Lecture 12:
Oracles and Self-Reference
Midterms back at end of lecture!

Thanks for your feedback

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>mean</td>
<td>72.81632653</td>
</tr>
<tr>
<td>stddev</td>
<td>14.7939648</td>
</tr>
<tr>
<td>median</td>
<td>75</td>
</tr>
</tbody>
</table>
Some interesting feedback

<table>
<thead>
<tr>
<th>Feedback</th>
<th>Number of students</th>
</tr>
</thead>
<tbody>
<tr>
<td>HW is too hard</td>
<td>1</td>
</tr>
<tr>
<td>Fewer proofs in lecture (more concepts)</td>
<td>4</td>
</tr>
<tr>
<td>Too fast recitation/lecture</td>
<td>7</td>
</tr>
<tr>
<td>Likes Ryan/slides/lectures</td>
<td>33</td>
</tr>
<tr>
<td>Dislikes Ryan/slides/lectures</td>
<td>0</td>
</tr>
<tr>
<td>Likes TAs and recitations</td>
<td>16</td>
</tr>
<tr>
<td>More lecture notes (besides lecs)</td>
<td>3</td>
</tr>
<tr>
<td>More Office Hours</td>
<td>3</td>
</tr>
<tr>
<td>More examples/practice in lec/rec</td>
<td>7</td>
</tr>
<tr>
<td>Likes HW</td>
<td>7</td>
</tr>
<tr>
<td>I dislike that I don’t have any criticism</td>
<td>3</td>
</tr>
<tr>
<td>Faster pset solutions/grades</td>
<td>4</td>
</tr>
<tr>
<td>Likes piazza+office hours</td>
<td>12</td>
</tr>
<tr>
<td>“Yeet this class”</td>
<td>1</td>
</tr>
</tbody>
</table>
Recognizability via Logic

Def. A decidable predicate $R(x,y)$ is a logical proposition about input strings $x, y \in \Sigma^*$ that is implementable by some TM M. That is,

$$
\text{for all } x, y, \quad R(x,y) \text{ is True } \Rightarrow \quad M(x,y) \text{ accepts} \\
R(x,y) \text{ is False } \Rightarrow \quad M(x,y) \text{ rejects}
$$

Think of R as a function: $R: \Sigma^* \times \Sigma^* \rightarrow \{\text{True, False}\}$

EXAMPLES: $R(x,y) = \text{“xy has at most 100 zeroes”}$
$R(N,y) = \text{“TM N halts on y in at most 99 steps”}$
are both decidable predicates
Theorem: A language $A \subseteq \Sigma^*$ is recognizable if and only if there is a decidable predicate $R(x, y)$ such that:

$$A = \{ x \mid \exists y \in \Sigma^* \ R(x, y) \}$$

Proof: (1) If $A = \{ x \mid \exists y \ R(x, y) \}$ then A is recognizable

Let M be a TM implementing R.
Define a TM $M'(x)$: For all strings $y \in \Sigma^*$,
If $M(x, y)$ accepts, accept.
Then, M' accepts exactly those x s.t. $\exists y \ R(x, y)$ is true

(2) If A is recognizable, then $A = \{ x \mid \exists y \ R(x, y) \}$

Suppose TM M recognizes A.
Define $R(x, y)$ to be TRUE iff M accepts x in $|y|$ steps
Then, M accepts $x \iff \exists y \ R(x, y)$
Example: \(L = \{ M \mid M \text{ accepts at least one string} \} \) is recognizable.

Want: decidable predicate \(R \) such that
\(L = \{ M \mid \exists y \in \Sigma^* \ R(M, y) \text{ is true} \} \)

Define \(R(M,(x,y)) = \text{“TM M accepts string x in } |y| \text{ steps”} \)
Note that \(R(M,(x,y)) \) is decidable!

Then: \(L = \{ M \mid \exists (x,y) \in \Sigma^* \ R(M, (x,y)) \text{ is true} \} \)

So \(L \) is recognizable!
Computability
With Oracles

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye
Oracle Turing Machines

Is \((M, w)\) in \(A_{TM}\)? Yes!

