Lecture 11:
Undecidability, Reductions,
Rice’s Theorem
The Acceptance Problem for TMs

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Given: code of a Turing machine M and an input w for that Turing machine,
Decide: Does M accept w?

\[A_{TM} \text{ decidable } \Rightarrow \text{There is an algorithm ALG which, given any code and input, ALG determines in finite time if the code will stop and accept the input} \]

Theorem [Turing]:
\[A_{TM} \] is recognizable, but NOT decidable!
Theorem: L is decidable iff both L and $\neg L$ are recognizable.
Theorem: L is decidable
	iff both L and $\neg L$ are recognizable

Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable!
Reducing One Problem to Another

$f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w

A language A is *mapping reducible* to language B, written as $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that for every $w \in \Sigma^*$,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B
Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function such that $w \in A \iff f(w) \in B$.

Say: “A is mapping reducible to B”

Write: $A \leq_m B$
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
Theorem: $A_{TM} \leq_m HALT_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg HALT_{TM}$

Corollary: $\neg HALT_{TM}$ is unrecognizable!

Proof: If $\neg HALT_{TM}$ were recognizable, then $\neg A_{TM}$ would also be recognizable, because $\neg A_{TM} \leq_m \neg HALT_{TM}$. But it’s not!

Question: $A_{TM} \leq_m \neg A_{TM}$? (NO!)

Theorem: $HALT_{TM} \leq_m A_{TM}$
Another Reduction Example

\[E_{Q_{DFA}} = \{ (D_1,D_2) \mid D_1 \text{ and } D_2 \text{ are DFAs}, L(D_1)=L(D_2) \} \]

\[E_{Q_{REGEX}} = \{ (R_1,R_2) \mid R_1 \text{ and } R_2 \text{ are regexps}, L(R_1)=L(R_2) \} \]

Theorem: \(E_{Q_{REGEX}} \leq_m E_{Q_{DFA}} \)

Proof: Mapping reduction \(f \) from \(E_{Q_{REGEX}} \) to \(E_{Q_{DFA}} \):

\(f \): On input \(z \), decode \(z \) into a pair \((R_1,R_2) \),

 Convert \(R_1,R_2 \) into NFAs \(N_1,N_2 \),
 Convert NFAs \(N_1,N_2 \) into DFAs \(D_1,D_2 \). Output \((D_1,D_2) \)

Then, \((R_1,R_2) \in E_{Q_{REGEX}} \iff L(D_1)=L(R_1)=L(R_2)=L(D_2) \)

\(\iff L(D_1)=L(D_2) \iff (D_1,D_2) \in E_{Q_{DFA}} \)

So \(f \) is a mapping reduction from \(E_{Q_{REGEX}} \) to \(E_{Q_{DFA}} \)
The Emptiness Problem for TMs

\[\text{EMPTY}_{TM} = \{ M \mid M \text{ is a TM such that } L(M) = \emptyset \} \]

Given a program, does it reject or loop on all inputs?

Theorem: \(\text{EMPTY}_{TM} \) is not recognizable

Proof: Show that \(\neg A_{TM} \leq_m \text{EMPTY}_{TM} \)

\[f(z) := \text{Decode } z \text{ into } (M, w). \text{ Output code of the TM:} \]

\[\text{“}M'(x) := \text{if } (x = w) \text{ then output answer of } M(w), \text{ else reject”} \]

Observe: EITHER \(L(M') = \emptyset \) OR \(L(M') = \{w\} \)

\(z=(M,w) \notin A_{TM} \iff M \text{ doesn’t accept } w \)

\[\iff L(M') = \emptyset \]

\[\iff M' \in \text{EMPTY}_{TM} \iff f(z) \in \text{EMPTY}_{TM} \]
The Emptiness Problem for Other Models

\(\text{EMPTY}_{\text{DFA}} = \{ \text{M} \mid \text{M is a DFA such that } L(\text{M}) = \emptyset \} \)

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}} \) is decidable

Why?

\(\text{EMPTY}_{\text{NFA}} = \{ \text{M} \mid \text{M is a NFA such that } L(\text{M}) = \emptyset \} \)

\(\text{EMPTY}_{\text{REX}} = \{ \text{R} \mid \text{M is a regexp such that } L(\text{M}) = \emptyset \} \)
The Equivalence Problem

$$\text{EQ}_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$$

Do two programs accept exactly the same strings?

Theorem: \(\text{EQ}_{TM}\) is not recognizable

Proof: Reduce \(\text{EMPTY}_{TM}\) to \(\text{EQ}_{TM}\)

Let \(M_\emptyset\) be a TM that always rejects immediately, so \(L(M_\emptyset) = \emptyset\)

Define \(f(M) := (M, M_\emptyset)\)

Then \(M \in \text{EMPTY}_{TM} \iff L(M) = L(M_\emptyset) \iff (M, M_\emptyset) \in \text{EQ}_{TM}\)
Moral:
Analyzing Programs is Really, Really Hard for Programs to Do.
Two Problems

Problem 1 Undecidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape at some point} \}

Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at some point} \}
Problem 1 Undecidable

$L' = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape } \}$

Proof: Reduce A_{TM} to L'

On input (M, w),
make a TM N that shifts w over one cell,
puts a special symbol # on the leftmost cell,
then simulates $M(w)$ on its tape.
If M’s head moves to the cell with # but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the #.

