Lecture 18:
More NP-Complete Problems
Polynomial Time Reducibility

\(f : \Sigma^* \rightarrow \Sigma^* \) is a polynomial time computable function

if there is a poly-time Turing machine \(M \) that on every input \(w \), halts with just \(f(w) \) on its tape

Language \(A \) is poly-time reducible to language \(B \), written as \(A \leq_P B \), if there is a poly-time computable \(f : \Sigma^* \rightarrow \Sigma^* \) so that:

\[w \in A \iff f(w) \in B \]

\(f \) is a polynomial time reduction from \(A \) to \(B \)

Note there is a \(k \) such that for all \(w \), \(|f(w)| \leq k|w|^k \)
Definition: A language B is NP-complete if:

1. B ∈ NP
2. Every A in NP is poly-time reducible to B
 That is, A ≤_p B
When this is true, we say “B is NP-hard”

Today we’ll see many more NP-complete problems: NHALT, 3SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK, PARTITION, BIN-PACKING, ... (6.890: an entire class on this kind of stuff)
And even more on pset/pests...
The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

$\text{CLIQUE} = \{ (G,k) \mid G \text{ is an undirected graph with a } k\text{-clique} \}$
The Clique Problem

Given a graph G and positive k, does G contain a complete subgraph on k nodes?

$\text{CLIQUE} = \{ (G,k) \mid G \text{ is an undirected graph with a k-clique} \}$

Theorem (Karp): CLIQUE is NP-complete

Why is it in NP?
Theorem: CLIQUE is NP-Complete
$3\text{SAT} \leq_p \text{CLIQUE}$

Transform every 3-cnf formula ϕ into (G,k) such that

$$\phi \in 3\text{SAT} \iff (G,k) \in \text{CLIQUE}$$

Want transformation that can be done in time that is polynomial in the length of ϕ

How can we encode a *logic* problem as a *graph* problem?
3SAT \leq_p CLIQUE

We transform any 3-cnf formula ϕ into (G,k) such that

$$\phi \in 3SAT \iff (G,k) \in CLIQUE$$

Let $C_1, C_2, ..., C_m$ be clauses of ϕ, let $x_1, ..., x_n$ be vars.
Set $k := m$

Make a graph G with m groups of 3 nodes each.

Idea: Group i corresponds to clause C_i of ϕ

Each node in group i is “labeled” by a literal of C_i

(Note these labels do not actually appear in the graph!)

Put edges between all pairs of nodes in different groups, except for pairs of nodes with labels x_i and $\neg x_i$

Put no edges between nodes in the same group
\[(x_1 \lor x_1 \lor x_2) \land (\neg x_1 \lor \neg x_2 \lor \neg x_2) \land (\neg x_1 \lor x_2 \lor x_2)\]

\[|V| = 3\text{(number of clauses)} \quad k = \text{number of clauses}\]
\[(x_1 \lor x_1 \lor x_1) \land (\neg x_1 \lor \neg x_1 \lor x_2) \land (x_2 \lor x_2 \lor x_2) \land (\neg x_2 \lor \neg x_2 \lor x_1)\]
Claim: $\phi \in 3SAT \iff (G,m) \in CLIQUE$

Claim: If $\phi \in 3SAT$ then $(G,m) \in CLIQUE$

Proof: Let A be a SAT assignment of ϕ.

For each clause C of ϕ, some literal in C is set true by A.

For each clause C, let v_C be one vertex from the group for C in G, where the label of v_C is a literal set true by A.

Claim: $S = \{v_C \mid C \in \phi\}$ is an m-clique in G. (note $|S| = m$)

Proof: Let $v_C \neq v_{C'}$ be in S. Suppose $(v_C, v_{C'}) \notin E$.

Then v_C and $v_{C'}$ are from different groups, so they must label inconsistent literals, call these literals x and $\neg x$.

But assignment A cannot set true both x and $\neg x$! Contradiction. So $(v_C, v_{C'}) \in E$, for all $v_C, v_{C'} \in S$.