\(q_{YES}\)

INPUT

INFINITE TAPE

Now leaving reality for a moment....
An oracle Turing machine M is equipped with a set $B \subseteq \Gamma^*$ and a special oracle tape, on which M may ask membership queries about B. Formally, M enters a special state $q_?$ to ask a query and the TM receives a query answer in one step. [Formally, the transition function on $q_?$ is defined in terms of the entire oracle tape:

State $q_?$ changes to q_{YES}
if the string y written on the oracle tape is in B,
else $q_?$ changes to q_{NO}]

This notion makes sense even if B is not decidable!
How to Think about Oracles?

Think in terms of Turing Machine pseudocode!

An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of if-then statement:

```
"if (z in B) then <do something>
else <do something else>"
```

where z is some string defined earlier in pseudocode. We define the oracle TM to that it can always check the condition $(z \text{ in } B)$ in one step.

This notion makes sense even if B is not decidable!
Deciding one problem with another

Definition: A is decidable with B if there is an oracle TM M with oracle B that accepts strings in A and rejects strings not in A

Language A "Turing-Reduces" to B

$A \leq_T B$
\(A_{TM} \) is decidable with \(HALT_{TM} \) \((A_{TM} \leq_T HALT_{TM}) \)

We can decide if \(M \) accepts \(w \) using an ORACLE for the Halting Problem:

On input \((M,w) \),

If \((M,w) \) is in \(HALT_{TM} \) then run \(M(w) \) and output its answer.
else REJECT.
HALT_{TM} is decidable with A_{TM} (HALT_{TM} \leq_T A_{TM})

On input (M,w), decide if M halts on w as follows:

1. If (M,w) is in A_{TM} then ACCEPT

2. Else, swap the accept and reject states of M to get a machine M′. If (M′,w) is in A_{TM} then ACCEPT

3. REJECT
\leq_T \ versus \ \leq_m

Theorem: If $A \leq_m B$ then $A \leq_T B$

Proof (Sketch):

$A \leq_m B$ means there is a computable function $f : \Sigma^* \rightarrow \Sigma^*$, where for every w,

$$w \in A \iff f(w) \in B$$

To decide A on an input w with oracle B, just compute $f(w)$, then call B on $f(w)$ and return answer.

Theorem: $\overline{\text{HALT}}_{TM} \leq_T \text{HALT}_{TM}$

$D(M,w)$: If $((M,w) \in \text{HALT}_{TM})$ then reject else accept

Theorem: $\overline{\text{HALT}}_{TM} \not\leq_m \text{HALT}_{TM}$ \hspace{1cm} Why?
Limitations on Oracle TMs!

The following problem cannot be decided by any TM with an oracle for the Halting Problem:

\[\text{SUPERHALT} = \{ (M,x) \mid \text{TM } M, \text{ with an oracle for the Halting Problem, halts on } x \} \]

We can use the original proof by diagonalization!
Assume \(H\) (with \(\text{HALT}\) oracle) decides \(\text{SUPERHALT}\)

Define \(D(X) := \text{“if } H(X,X) \text{ (with } \text{HALT} \text{ oracle) accepts then LOOP, else ACCEPT.”} \)

\(D\) uses a \(\text{HALT}\) oracle to simulate \(H\)
But \(D(D)\) halts \(\Leftrightarrow H(D,D)\) accepts \(\Leftrightarrow D(D)\) loops...
(by assumption on \(H\)) \hspace{1cm} (by def of \(D\))
Limitations on Oracle TMs!

There is an infinite hierarchy of unsolvable problems!

Given ANY oracle A, there is always a harder problem that cannot be decided with that oracle A

SUPERHALT^0 = HALT = \{ (M,x) \mid M \text{ halts on } x \}.

SUPERHALT^1 = \{ (M,x) \mid M, \text{ with an oracle for } \text{HALT}_{\text{TM}}, \text{ halts on } x \}\}

SUPERHALT^n = \{ (M,x) \mid M, \text{ with an oracle for } \text{SUPERHALT}^{n-1}, \text{ halts on } x \}
A Puzzle About Oracles

Given three instances
$$(M_1, w_1), (M_2, w_2), (M_3, w_3)$$

of the Halting Problem,

It’s easy to decide all three of them, using three oracle calls to HALT.

