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Problem Definition

The frequent items problem is to process a stream of items and find all items occurring
more than a given fraction of the time. It is one of the most heavily studied problems
in data stream algorithms, dating back to the 1980s. Many applications rely directly
or indirectly on finding the frequent items, and implementations are in use in large
scale industrial systems. Informally, given a sequence of items, the problem is simply
to find those items which occur most frequently. Typically, this is formalized as finding
all items whose frequency exceeds a specified fraction of the total number of items.
Variations arise when the items are given weights, and further when these weights can
also be negative.

Definition 1. Given a stream S of n items t1 . . . tn, the frequency of an item i is
fi = |{j|tj = i}|. The exact φ-frequent items comprise the set {i|fi > φn}.

Example. The stream S = (a, b, a, c, c, a, b, d) has fa = 3, fb = 2, fc = 2, fd = 1. For
φ = 0.2, the frequent items are a, b and c.

A streaming algorithm which solves this problem must use a linear amount of
space, even for large values of φ: Given an algorithm that claims to solve this problem,
we could insert a set S of N items, where every item has frequency 1. Then, we could
also insert N copies of item i. If i is then reported as a frequent item (occurring more
than 50% of the time) then i ∈ S, else i 6∈ S. Consequently, since set membership
requires Ω(N) space, Ω(N) space is also required to solve the frequent items problem.
Instead, an approximate version is defined based on a tolerance for error ε.
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Algorithm 0.1: Misra-Gries(k)

n← 0;T ← ∅;
for each i :

do



n← n + 1;
if i ∈ T
then ci ← ci + 1;
else if |T | < k − 1

then

{
T ← T ∪ {i};
ci ← 1;

else for all j ∈ T

do

cj ← cj − 1;
if cj = 0
then T ← T\{j};

Definition 2. Given a stream S of n items, the ε-approximate frequent items problem
is to return a set of items F so that for all items i ∈ F , fi > (φ− ε)n, and there is no
i 6∈ F such that fi > φn.

Since the exact (ε = 0) frequent items problem is hard in general, we will use
“frequent items” or “the frequent items problem” to refer to the ε-approximate frequent
items problem. A related problem is to estimate the frequency of items on demand:

Definition 3. Given a stream S of n items defining frequencies fi as above, the fre-
quency estimation problem is to process a stream so that, given any i, an f̂i is returned
satisfying f̂i ≤ fi ≤ f̂i + εn.

Key Results

The problem of frequent items dates back at least to a problem first studied by Moore
in 1980 [5]. It was published as a ‘problem’ in the Journal of Algorithms in the June
1981 issue [17], to determine if there a majority choice in a list of n votes.

Preliminaries: the Majority algorithm

In addition to posing the majority question as a problem, Moore also invented the
Majority algorithm along with Boyer in 1980, described in a technical report from
early 1981 [4]. A similar solution with proof of the optimal number of comparisons was
provided by Fischer and Salzburg [9]. Majority can be stated as follows: store the
first item and a counter, initialized to 1. For each subsequent item, if it is the same
as the currently stored item, increment the counter. If it differs, and the counter is
zero, then store the new item and set the counter to 1; else, decrement the counter.
After processing all items, the algorithm guarantees that if there is a majority vote,
then it must be the item stored by the algorithm. The correctness of this algorithm
is based on a pairing argument: if every non-majority item is paired with a majority
item, then there should still remain an excess of majority items. Although not posed
as a streaming problem, the algorithm has a streaming flavor: it takes only one pass
through the input (which can be ordered arbitrarily) to find a majority item. To verify
that the stored item really is a majority, a second pass is needed to simply count the
true number of occurrences of the stored item.
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Misra-Gries summary

The Misra-Gries summary is a simple algorithm that solves the frequent items problem.
It can be viewed as a generalization of Majority to track multiple frequent items.