Hence S is an m-clique, and $(G,m) \in CLIQUE$.
Claim: $\phi \in 3\text{SAT} \iff (G,m) \in \text{CLIQUE}$

Claim: If $(G,m) \in \text{CLIQUE}$ then $\phi \in 3\text{SAT}$

Proof: Let S be an m-clique of G.

We’ll construct a satisfying assignment A of ϕ.

Claim: S contains exactly one node from each group of G.

For each variable x of ϕ, define variable assignment A:

$A(x) := 1$, if there is a vertex in S with label x,
$A(x) := 0$, if there is a vertex in S with label $\neg x$,
or no vertices in S are labeled x or $\neg x$

For all $i = 1,\ldots,m$, one vertex from the i-th group is in S.

\implies one literal from the i-th clause of ϕ is a vertex in S

So for all $i = 1,\ldots,m$, A sets at least one literal true in i-th clause of ϕ. Therefore A is a satisfying assignment to ϕ.

Independent Set is NP-hard

IS: Given a graph $G = (V, E)$ and integer k, is there $S \subseteq V$ such that $|S| \geq k$ and no pair of vertices in S have an edge?

CLIQUE: Given $G = (V, E)$ and integer k, is there $S \subseteq V$ such that $|S| \geq k$ and every pair of vertices in S have an edge?

CLIQUE \leq_p **IS:**
Given $G = (V, E)$, output $G' = (V, E')$ where $E' = \{(u,v) \mid (u,v) \not\in E\}$.

$(G, k) \in \text{CLIQUE}$ iff $(G', k) \in \text{IS}$
a k-Clique in $G = a$ k-IS in G'
vertex cover = set of nodes C that cover all edges
For all edges, at least one endpoint is in C
VERTEX-COVER = \{ (G,k) \mid G \text{ is a graph with a vertex cover of size at most } k \} \\

Theorem: VERTEX-COVER is NP-Complete \\
(1) VERTEX-COVER ∈ NP \\
(2) IS ≤^P\text{VERTEX-COVER} \\

Want to transform a graph G and integer k into G’ and k’ such that \\

(\(G,k\) ∈ IS ⇔ \((G’,k’)\) ∈ VERTEX-COVER)
IS \leq_p VERTEX-COVER

Claim: For every graph \(G = (V,E) \), and subset \(S \subseteq V \),

\(S \) is an independent set

if and only if \((V – S) \) is a vertex cover

Proof: \(S \) is an independent set

\[\iff (\forall u, v \in V)[(u \in S \text{ and } v \in S) \implies (u,v) \notin E] \]

\[\iff (\forall u, v \in V)[(u,v) \in E \implies (u \notin S \text{ or } v \notin S)] \]

\[\iff (V – S) \text{ is a vertex cover!} \]

Therefore \((G,k) \in IS \iff (G,|V| – k) \in VERTEX-COVER \)

Our polynomial time reduction: \(f(G,k) := (G, |V| – k) \)
The Subset Sum Problem

Given: Set $S = \{a_1, \ldots, a_n\}$ of positive integers and a positive integer t

Is there an $A \subseteq \{1, \ldots, n\}$ such that $t = \sum_{i \in A} a_i$?

$\text{SUBSET-SUM} = \{(S, t) \mid \exists S' \subseteq S \text{ s.t. } t = \sum_{b \in S'} b\}$

A simple summation problem!

Theorem (in algs): There is a $O(n \cdot t)$ time algorithm for solving SUBSET-SUM.

But t can be specified in $(\log t)$ bits... this isn’t an algorithm that runs in polytime in the input!
The Subset Sum Problem

Given: Set $S = \{a_1, \ldots, a_n\}$ of positive integers and a positive integer t

Is there an $A \subseteq \{1, \ldots, n\}$ such that $t = \sum_{i \in A} a_i$?

$\text{SUBSET-SUM} = \{(S, t) \mid \exists S' \subseteq S \text{ s.t. } t = \sum_{b \in S'} b\}$

A simple summation problem!

