Systems
(SSPS) Workshop with ICDE 2007
(2007).

 4. Bhuvanagiri, l., ganguly, s., Kesh, D.,
saha, c. simpler algorithm for
estimating frequency moments
of data streams. in ACM-SIAM
Symposium on Discrete Algorithms
(2006).

 5. Bose, P., Kranakis, e., Morin, P., tang, y.
Bounds for frequency estimation of
packet streams. in SIROCCO
(2003).

 6. Boyer, r.s., Moore, J.s. a fast
majority vote algorithm. technical
report icsca-cMP-32, institute
for computer science, university of
texas (feb. 1981).

 7. Boyer, r.s., Moore, J.s. MJrty—a
fast majority vote algorithm. in
Automated Reasoning: Essays in
Honor of Woody Bledsoe, automated

reasoning series. Kluwer academic
Publishers, 1991, 105–117.

 8. chakrabarti, a., cormode, g.,
Mcgregor, a. a near-optimal
algorithm for computing the
entropy of a stream. in ACM-SIAM
Symposium on Discrete Algorithms
(2007).

 9. charikar, M., chen, K., farach-
colton, M. finding frequent items
in data streams. in Proceedings
of the International Colloquium
on Automata, Languages and
Programming (ICALP) (2002).

 10. cormode, g., hadjieleftheriou, M.
finding frequent items in data
streams. in International
Conference on Very Large Data Bases
(2008).

 11. cormode, g., Korn, f., Muthukrishnan, s.,
Johnson, t., spatscheck, o.
srivastava, D. holistic uDafs at
streaming speeds. in ACM SIGMOD
International Conference on
Management of Data (2004), 35–46.

 12. cormode, g., Muthukrishnan, s. an
improved data stream summary: the
count-min sketch and its applications.
J. Algorithms 55, 1 (2005), 58–75.

 13. Datar, M., gionis, a., indyk, P.,
Motwani, r. Maintaining stream
statistics over sliding windows. in
ACM-SIAM Symposium on Discrete
Algorithms (2002).

 14. Demaine, e., lópez-ortiz, a., Munro, J.i.

Graham Cormode and Marios hadjieleftheriou
({graham,marioh}@research.att.com),
at&t labs—research, florham Park, nJ.

© 2009 acM 0001-0782/09/1000 $10.00

frequency estimation of internet
packet streams with limited space. in
European Symposium on Algorithms
(ESA) (2002).

 15. fischer, M., salzburg, s. finding a
majority among n votes: solution
to problem 81–5. J. Algorithms 3, 4
(1982), 376–379.

 16. gilbert, a.c., Kotidis, y.,
Muthukrishnan, s., strauss, M. how
to summarize the universe: Dynamic
maintenance of quantiles. in
International Conference on
Very Large Data Bases (2002),
454–465.

 17. Jayram, t.s., Mcgregor, a.,
Muthukrishnan, s., vee, e. estimating
statistical aggregates on probabilistic
data streams. in ACM Principles of
Database Systems (2007).

 18. Karp, r., Papadimitriou, c., shenker, s.
a simple algorithm for finding
frequent elements in sets and bags.
ACM Trans. Database Syst. 28 (2003),
51–55.

 19. Manku, g., Motwani, r. approximate
frequency counts over data streams.
in International Conference on
Very Large Data Bases (2002).

 20. Manku, g.s. frequency counts over
data streams. http://www.cse.ust.hk/
vldb2002/vlDB2002–proceedings/
slides/s10P03slides.pdf (2002).

 21. Metwally, a., agrawal, D., abbadi,
a.e. efficient computation of frequent
and top-k elements in data streams.
in International Conference on
Database Theory (2005).

 22. Misra, J., gries, D. finding repeated
elements. Sci. Comput. Programming
2 (1982), 143–152.

 23. Pike, D., Dorward, s., griesemer, r.,
Quinlan, s. interpreting the data:
Parallel analysis with sawzall. Dyn.
Grids Worldwide Comput. 13, 4
(2005), 277–298.

 24. thorup, M., Zhang, y. tabulation-based
4-universal hashing with applications
to second moment estimation. in
ACM-SIAM Symposium on Discrete
Algorithms (2004).

 25. venkataraman, s., song, D.X.,
gibbons, P.B., Blum, a.
new streaming algorithms for
fast detection of superspreaders.
in Network and Distributed
System Security Symposium
NDSS (2005).

◆ ACM Professional Members can enjoy the convenience of making a single payment for their
entire tenure as an ACM Member, and also be protected from future price increases by
taking advantage of ACM's Lifetime Membership option.

◆ ACM Lifetime Membership dues may be tax deductible under certain circumstances, so
becoming a Lifetime Member can have additional advantages if you act before the end of
2009. (Please consult with your tax advisor.)

◆ Lifetime Members receive a certificate of recognition suitable for framing, and enjoy all of
the benefits of ACM Professional Membership.

Learn more and apply at:
http://www.acm.org/life

Take Advantage of
ACM’s Lifetime Membership Plan!

CACM lifetime mem half page ad:Layout 1 8/13/09 3:57 PM Page 1