(M, w) is in A_{TM} if and only if (N, w) is in L'
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at some point} \}

On input \((M,w) \), run \(M \) on \(w \) for
\[|Q| + |w| + 1 \text{ steps}, \]
where \(|Q| = \text{ number of states of } M \)

Accept If M’s head moved left at all
Reject Otherwise

\((Why \ does \ this \ work?) \)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.

How can we more easily tell when some “program analysis” problem is undecidable?
Problem 3

REVERSE = \{ M \mid M \text{ is a TM with the property: for all } w, M(w) \text{ accepts } \Leftrightarrow M(w^R) \text{ accepts} \}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem: *Program Analysis is Hard*

Let $P : \{\text{Turing Machines}\} \rightarrow \{0, 1\}$.
(Think of 0=false, 1=true) Suppose P satisfies:

1. (Nontrivial) There are TMs M_1 and M_0 where $P(M_1) = 1$ and $P(M_0) = 0$

2. (Semantic) For all TMs M and M', if $L(M) = L(M')$ then $P(M) = P(M')$

Then, $\{M \mid P(M) = 1\}$ is undecidable. In other words, function P is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

Semantic Properties \(P(M) \)

- \(M \) accepts 0
- \(L(M) \) is empty
 - \(L(M) = \Sigma^* \)
- \(M \) accepts 6045 strings
- for all \(w \), \(M(w) \) accepts \(\iff M(w^R) \) accepts

Rice says: \(\{ M \mid P(M) = 1 \} \) is undecidable

Not Semantic!

- \(M \) halts and rejects 0
- \(M \) has at least 6045 states
- \(M \) halts on all inputs
- \(M \)’s head tries to move off the left end of the tape on some input

P is not semantic:
There are \(M \) and \(M’ \) such that \(L(M) = L(M’) \) but \(P(M) \neq P(M’) \)
Rice’s Theorem: If P is nontrivial and semantic, then \(L_P := \{M \mid P(M) = 1\} \) is undecidable.

Proof: Either reduce \(A_{TM} \) or \(\neg A_{TM} \) to \(L_P \)

Let \(M_\emptyset \) be any TM such that \(L(M_\emptyset) = \emptyset \)

Case 1: Suppose \(P(M_\emptyset) = 0 \) (\(M_\emptyset \notin L_P \))

Since \(P \) is nontrivial, there’s \(M_1 \) such that \(P(M_1) = 1 \)

Reduction from \(A_{TM} \) to \(L_P \) On input \((M, w)\), output:

“\(M_w(x) := \) Run \(M \) on \(w \). If \(M \) accepts then run \(M_1 \) on \(x \) and output its answer, else reject.”

If \(M \) accepts \(w \), then \(L(M_w) = L(M_1) \)

Since \(P(M_1) = 1 \), we have \(P(M_w) = 1 \), so \(M_w \in L_P \)

If \(M \) does not accept \(w \), then \(L(M_w) = L(M_\emptyset) = \emptyset \)

Since \(P(M_\emptyset) = 0 \), we have \(P(M_w) = 0 \) and \(M_w \notin L_P \)
Rice’s Theorem: If P is nontrivial and semantic, then $L_P := \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to L_P

Let M_{\emptyset} be any TM such that $L(M_{\emptyset}) = \emptyset$

Case 2: Suppose $P(M_{\emptyset}) = 1$ ($M_{\emptyset} \in L_P$)

Since P is nontrivial, there’s M_0 such that $P(M_0) = 0$

Reduction from $\neg A_{TM}$ to L_P. On input (M, w), output:

“$M_w(x) :=$ Run M on w. If M accepts then run M_0 on x and output its answer, else reject.”

If M does not accept w, then $L(M_w) = L(M_{\emptyset}) = \emptyset$
Since $P(M_{\emptyset}) = 1$, we have $P(M_w) = 1$, so $M_w \in L_P$

If M accepts w, then $L(M_w) = L(M_0)$
Since $P(M_0) = 0$, we have $M_w \notin L_P$
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{TM} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{TM} \) is *not recognizable*

Proof: Use Rice’s Theorem!

- \(P(M) = 1 \) iff \(L(M) \) is regular is nontrivial:
 - there’s an \(M \emptyset \) which never halts: \(P(M \emptyset) = 1 \)
 - there’s an \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(P(M') = 0 \)

\(P \) is also semantic:

If \(L(M) = L(M') \) then \(L(M) \) is regular \(\iff \) \(L(M') \) is regular, so \(P(M) = 1 \) \(\iff \) \(P(M') = 1 \), so \(P(M) = P(M') \)

By Rice’s Thm (case 2), we have

\[\neg A_{TM} \leq_m \text{REGULAR}_{TM} \]
Next Episode:

Your Midterm... Good Luck!