Instead of keeping a single counter and item from the input, the Misra-Gries
summary stores k−1 (item,counter) pairs. The natural generalization of Majority is
to compare each new item against the stored items T , and increment the corresponding
counter if it is amongst them. Else, if there is some counter with count zero, it is
allocated to the new item, and the counter set to 1. If all k − 1 counters are allocated
to distinct items, then all are decremented by 1. A grouping argument is used to argue
that any item which occurs more than n/k times must be stored by the algorithm when
it terminates. Pseudocode to illustrate this algorithm is given in Algorithm 0.1, making
use of set notation to represent the operations on the set of stored items T : items are
added and removed from this set using set union and set subtraction respectively, and
we allow ranging over the members of this set (thus implementations will have to choose
appropriate data structures which allow the efficient realization of these operations).
We also assume that each item j stored in T has an associated counter cj. For items
not stored in T , then cj is defined as 0 and does not need to be explicitly stored.

This n/k generalization was first proposed by Misra and Gries [16]. The time
cost of the algorithm is dominated by the O(1) dictionary operations per update, and
the cost of decrementing counts. Misra and Gries use a balanced search tree, and
argue that the decrement cost is amortized O(1); Karp et al. propose a hash table to
implement the dictionary [11]; and Demaine et al. show how the cost of decrementing
can be made worst case O(1) by representing the counts using offsets and maintaining
multiple linked lists [8].

The original paper focused on retrieving the set of frequent items, and did not
study how accurately the associated counts were. Bose et al.[3] observed that executing
this algorithm with k = 1/ε ensures that the count associated with each item on
termination is at most εn below the true value. The bounds on the accuracy of the
structure were tightened by Berinde et al. to show that the error depends only on
the “tail”: the total weight of items outside the top-k most frequent, rather than the
total weight of all items [2]. This gives a stronger accuracy guarantee when the input
distribution is skewed, for example if the frequencies follow a Zipfian distribtuion. They
also show that the algorithm can be altered to tolerate updates with weights, rather
than assuming that each item has equal, unit weight.

A similar data structure called SpaceSaving was introduced by Metwally et
al. [15]. This structure also maintains a set of items and counters, but follows a different
set of update rules. Recently, it was shown that the SpaceSaving structure is isomor-
phic to MisraGries: the state of both structures can be placed in correspondence as
each update arrives [1]. The different representations reflect that SpaceSaving main-
tains an upper bound on the count of stored items, while MisraGries keeps a lower
bound. In studies, the upper bound tends to be closer to the true count, but it is
straightforward to switch between the two representations.

Moreover, Agarwal et al. [1] showed that the Misra-Gries summary is mer-
gable. That is, two summaries of different inputs of size k can be combined together
to obtain a new summary of size k that summarizes the union of the two inputs. This
merging can be done repeatedly, to summarize arbitrarily many inputs in arbitrary
configurations. This allows the summary to be used in distributed and parallel envi-
ronments.

Lastly, the concept behind the algorithm, of tracking information on k repre-
sentative elements has inspired work in other settings. Liberty [12] showed how this
can be used to track an approximation to the best k-rank summary of a matrix, using
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k rows. This was extended by Ghashami and Phillips [10] to offer better accuracy by
keeping more rows.

Applications

The question of tracking approximate counts for a large number of possible objects
arises in a number of settings. Many applications have arisen in the context of the
Internet, such as tracking the most popular source, destinations, or source-destination
pairs (those with the highest amount of traffic); or tracking the most popular objects,
such as the most popular queries to a search engine, or the most popular pieces of
content in a large content host. It forms the basis of other problems, such as finding
the frequent itemsets within a stream of transactions: those subsets of items which occur
as a susbet of many transactions. Solutions to this problem have used ideas similar to
the count and prune strategy of the Misra-Gries summary to find approximate frequent
itemsets [14]. Finding approximate counts of items is also needd within other stream
algorithms, such as approximating the entropy of a stream [6].

Open Problems

None is reported.

Experimental Results

There have been a number of experimental studies of Misra-Gries and related algo-
rithms, for a variety of computing models. These have shown that the algorithm is
accurate and fast to execute [7; 13].

URLs to Code and Data Sets

Code for this algorithm is widely available:

http://www.cs.rutgers.edu/~muthu/massdal-code-index.html

http://hadjieleftheriou.com/sketches/index.html

https://github.com/cpnielsen/twittertrends
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