Lecture 17: NP-Complete Problems and the Cook-Levin Theorem
Time-Bounded Complexity Classes

Turing machine M has time complexity $O(t(n))$ if there is a $c > 0$ such that for all inputs x, M running on x halts within $c \cdot t(|x|) + c$ steps

Definition:
$\text{TIME}(t(n)) = \{ L' | \text{there is a Turing machine } M \text{ with time complexity } O(t(n)) \text{ so that } L' = L(M) \}$

$= \{ L' | L' \text{ is a language decided by a Turing machine with } \leq c \cdot t(n) + c \text{ running time, for some } c \geq 1 \}$
The Time Hierarchy Theorem

Intuition: If you get more time to compute, then you can solve strictly more problems.

Theorem: For all “reasonable” $f, g : \mathbb{N} \rightarrow \mathbb{N}$ where for all n, $g(n) > n^2 f(n)^2$, $\text{TIME}(f(n)) \not\subseteq \text{TIME}(g(n))$

Proof Idea: Diagonalization with a clock
Make a TM N that on input M, simulates the TM M on input M for $f(|M|)$ steps, then flips the answer.

Show: $L(N)$ cannot have time complexity $f(n)$
And N can be implemented to run in time $g(n)$
$P = \bigcup_{k \in \mathbb{N}} \text{TIME}(n^k)$

Polynomial Time

The analogue of “decidability” in the world of complexity theory
Definition: $\text{NTIME}(t(n)) =$
\[
\{ L \mid L \text{ is decided by an } O(t(n)) \text{ time } \text{nondeterministic Turing machine} \}\]

Note: $\text{TIME}(t(n)) \subseteq \text{NTIME}(t(n))$

Is $\text{TIME}(t(n)) = \text{NTIME}(t(n))$ for all $t(n)$?

THIS IS AN OPEN QUESTION!

What can be done in “short” NTIME that cannot be done in “short” TIME?
NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k)

Nondeterministic Polynomial Time

The analogue of “recognizability” in complexity
P
Computation

accept or reject

n^k

NP
Computation

accept

reject

exp(n^k)
Theorem: $L \in NP \iff$ There is a constant k and polynomial-time TM V such that

$$L = \{ x \mid \exists y \in \Sigma^* \ [|y| \leq |x|^k \text{ and } V(x,y) \text{ accepts} \} \}$$

Proof: (1) If $L = \{ x \mid \exists y \ |y| \leq |x|^k \text{ and } V(x,y) \text{ accepts} \} \}$ then $L \in NP$

Given the poly-time TM V, our NP machine for L is:

$N(x)$: Nondeterministically guess y. Run $V(x,y)$

(2) If $L \in NP$ then

$$L = \{ x \mid \exists y \ |y| \leq |x|^k \text{ and } V(x,y) \text{ accepts} \} \}$$

Let N be a nondet. poly-time TM that decides L. Define a TM $V(x,y)$ which accepts

$\iff y$ encodes an accepting computation history of N on x
A language is in NP if and only if there are “polynomial-length proofs” for membership in the language.

\[P = \text{the problems that can be efficiently solved} \]

\[\text{NP} = \text{the problems where proposed solutions can be efficiently verified} \]

Is \(P = \text{NP} \)?

Can problem solving be automated?
P = NP?
So how do we get a handle on a problem that we have no idea how to resolve?

Understand its consequences!
Understand its meaning!

Try to better understand NP problems!

In computability theory, we related problems by mapping reductions....
Polynomial Time Reductions

$f : \Sigma^* \rightarrow \Sigma^*$ is a polynomial time computable function
if there is a poly-time Turing machine M that on
every input w, halts with just $f(w)$ on its tape

Language A is poly-time reducible to language B,
written as $A \leq_p B$,
if there is a poly-time computable $f : \Sigma^* \rightarrow \Sigma^*$ so that:
\[w \in A \iff f(w) \in B \]

We say: f is a polynomial time reduction from A to B

Note: there is a k such that for all w, $|f(w)| \leq k|w|^k$
f converts any string \(w \) into a string \(f(w) \) such that \(w \in A \iff f(w) \in B \)
Theorem: If $A \leq_p B$ and $B \leq_p C$, then $A \leq_p C$
Theorem: If \(A \leq_p B \) and \(B \in P \), then \(A \in P \)

Proof: Let \(M_B \) be a poly-time TM that decides \(B \). Let \(f \) be a poly-time reduction from \(A \) to \(B \).

