Lecture 2: Finite Automata and Nondeterminism
6.045

No Problem Set this week!
They’ll start next week

Recitations start tomorrow
The DFA accepts a string x if the process on x ends in a double circle.

The above DFA accepts exactly those strings with an odd number of 1s.
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Q is the set of states (finite)

Σ is the alphabet (finite)

$\delta : Q \times \Sigma \rightarrow Q$ is the transition function

$q_0 \in Q$ is the start state

$F \subseteq Q$ is the set of accept/final states

$L(M) =$ set of all strings that M accepts

= “the language recognized by M”

= the function computed by M
Definition: A language L' is regular if L' is recognized by a DFA; that is, there is a DFA M where $L' = L(M)$.

$L(M) = \text{set of all strings that } M \text{ accepts} = \text{“the language recognized by } M\text{”}$

A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$.
Theorem: The union of two regular languages is also a regular language

Proof: Let

\[M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1) \] be a finite automaton for \(L_1 \)

and

\[M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2) \] be a finite automaton for \(L_2 \)

We want to construct a finite automaton

\[M = (Q, \Sigma, \delta, q_0, F) \] that recognizes \(L = L_1 \cup L_2 \)
Proof Idea: Run both M_1 and M_2 “in parallel”!

$$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1) \text{ recognizes } L_1 \text{ and }$$

$$M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2) \text{ recognizes } L_2$$

Q = pairs of states, one from M_1 and one from M_2

$$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$$

$$= Q_1 \times Q_2$$

$q_0 = (q_0^1, q_0^2)$

$F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ OR } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
Theorem: The union of two regular languages is also a regular language.
How about the INTERSECTION of two languages?

\[F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ AND } q_2 \in F_2 \} \]
Intersection Theorem for Regular Languages

Given two languages, L_1 and L_2, define the intersection of L_1 and L_2 as

$L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$

Theorem: The intersection of two regular languages is also a regular language
Proof Idea: Again, run “in parallel” M_1 and M_2

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2$

$=$ \{ (q_1, q_2) | $q_1 \in Q_1$ and $q_2 \in Q_2$ \}

$= Q_1 \times Q_2$

$q_0 = (q_0^1, q_0^2)$

$F = \{ (q_1, q_2) | q_1 \in F_1 \text{ AND } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
Union Theorem for Regular Languages

The union of two regular languages is also a regular language

“Regular Languages are closed under union”

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language
Complement Theorem for Regular Languages

The complement of a regular language is also a regular language.

In other words, if A is regular than so is \(\overline{A} \),

where \(\overline{A} = \{ w \in \Sigma^* \mid w \notin A \} \)

Proof Idea?
The Reverse of a Language

Reverse of A:
\[A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A, w_i \in \Sigma \} \]

If A is recognized by the usual kind of DFA, Then \(A^R \) is recognized by a “backwards” DFA that reads its strings from right to left!

Question: If A is regular, then is \(A^R \) also regular?

Can every “Right-to-Left” DFA be replaced by a normal “Left-to-Right” DFA?
Suppose M read its input from right to left...

Then $L(M) = \{ w \mid w \text{ ends with a } 1 \}$. Is this regular?
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language!

“Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA that reads its input from *right to left*, *then* there is an “normal” left-to-right DFA that accepts the same language

Counterintuitive! DFAs have finite memory...
Reversing DFAs?

Let L be a regular language, let M be a DFA that recognizes L

We want to build a machine M^R that accepts L^R

M accepts w \iff w describes a directed path in M from start to an accept state

Want: M^R accepts w^R \iff M accepts w

First Attempt:
Try to define M^R as M with the arrows reversed!
Turn start state into a final state,
turn final states into start states
Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have *more than one* transition for a given symbol, or it may have none at all!
What happens with 100?

We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state.
Then, this machine recognizes: \(\{ w \mid w \text{ contains } 100 \} \)

We will say this new kind of machine accepts string \(x \) if there is some path reading in \(x \) that reaches some accept state from some start state.
Another Example of an NFA

At each state, we’ll allow any number (including zero) of out-arrows for letters $\sigma \in \Sigma$, including ε.

Set of strings accepted by this NFA = \{w | w contains a 0\}
Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one

Can easily convert NFA with many start states into one with a single start state:
A non-deterministic finite automaton (NFA) is a 5-tuple \(N = (Q, \Sigma, \delta, Q_0, F) \) where

\(Q \) is the set of states
\(\Sigma \) is the alphabet
\(\delta : Q \times \Sigma_{\varepsilon} \rightarrow 2^Q \) is the transition function
\(Q_0 \subseteq Q \) is the set of start states
\(F \subseteq Q \) is the set of accept states

\(2^Q \) is the set of all possible subsets of \(Q \)
\(\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\} \)
N = (Q, Σ, δ, Q₀, F)

Q = {q₁, q₂, q₃, q₄}
Σ = {0,1}
Q₀ = {q₁, q₂}
F = {q₄}

δ(q₂,1) = {q₄} δ(q₄,1) = ∅
δ(q₃,1) = ∅
δ(q₁,0) = {q₃}

Set of strings accepted = {1,00,01}
Def. Let $w \in \Sigma^*$. Let N be an NFA. N accepts w if there's a sequence of states $r_0, r_1, ..., r_k \in Q$ and w can be written as $w_1 \cdots w_k$ with $w_i \in \Sigma \cup \{\varepsilon\}$ such that

1. $r_0 \in Q_0$
2. $r_i \in \delta(r_{i-1}, w_i)$ for all $i = 1, ..., k$, and
3. $r_k \in F$

$L(N)$ = the language recognized by N
= set of all strings that NFA N accepts

A language L' is recognized by an NFA N if $L' = L(N)$.
Are these equally powerful???
NFAs are generally simpler than DFAs

A DFA recognizing the language \{1\}

An NFA recognizing the language \{1\}
Theorem: For every NFA N, there is a DFA M such that \(L(M) = L(N) \)

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff \(A^R \) is regular

left-to-right DFAs \(\equiv \) right-to-left DFAs
From NFAs to DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To learn if NFA N accepts, we could do the computation of N in parallel, maintaining the set of all possible states that can be reached.

Idea:

Set $Q' = 2^Q$
From NFAs to DFAs: Subset Construction

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

$Q' = 2^Q$

$\delta' : Q' \times \Sigma \rightarrow Q'$

For $S \in Q'$, $\sigma \in \Sigma$:

$\delta'(S, \sigma) = \bigcup_{q \in S} \varepsilon(\delta(q, \sigma))$

$q_0' = \varepsilon(Q_0)$

$F' = \{ S \in Q' \mid f \in S \text{ for some } f \in F \}$

For $S \subseteq Q$, the ε-closure of S is

$\varepsilon(S) = \{ r \in Q \text{ reachable from some } q \in S \text{ by taking zero or more } \varepsilon\text{-transitions} \}$
Example of the ε-closure

\[\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\} \]

\[\varepsilon(\{q_1\}) = \{q_1, q_2\} \]

\[\varepsilon(\{q_2\}) = \{q_2\} \]
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, ...)$

$\varepsilon(\{1\}) = \{1,3\}$

$\varepsilon(\{1\}) = \{1,3\}$

$\{1\}, \{1,2\}?$

$\{1,2,3\}$