Lecture 11: Undecidability, Reductions, Rice’s Theorem
The Acceptance Problem for TMs

\[A_{\text{TM}} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Given: code of a Turing machine \(M \) and an input \(w \) for that Turing machine,

Decide: Does \(M \) accept \(w \)?

\(A_{\text{TM}} \) decidable \(\Rightarrow \) There is an algorithm \(\text{ALG} \) which, given any code and input, \(\text{ALG} \) determines in finite time if the code will stop and accept the input

\[\text{Theorem [Turing]}: \quad A_{\text{TM}} \text{ is recognizable, but NOT decidable!} \]
Theorem: L is decidable iff both L and \(\neg L \) are recognizable
Theorem: \(L \) is decidable
iff both \(L \) and \(\neg L \) are recognizable

Theorem: \(A_{TM} \) is recognizable but NOT decidable

Corollary: \(\neg A_{TM} \) is not recognizable!
Reducing One Problem to Another

\(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if there is a Turing machine \(M \) that halts with just \(f(w) \) written on its tape, for every input \(w \)

A language \(A \) is **mapping reducible** to language \(B \), written as \(A \leq_m B \), if there is a computable \(f : \Sigma^* \rightarrow \Sigma^* \) such that for every \(w \in \Sigma^* \),

\[
w \in A \iff f(w) \in B
\]

\(f \) is called a mapping reduction (or many-one reduction) from \(A \) to \(B \)
Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function such that $w \in A \iff f(w) \in B$.

Say: “A is mapping reducible to B”
Write: $A \subseteq_m B$
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
Theorem: $A_{TM} \leq_m \text{HALT}_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$

Corollary: $\neg \text{HALT}_{TM}$ is unrecognizable!

Proof: If $\neg \text{HALT}_{TM}$ were recognizable, then $\neg A_{TM}$ would also be recognizable, because $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$. But it’s not!

Question: $A_{TM} \leq_m \neg A_{TM}$? (NO!)

Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$
Another Reduction Example

\[EQ_{DFA} = \{ (D_1, D_2) \mid D_1 \text{ and } D_2 \text{ are DFAs, } L(D_1) = L(D_2) \} \]

\[EQ_{REGEX} = \{ (R_1, R_2) \mid R_1 \text{ and } R_2 \text{ are regexps, } L(R_1) = L(R_2) \} \]

Theorem: \(EQ_{REGEX} \leq_m EQ_{DFA} \)

Proof: Mapping reduction \(f \) from \(EQ_{REGEX} \) to \(EQ_{DFA} \):

\(f \): On input \(z \), decode \(z \) into a pair \((R_1, R_2) \),

Convert \(R_1, R_2 \) into NFAs \(N_1, N_2 \),

Convert NFAs \(N_1, N_2 \) into DFAs \(D_1, D_2 \). Output \((D_1, D_2) \)

Then, \((R_1, R_2) \in EQ_{REGEX} \iff L(D_1) = L(R_1) = L(R_2) = L(D_2) \)

\(\iff L(D_1) = L(D_2) \iff (D_1, D_2) \in EQ_{DFA} \)

So \(f \) is a mapping reduction from \(EQ_{REGEX} \) to \(EQ_{DFA} \)
The Emptiness Problem for TMs

EMPTY\textsubscript{TM} = \{ M \mid M is a TM such that L(M) = \emptyset \}

Given a program, does it reject or loop on all inputs?

Theorem: EMPTY\textsubscript{TM} is not recognizable

Proof: Show that \neg A_{TM} \leq_m EMPTY\textsubscript{TM}

f(z) := Decode z into (M, w). Output code of the TM:

"M'(x) := if (x = w) then output answer of M(w), else reject"

Observe: EITHER L(M') = \emptyset OR L(M') = \{w\}

z=(M,w) \notin A_{TM} \iff M doesn't accept w

\iff L(M') = \emptyset

\iff M' \in EMPTY\textsubscript{TM} \iff f(z) \in EMPTY\textsubscript{TM}
The Emptiness Problem for Other Models

\(\text{EMPTY}_{\text{DFA}} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \} \)

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}} \) is decidable

Why?

\(\text{EMPTY}_{\text{NFA}} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \} \)

\(\text{EMPTY}_{\text{REX}} = \{ R \mid M \text{ is a regexp such that } L(M) = \emptyset \} \)
The Equivalence Problem

\(EQ_{\text{TM}} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\} \)

Do two programs accept exactly the same strings?

Theorem: \(EQ_{\text{TM}} \) is *not recognizable*

Proof: Reduce \(\text{EMPTY}_{\text{TM}} \) to \(EQ_{\text{TM}} \)

Let \(M_\emptyset \) be a TM that always rejects immediately, so \(L(M_\emptyset) = \emptyset \)

Define \(f(M) := (M, M_\emptyset) \)

Then \(M \in \text{EMPTY}_{\text{TM}} \iff L(M) = L(M_\emptyset) \iff (M, M_\emptyset) \in EQ_{\text{TM}} \)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.
Two Problems

Problem 1 Undecidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape at some point} \}

Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at some point} \}
Problem 1 Undecidable

L’ = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the tape } \}

Proof: Reduce A_{TM} to L’

On input (M,w),
make a TM N that shifts w over one cell,
puts a special symbol # on the leftmost cell,
then simulates M(w) on its tape.
If M’s head moves to the cell with # but has not yet accepted, N moves the head back to the right.
If M accepts, N tries to move its head past the #.