Theorem: SUBSET-SUM is NP-complete
VC \leq_p SUBSET-SUM

Want to reduce a graph to a set of numbers

Given (G, k), let $E = \{e_0, ..., e_{m-1}\}$ and $V = \{1, ..., n\}$

Our subset sum instance (S, t) will have $|S| = n + m$

“Edge numbers”: For every $e_j \in E$, put $b_j = 4^j$ in S

“Node numbers”: For every $i \in V$, put $a_i = 4^m + \sum_{j : i \in e_j} 4^j$ in S

Set the target number: $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Think of the numbers as being in “base 4”... as vectors with $m+1$ components
For every $e_j \in E$ ($j=0,\ldots,m-1$) put $b_j = 4^j$ in S

For every $i \in V$, put $a_i = 4^m + \sum_{j : i \in e_j} 4^j$ in S

Set $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(G,k) \in \text{VC}$ then $(S,t) \in \text{SUBSET-SUM}$

Suppose $C \subseteq V$ is a VC with k vertices.

Let $S' = \{a_i : i \in C\} \cup \{b_j : |e_j \cap C| = 1\}$

$S' = (\text{node numbers corresponding to nodes in } C)$ plus

(\text{edge numbers corresponding to edges covered only once by } C)$

Claim: The sum of all numbers in S' equals t

\[\sum_{i \in C} a_i = k \cdot 4^m + \sum_{i \in C} \left(\sum_{j : i \in e_j} 4^j\right)\]
\[= k \cdot 4^m + \sum_{j : e_j \text{ covered once by } C} 4^j + \sum_{j : e_j \text{ covered twice by } C} (2 \cdot 4^j)\]

\[\sum_{j : |e_j \cap C| = 1} b_j = \sum_{j : e_j \text{ covered once by } C} 4^j \quad \text{Total sum is } t\]
For every $e_j \in E$ ($j=0,...,m-1$) put $b_j = 4^j$ in S

For every $i \in V$, put $a_i = 4^m + \sum_{j : i \in e_j} 4^j$ in S

Set $t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$

Claim: If $(S,t) \in \text{SUBSET-SUM}$ then $(G,k) \in \text{VC}$

Suppose $C \subseteq V$ and $F \subseteq E$ satisfy

$$\sum_{i \in C} a_i + \sum_{e_j \in F} b_j = t = k \cdot 4^m + \sum_{j=0}^{m-1} (2 \cdot 4^j)$$

Claim: C is a vertex cover of size k.

Proof: Subtract the b_j numbers from the LHS.

Each $b_j = 4^j$. So what remains is a sum of the form:

$$\sum_{i \in C} a_i = k \cdot 4^m + \sum_{j=0}^{m-1} (c_j \cdot 4^j)$$

where each $c_j > 0$. But $c_j =$ number of nodes in C covering e_j

Therefore every e_j is covered by C, so C is a vertex cover!

Moreover, $|C| = k$: each a_i in C adds 4^m to t
The Knapsack Problem

Given: $S = \{(v_1, c_1), \ldots, (v_n, c_n)\}$ of pairs of positive integers (items)

a capacity budget C

a value target V

Is there an $S' \subseteq \{1, \ldots, n\}$ such that

$(\sum_{i \in S'} v_i) \geq V$ and $(\sum_{i \in S'} c_i) \leq C$

Define: $\text{KNAPSACK} = \{(S, C, V) \mid \text{the answer is yes}\}$

A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete
KNAPSACK is NP-complete

KNAPSACK is in NP?

Theorem: SUBSET-SUM \leq_p KNAPSACK

Proof: Given an instance $(S = \{a_1, ..., a_n\}, t)$ of SUBSET-SUM, create a KNAPSACK instance:

For all i, set $(p_i, c_i) := (a_i, a_i)$

Define $T = \{(p_1, c_1), ..., (p_n, c_n)\}$

Define $C := V := t$

Then, $(S, t) \in$ SUBSET-SUM $\iff (T, C, P) \in$ KNAPSACK

Subset of S that sums to $t =$ Solution to the Knapsack instance!
The Partition Problem

Given: Set $S = \{a_1, ..., a_n\}$ of positive integers

Is there an $S' \subseteq S$ such that $(\sum_{a_i \in S'} a_i) = (\sum_{a_i \in S-S'} a_i)$?