Can you decide $$(M_i, w_i) \in \text{HALT}$$ for all i, with only TWO oracle calls to HALT?
Self-Reference and the Recursion Theorem
Lemma: There is a computable function
\(q : \Sigma^* \rightarrow \Sigma^* \) such that for every string \(w \),
\(q(w) \) is the description of a TM \(P_w \) that on every input, prints out \(w \) and then accepts

“Proof” Define a TM Q:

![Diagram]

- Actual TM
- String encoding a TM
Theorem: There is a Self-Printing TM

Proof: First define a TM B which does this:

Now consider the TM that looks like this:

No explicit self-reference here!

QED
Another Way of Looking At It

Suppose in general we want to design a program that prints its own description. How?

“Print this sentence.”

Print two copies of the following, the second copy in quotes:

“Print two copies of the following, the second copy in quotes:”

\[= B \]

\[= P_B \]
The Recursion Theorem

Theorem: For every TM T computing a function $t : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*$ there is a Turing machine R computing a function $r : \Sigma^* \rightarrow \Sigma^*$, such that for every string w,

$$r(w) = t(R, w)$$

\begin{align*}
(a, b) &\quad \rightarrow \quad T \quad \rightarrow \quad t(a, b) \\
\quad &\quad \rightarrow \quad R \quad \rightarrow \quad t(R, w)
\end{align*}
Proof: \[(a,b) \rightarrow T \rightarrow t(a,b)\]

Define M:

- Define M:
 - $B \rightarrow C \rightarrow T \rightarrow P_N \rightarrow N$
 - $w \rightarrow B \rightarrow w \rightarrow T \rightarrow w$

Define R:

- Define R:
 - $P_M \rightarrow M \rightarrow B \rightarrow T \rightarrow t(S,w)$
 - $w \rightarrow P_M \rightarrow M \rightarrow S \rightarrow w$

What is S?
Proof: \((a,b) \rightarrow T \rightarrow t(a,b)\)

Define M:

Define R:
Proof: \[(a,b) \rightarrow T \rightarrow t(a,b)\]

Define R:

\[t(S,w) = t(S,w)\]

\[S = C = R. \quad \text{QED}\]
FOO\textsubscript{x}(y) := Output x and halt.
BAR(M) := Output “N(w) = Run FOO\textsubscript{M} outputting M.
 Run M on (M, w)”
Q(N, w) := Run BAR(N) outputting S.
 Run T on (S, w)
R(w) := Run FOO\textsubscript{Q} outputting Q.
 Run BAR(Q) outputting S.
 Run T on (S, x)
Claim: S is a description of R itself!
S(w) = Run FOO\textsubscript{Q} outputting Q.
 Run Q on (Q, w)
\[\text{\(\text{FOO}_x(y) := \text{Output \(x\) and halt.}\)} \]
\[\text{\(\text{BAR}(M) := \text{Output "N(w) = Run FOO}_M\text{ outputting } M.\) } \]
\[\text{\(\text{Run } M\text{ on }(M, w)"}\)} \]
\[\text{\(\text{Q}(N, w) := \text{Run BAR}(N)\text{ outputting } S.\)} \]
\[\text{\(\text{Run } T\text{ on }(S, w)\)} \]
\[\text{\(\text{R}(w) := \text{Run FOO}_Q\text{ outputting } Q.\)} \]
\[\text{\(\text{Run BAR}(Q)\text{ outputting } S.\)} \]
\[\text{\(\text{Run } T\text{ on }(S, x)\)} \]

Claim: \(S\) is a description of \(R\) itself!
\[\text{\(S(w) = \text{Run FOO}_Q\text{ outputting } Q.\)} \]
\[\text{\(\text{Run BAR}(Q)\text{ outputting } S.\)} \]
\[\text{\(\text{Run } T\text{ on }(S, w)\)} \]

Therefore \(R(w) = T(R, w)\)
For every computable t, there is a computable r such that $r(w) = t(R,w)$ where

R is a description of a TM computing r

Moral: Suppose we can design a TM T of the form

“On input (x,w), do bla bla with x,
 do bla bla bla bla with w, etc. etc.”

We can always find a TM R with the *behavior*:

“On input w, do bla bla with code of R,
 do bla bla bla bla with w, etc. etc.”

We can use the operation:

“*Obtain your own description*”

in Turing machine pseudocode!