We build a machine \(M_A \) that decides \(A \) as follows:

\[
M_A = \text{On input } w,
\]

1. Compute \(f(w) \)
2. Run \(M_B \) on \(f(w) \), output its answer

\[
w \in A \iff f(w) \in B
\]
Theorem: If $A \leq_p B$ and $B \in \text{NP}$, then $A \in \text{NP}$

Proof: Analogous...
Theorem: If $A \leq_p B$ and $B \in P$, then $A \in P$

Theorem: If $A \leq_p B$ and $B \in NP$, then $A \in NP$

Corollary: If $A \leq_p B$ and $A \notin P$, then $B \notin P$

Question: What are the “hardest” NP problems under this partial ordering \leq_p?

Does there even exist a “hardest” NP problem??
Definition: A language B is NP-complete if:

1. B \in NP
2. Every A in NP is poly-time reducible to B
 That is, $A \leq_p B$
 When this is true, we say “B is NP-hard”

On homework, you showed
A language L is recognizable iff $L \leq_m A_{TM}$

A_{TM} is "complete for recognizable languages":
A_{TM} is recognizable, and for all recognizable L, $L \leq_m A_{TM}$
Suppose L is NP-Complete...

If $L \in P$, then $P = NP$!

If $L \notin P$, then $P \neq NP$!
Suppose L is NP-Complete...

Then assuming the conjecture $P \neq NP$,

L is not decidable in n^k time, for every k
There exists an NP-complete problem

\[\text{NHALT} = \{ (N, x, 1^t) \mid \text{Nondeterministic TM } N \text{ accepts input } x \text{ in } \leq t \text{ steps} \} \]

1. \(\text{NHALT} \in \text{NP} \)

Without 1^t, this is undecidable!

Nondeterministically guess a sequence of \(t \) transitions of \(N \), then check that \(N \) following these \(t \) transitions accepts \(x \). Takes time polynomial in \(t \), \|x\|, and \|N\|.

2. Every \(A \) in NP is poly-time reducible to NHALT

“NHALT is NP-hard”

Every \(A \) in NP has a \(p(n) \)-time NTM \(N \) such that

\[A = \{ x \mid N(x) \text{ accepts} \} \]

Reduction: Map string \(x \) to the string \((N, x, 1^{p(|x|)}) \).
There are thousands of *natural* NP-complete problems!

Your favorite topic certainly has an NP-complete problem somewhere in it!

Even the other sciences are not safe: biology, chemistry, physics have NP-complete problems too!
A 3cnf-formula has the form:
\[(x_1 \lor \neg x_2 \lor x_3) \land (x_4 \lor x_2 \lor x_5) \land (x_3 \lor \neg x_2 \lor \neg x_1)\]

where \(x_1, x_2, \ldots\) are Boolean variables

A 3cnf-formula is satisfiable if there is a setting to the variables that makes the formula true.

\[3SAT = \{ \phi \mid \phi \text{ is a satisfiable 3cnf-formula} \}\]
The Cook-Levin Theorem:
3SAT is NP-complete

“Simple Logic can encode any NP problem”

1. 3SAT ∈ NP
A satisfying assignment is a “proof” that a 3cnf formula is satisfiable (already done!)

2. 3SAT is NP-hard
Every language in NP can be polynomial-time reduced to 3SAT (complex logical formula)

Corollary: 3SAT ∈ P if and only if P = NP
Theorem (Cook-Levin): 3SAT is NP-complete

Proof Idea:

(1) $3\text{SAT} \in \text{NP}$ (done)

(2) Every language A in NP is polynomial time reducible to 3SAT (this is the challenge)

We give a poly-time reduction from A to 3SAT

The reduction converts a string w into a 3cnf formula ϕ such that $w \in A$ iff $\phi \in 3\text{SAT}$

For any $A \in \text{NP}$, let N be a nondeterministic TM deciding A in n^k time

Idea: ϕ will “simulate” N on w
Let \(L(N) \in \text{NTIME}(n^k) \). A tableau for \(N \) on \(w \) is an \(n^k \times n^k \) matrix whose rows are the configurations of \textit{some} computation history of \(N \) on \(w \)

\[
\begin{array}{cccccccc}
\# & q_0 & w_1 & w_2 & \ldots & w_n & \square & \ldots & \square & \# \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\end{array}
\]

Each "cell" contains an \(\sigma \in Q \cup \Gamma \cup \{\#\} \)
A tableau is accepting if the last row of the tableau has an accept state

Therefore, N accepts string w if and only if there is an accepting tableau for N on w

Given w, we’ll construct a 3cnf formula ϕ with $O(|w|^{2k})$ clauses, describing logical constraints that any accepting tableau for N on w must satisfy

The 3cnf formula ϕ will be satisfiable if and only if there is an accepting tableau for N on w
Variables of formula ϕ will *encode* a tableau