(M,w) is in A_{TM} if and only if (N,w) is in L’
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at some point} \}

On input \((M, w)\), run \(M\) on \(w\) for

\[|Q| + |w| + 1 \text{ steps}, \]

where \(|Q| = \text{number of states of } M\)

Accept If M’s head moved left at all
Reject Otherwise

(Why does this work?)
Moral: Analyzing Programs is Really, Really Hard for Programs to Do.

How can we more easily tell when some “program analysis” problem is undecidable?
Problem 3

REVERSE = \{ M | M is a TM with the property: for all w, M(w) accepts \iff M(w^R) accepts \}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem: *Program Analysis is Hard*

Let $P : \{\text{Turing Machines}\} \rightarrow \{0,1\}$. (Think of 0=false, 1=true) Suppose P satisfies:

1. **(Nontrivial)** There are TMs M_1 and M_0 where $P(M_1) = 1$ and $P(M_0) = 0$

2. **(Semantic)** For all TMs M and M', if $L(M) = L(M')$ then $P(M) = P(M')$

Then, $\{M \mid P(M) = 1\}$ is undecidable. In other words, function P is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

Semantic Properties $P(M)$
- M accepts 0
- $L(M)$ is empty
 - $L(M) = \Sigma^*$
- M accepts 6045 strings
- for all w, $M(w)$ accepts $\iff M(w^R)$ accepts

Rice says: $\{M \mid P(M) = 1\}$ is undecidable

Not Semantic!
- M halts and rejects 0
- M has at least 6045 states
- M halts on all inputs
- M’s head tries to move off the left end of the tape on some input

P is not semantic: There are M and M' such that $L(M) = L(M')$ but $P(M) \neq P(M')$
Rice’s Theorem: If P is nontrivial and semantic, then \(L_P := \{M \mid P(M) = 1\} \) is undecidable.

Proof: Either reduce \(\overline{A_{TM}} \) or \(A_{TM} \) to \(L_P \)

Let \(M_\emptyset \) be any TM such that \(L(M_\emptyset) = \emptyset \)

Case 1: Suppose \(P(M_\emptyset) = 0 \) (\(M_\emptyset \not\in L_P \))

Since \(P \) is nontrivial, there’s \(M_1 \) such that \(P(M_1) = 1 \)

Reduction from \(A_{TM} \) to \(L_P \) On input \((M, w)\), output:

“\(M_w(x) := \) Run \(M \) on \(w \). If \(M \) accepts then run \(M_1 \) on \(x \) and output its answer, else reject.”

If \(M \) accepts \(w \), then \(L(M_w) = L(M_1) \)

Since \(P(M_1) = 1 \), we have \(P(M_w) = 1 \), so \(M_w \in L_P \)

If \(M \) does not accept \(w \), then \(L(M_w) = L(M_\emptyset) = \emptyset \)

Since \(P(M_\emptyset) = 0 \), we have \(P(M_w) = 0 \) and \(M_w \not\in L_P \)
Rice’s Theorem: If \(P \) is nontrivial and semantic, then \(L_P := \{M \mid P(M) = 1\} \) is undecidable.

Proof:

Either reduce \(A_{TM} \) or \(\neg A_{TM} \) to \(L_P \)

Let \(M_\emptyset \) be any TM such that \(L(M_\emptyset) = \emptyset \)

Case 2: Suppose \(P(M_\emptyset) = 1 \) (\(M_\emptyset \in L_P \))

Since \(P \) is nontrivial, there’s \(M_0 \) such that \(P(M_0) = 0 \)

Reduction from \(\neg A_{TM} \) to \(L_P \) On input \((M, w)\), output:

“\(M_w(x) := \) Run \(M \) on \(w \). If \(M \) accepts then run \(M_0 \) on \(x \) and output its answer, else reject.”

If \(M \) does not accept \(w \), then \(L(M_w) = L(M_\emptyset) = \emptyset \)

Since \(P(M_\emptyset) = 1 \), we have \(P(M_w) = 1 \), so \(M_w \in L_P \)

If \(M \) accepts \(w \), then \(L(M_w) = L(M_0) \)

Since \(P(M_0) = 0 \), we have \(M_w \notin L_P \)
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is *not recognizable*

Proof: Use Rice’s Theorem!

\[P(M) = 1 \text{ iff } L(M) \text{ is regular} \text{ is nontrivial:} \]

- there’s an \(M_\emptyset \) which never halts: \(P(M_\emptyset) = 1 \)
- there’s an \(M' \) deciding \(\{0^n1^n \mid n \geq 0\} \): \(P(M') = 0 \)

\(P \) is also *semantic*:

If \(L(M) = L(M') \) then \(L(M) \) is regular \(\iff \) \(L(M') \) is regular, so \(P(M) = 1 \iff P(M') = 1 \), so \(P(M) = P(M') \)

By Rice’s Thm (case 2), we have

\[\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \]
Next Episode:

Your Midterm… Good Luck!