(Formally, PARTITION is the set of all S such that the answer to this question is yes.)

In other words, is there a way to partition S into two parts so that both parts have equal sum?

A problem in fair division:
Divide up a set of items so that two parties get item sets of the same value

Theorem: PARTITION is NP-complete
PARTITION is NP-complete

(1) PARTITION is in NP

(2) SUBSET-SUM \leq_p PARTITION

Input: Set $S = \{a_1, \ldots, a_n\}$ of positive integers
 positive integer t

Output: $T := \{a_1, \ldots, a_n, 2A-t, A+t\}$, where $A := \sum_i a_i$

Claim: $(S,t) \in \text{SUBSET-SUM} \iff T \in \text{PARTITION}$

That is, S has a subset summing to t
$\iff T$ can be partitioned into two sets of equal sums
Input: Set \(S = \{a_1, \ldots, a_n\} \) of positive integers, positive \(t \)

Output \(T := \{a_1, \ldots, a_n, 2A-t, A+t\} \), where \(A := \sum_i a_i \)

Claim: \((S,t) \in \text{SUBSET-SUM} \iff T \in \text{PARTITION}\)

What’s the sum of all numbers in \(T? \quad 4A\)

Therefore: \(T \in \text{PARTITION} \)

\[\iff \text{There is a } T' \subseteq T \text{ that sums to } 2A. \]

Proof of \((S,t) \in \text{SUBSET-SUM} \Rightarrow T \in \text{PARTITION}:\)

If \((S,t) \in \text{SUBSET-SUM}, \text{let } S' \subseteq S \text{ sum to } t. \)

Then \(S' \cup \{2A-t\} \subseteq T \text{ sums to } 2A, \text{ so } T \in \text{PARTITION} \)
Input: Set $S = \{a_1, ..., a_n\}$ of positive integers, positive t
Output $T := \{a_1, ..., a_n, 2A-t, A+t\}$, where $A := \sum a_i$
Remember: sum of all numbers in T is $4A$.

Claim: $(S,t) \in \text{SUBSET-SUM} \iff T \in \text{PARTITION}$

$T \in \text{PARTITION} \iff$ There is a $T' \subseteq T$ that sums to $2A$.

Proof of: $T \in \text{PARTITION} \implies (S,t) \in \text{SUBSET-SUM}$

If $T \in \text{PARTITION}$, let $T' \subseteq T$ be a subset that sums to $2A$.
Observation: Exactly one of $\{2A-t, A+t\}$ can be in T'.

If $(2A-t) \in T'$, then $T' - \{2A-t\}$ sums to t. By Observation, the set $T' - \{2A-t\}$ is a subset of S. So $(S,t) \in \text{SUBSET-SUM}$

If $(A+t) \in T'$, then $(T - T') - \{2A-t\}$ sums to $(2A - (2A-t)) = t$.

By Observation, $(T - T') - \{2A-t\}$ is a subset of S.
Therefore $(S,t) \in \text{SUBSET-SUM}$
The Bin Packing Problem

Given: Set $S = \{a_1, \ldots, a_n\}$ of positive integers, a bin capacity B, and a target integer K.

Can we partition S into K subsets such that each subset sums to at most B?

Is there a way to pack the items of S into K bins, with each bin having capacity B?

Ubiquitous in shipping and optimization

Theorem: BIN PACKING is NP-complete
BIN PACKING is NP-complete

BIN PACKING is in NP?

Theorem: PARTITION \leq_p BIN PACKING

Proof: Given an instance $S = \{a_1, \ldots, a_n\}$ of PARTITION, create an instance of BIN PACKING with:

$S = \{a_1, \ldots, a_n\}$

$B = (\sum_i a_i)/2$

$k = 2$

Then, $S \in$ PARTITION $\Leftrightarrow (S,B,k) \in$ BIN PACKING:

Partition of S into two equal sums = Solution to the Bin Packing instance!