Let $C = Q \cup \Gamma \cup \{ \# \}$ (*constant-sized set!*)

Each cell of a tableau contains a symbol from C

$\text{cell}[i,j] = \text{symbol in the cell at row } i \text{ and column } j$

$= \text{the } j\text{th symbol in the } i\text{th configuration}$

For every i and $j \ (1 \leq i, j \leq n^k)$ and for every $s \in C$
we make a Boolean variable $x_{i,j,s}$ in ϕ

Total number of variables $= |C|n^{2k}$, which is $O(n^{2k})$

The $x_{i,j,s}$ variables represent the cells of a tableau

We will enforce the condition: for all i, j, s,

$$x_{i,j,s} = 1 \iff \text{cell}[i,j] = s$$
Idea: Make ϕ so that every \textit{satisfying assignment} to the variables $x_{i,j,s}$ corresponds to an \textit{accepting tableau} for N on w (an assignment to all cell[i,j]’s of the tableau)

The formula ϕ will be the AND of four CNF formulas:

$$\phi = \phi_{\text{cell}} \land \phi_{\text{start}} \land \phi_{\text{accept}} \land \phi_{\text{move}}$$

ϕ_{cell}: for all i, j, there is a \textit{unique} $s \in C$ with $x_{i,j,s} = 1$

ϕ_{start}: the first row of the table equals the \textit{start} configuration of N on w

ϕ_{accept}: the last row of the table has an accept state

ϕ_{move}: every row is a configuration that yields the configuration on the next row
\(\phi_{\text{start}} : \text{the first row of the table equals the } \textit{start} \text{ configuration of } N \text{ on } w \)

\[
\phi_{\text{start}} = x_{1,1,#} \land x_{1,2,q_0} \land \\
x_{1,3,w_1} \land x_{1,4,w_2} \land \cdots \land x_{1,n+2,w_n} \land \\
x_{1,n+3,□} \land \cdots \land x_{1,n^k-1,□} \land x_{1,n^k,#}
\]

\[
\begin{array}{cccccccc}
\# & q_0 & w_1 & w_2 & \ldots & w_n & □ & \ldots & □ & \# \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\end{array}
\]

\(O(n^k) \) clauses
φ_{accept} : the last row of the table has an accept state

φ_{accept} = \bigvee_{1 \leq j \leq n^k} x_{n^k,j, q_{accept}}
\(\phi_{\text{accept}} \): the last row of the table has an accept state

\[\phi_{\text{accept}} = \bigvee_{1 \leq j \leq n^k} x_{n^k, j, q_{\text{accept}}} \]

How can we convert \(\phi_{\text{accept}} \) into a 3-cnf formula?

Write the clause \((a_1 \lor a_2 \lor \ldots \lor a_t)\) as

\[(a_1 \lor a_2 \lor z_1) \land (\neg z_1 \lor a_3 \lor z_2) \land \ldots \land (\neg z_{t-3} \lor a_{t-1} \lor a_t)\]

where \(z_i\) are new variables.

This produces \(O(t)\) new 3cnf clauses, and the new formula is SAT iff the old one is SAT.

\(O(n^k)\) 3cnf clauses
\[\phi_{cell} : \text{for all } i, j, \text{ there is a } \text{unique } s \in C \text{ with } x_{i,j,s} = 1 \]

\[\phi_{cell} = \bigwedge_{1 \leq i, j \leq n^k} \left[\left(\bigvee_{s \in C} x_{i,j,s} \right) \wedge \left(\bigwedge_{s,t \in C} (\neg x_{i,j,s} \lor \neg x_{i,j,t}) \quad s \neq t \right) \right] \]

- for all i,j
- at least one \(x_{i,j,s} \) is set to 1
- at most one \(x_{i,j,s} \) is set to 1

\[O(n^{2k}) \text{ 3cnf clauses} \]
\(\phi_{\text{move}} \) : every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!
ϕ_{move}: every row is a configuration that yields the configuration on the next row

Key Question: If one row yields the next row, how many cells can be different between the two rows?

Answer: AT MOST THREE CELLS!
\(\phi_{\text{move}} \) : every row is a configuration that yields the configuration on the next row

Idea: check that every 2 \(\times \) 3 “window” of cells is legal: consistent with the transition function of N

\[
\begin{array}{cccccccc}
\# & q_0 & w_1 & w_2 & \ldots & w_n & \square & \ldots & \square & \# \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\# & i & j & & & & & & & \\
\# & & & & & & & & & \\
\# & & & & & \text{the (i,j) window} & & & & \\
\# & & & & & & & & & \\
\# & & & & & & & & & \\
\end{array}
\]
If $\delta(q_1,a) = \{(q_1,b,R)\}$ and $\delta(q_1,b) = \{(q_2,c,L), (q_2,a,R)\}$
which of the following windows are legal?
Key Lemma:
IF Every window of the tableau is legal, and
 The 1st row is the start configuration of N on w
THEN for all \(i = 1,\ldots,n^k - 1 \), the \(i \)th row of the tableau is
 a configuration which yields the \((i+1)\)th row.

Proof Sketch: (Strong) induction on \(i \).
The 1st row is a configuration. If it \textit{didn’t} yield the 2nd row, there’s a 2 x 3 “illegal” window on 1st and 2nd rows
Assume rows 1,\ldots,L are all configurations which yield the next row, and assume every window is legal.
If row L+1 did \textit{not} yield row L+2, then there’s a 2 x 3 window along those two rows which is “illegal”
The \((i, j)\) window of a tableau is the tuple \((a_1, \ldots, a_6) \in \mathbb{C}^6\) such that

\[
\begin{array}{ccc}
\text{row } i & \text{col. } j & \text{col. } j+1 & \text{col. } j+2 \\
\hline
a_1 & a_2 & a_3 \\
a_4 & a_5 & a_6 \\
\end{array}
\]
\(\phi_{\text{move}} : \) every row is a configuration that legally follows from the previous configuration

\[
\phi_{\text{move}} = \bigwedge (\text{the (i, j) window is legal})
\]

\[
1 \leq i \leq n^k - 1 \\
1 \leq j \leq n^k - 2
\]

\((\text{the (i, j) window is legal}) = \)

\[
\bigvee (a_1, ..., a_6)
\]

(a_1, ..., a_6) is a legal window

\[
\equiv \bigwedge (a_1, ..., a_6)
\]

(a_1, ..., a_6) is NOT a legal window

\[
\equiv (x_{i,j,a_1} \lor x_{i,j+1,a_2} \lor x_{i,j+2,a_3} \lor x_{i+1,j,a_4} \lor x_{i+1,j+1,a_5} \lor x_{i+1,j+2,a_6})
\]
\[\phi_{\text{move}} = \bigwedge_{1 \leq i, j \leq n^k} \text{ (the (i, j) window is “legal”) } \]

the (i, j) window is “legal” =

\[\equiv \bigwedge_{(a_1, \ldots, a_6) \text{ ISN’T “legal”}} \neg x_{i,j,a_1} \lor \neg x_{i,j+1,a_2} \lor \neg x_{i,j+2,a_3} \lor \neg x_{i,j+1,a_4} \lor \neg x_{i+1,j,a_5} \lor \neg x_{i+1,j+2,a_6} \]

\[O(n^{2k}) \] clauses
Summary. Our goal was to prove:
Every A in NP has a polynomial time reduction to 3SAT

For every A in NP, we know A is decided by some nondeterministic \(n^k \) time Turing machine N.

We gave a generic method to reduce N and a string \(w \) to a 3CNF formula \(\phi \) of \(O(|w|^{2k}) \) clauses such that

satisfying assignments to the variables of \(\phi \) directly correspond to accepting computation histories of N on w.

The formula \(\phi \) is the AND of four 3CNF formulas:

\[
\phi = \phi_{cell} \land \phi_{start} \land \phi_{accept} \land \phi_{move}
\]
Theorem (Cook-Levin): 3SAT is NP-complete

Corollary: 3SAT ∈ P if and only if P = NP

Given your favorite problem \(\Pi \in \text{NP} \), how can we prove it is NP-hard?

Generic Recipe:
1. Take a problem \(\Sigma \) that you know to be NP-hard (e.g., 3SAT)
2. Prove that \(\Sigma \leq_p \Pi \)

Then for all \(A \in \text{NP} \), \(A \leq_p \Sigma \) and \(\Sigma \leq_p \Pi \)
We conclude that \(A \leq_p \Pi \), therefore \(\Pi \) is NP-hard
Π is NP-Complete
Reading Assignment

Read Luca Trevisan’s notes for an alternative proof of the Cook-Levin Theorem!

Sketch:
1. Define CIRCUIT-SAT: *Given a logical circuit* \(C(y) \), *is there an input* \(a \) *such that* \(C(a)=1 \)?

2. Show that CIRCUIT-SAT is NP-hard:
 The \(n^k \times n^k \) *tableau for* \(N \) *on* \(w \) *can be simulated using a logical circuit of* \(O(n^{2k}) \) *gates*

3. Reduce CIRCUIT-SAT to 3SAT in polytime

4. Conclude 3SAT is also NP-hard