Lecture 2: Finite Automata and Nondeterminism
No Problem Set this week! They’ll start next week.

Recitations start tomorrow.
The DFA accepts a string x if the process on x ends in a double circle.

The above DFA accepts exactly those strings with an odd number of 1s.
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states

$L(M) =$ set of all strings that M accepts
= “the language recognized by M”
= the function computed by M
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

Let $w_1, \ldots, w_n \in \Sigma$ and $w = w_1 \cdots w_n \in \Sigma^*$

M accepts w if there are $r_0, r_1, \ldots, r_n \in Q$, s.t.

- $r_0 = q_0$
- $\delta(r_{i-1}, w_i) = r_i$ for all $i = 1, \ldots, n$, and
- $r_n \in F$

$L(M) = \text{set of all strings that } M \text{ accepts}
= \text{“the language recognized by } M\text{”}$

Definition: A language L' is **regular**

if L' is recognized by a DFA;

that is, there is a DFA M where $L' = L(M)$.
Theorem: The union of two regular languages is also a regular language

Proof: Let

\[M_1 = (Q_1, \Sigma, \delta_1, q_0^1, F_1) \] be a finite automaton for \(L_1 \)

and

\[M_2 = (Q_2, \Sigma, \delta_2, q_0^2, F_2) \] be a finite automaton for \(L_2 \)

We want to construct a finite automaton

\[M = (Q, \Sigma, \delta, q_0, F) \] that recognizes \(L = L_1 \cup L_2 \)
Proof Idea: Run both M_1 and M_2 "in parallel"!

$$M_1 = (Q_1, \Sigma, \delta_1, q_0, F_1)$$ recognizes L_1 and

$$M_2 = (Q_2, \Sigma, \delta_2, q_0, F_2)$$ recognizes L_2

Q = pairs of states, one from M_1 and one from M_2

$$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$$

$$= Q_1 \times Q_2$$

$q_0 = (q_0^1, q_0^2)$

$F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ OR } q_2 \in F_2 \}$

$$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$$
Theorem: The union of two regular languages is also a regular language
How about the INTERSECTION of two languages?

\[F = \{ (q_1, q_2) \mid q_1 \in F_1 \ \text{AND} \ q_2 \in F_2 \} \]
Intersection Theorem for Regular Languages

Given two languages, L_1 and L_2, define the intersection of L_1 and L_2 as

$$L_1 \cap L_2 = \{ w \mid w \in L_1 \text{ and } w \in L_2 \}$$

Theorem: The intersection of two regular languages is also a regular language.
Proof Idea: Again, run “in parallel” M_1 and M_2

$Q = \text{pairs of states, one from } M_1 \text{ and one from } M_2$

$= \{ (q_1, q_2) \mid q_1 \in Q_1 \text{ and } q_2 \in Q_2 \}$

$= Q_1 \times Q_2$

$q_0 = (q_0^1, q_0^2)$

$F = \{ (q_1, q_2) \mid q_1 \in F_1 \text{ AND } q_2 \in F_2 \}$

$\delta((q_1, q_2), \sigma) = (\delta_1(q_1, \sigma), \delta_2(q_2, \sigma))$
Union Theorem for Regular Languages

The union of two regular languages is also a regular language

“Regular Languages are closed under union”

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language
Complement Theorem for Regular Languages

The complement of a regular language is also a regular language

In other words,

if A is regular than so is \(\overline{A} \),

where \(\overline{A} = \{ w \in \Sigma^* | w \notin A \} \)

Proof Idea?
The Reverse of a Language

Reverse of A:
\[A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A, w_i \in \Sigma \} \]

If A is recognized by the usual kind of DFA, then \(A^R \) is recognized by a “backwards” DFA that reads its strings from right to left!

Question: If A is regular, then is \(A^R \) also regular?

Can every “Right-to-Left” DFA be replaced by a normal “Left-to-Right” DFA?
Suppose M read its input from right to left...

Then $L(M) = \{ w \mid w \text{ ends with a } 1 \}$. Is this regular?
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language!

“Regular Languages Are Closed Under Reverse”

If a language can be recognized by a DFA that reads its input *from right to left*, *then* there is an “normal” left-to-right DFA that accepts the same language.

Counterintuitive! DFAs have finite memory...
Reversing DFAs?

Let L be a regular language, let M be a DFA that recognizes L

We want to build a machine M^R that accepts L^R

M accepts w \iff w describes a directed path in M from start to an accept state

Want: M^R accepts w^R \iff M accepts w

First Attempt:
Try to define M^R as M with the arrows reversed!
Turn start state into a final state, turn final states into start states
Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states.

Some states may have *more than one* transition for a given symbol, or it may have none at all!
Non-deterministic Finite Automata (NFA)

What happens with 100?

We will say this new kind of machine accepts string x if there is some path reading in x that reaches some accept state from some start state.
Then, this machine recognizes: \(\{ w \mid w \text{ contains 100} \} \)

We will say this new kind of machine **accepts string** \(x \) if **there is some path reading in** \(x \) **that reaches** some accept state from some start state.
Another Example of an NFA

At each state, we’ll allow any number (including zero) of out-arrows for letters $\sigma \in \Sigma$, including ε

Set of strings accepted by this NFA = $\{w \mid w$ contains a 0$\}$
Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one.

Can easily convert NFA with many start states into one with a single start state:
A *non-deterministic* finite automaton (NFA) is a 5-tuple $N = (Q, \Sigma, \delta, Q_0, F)$ where

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma_{\varepsilon} \rightarrow 2^Q$ is the transition function
- $Q_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept states

2^Q is the set of all possible subsets of Q

$\Sigma_{\varepsilon} = \Sigma \cup \{\varepsilon\}$
\(N = (Q, \Sigma, \delta, Q_0, F) \)

\(Q = \{ q_1, q_2, q_3, q_4 \} \)

\(\Sigma = \{ 0, 1 \} \)

\(Q_0 = \{ q_1, q_2 \} \)

\(F = \{ q_4 \} \)

\(\delta(q_2,1) = \{ q_4 \} \)

\(\delta(q_4,1) = \emptyset \)

\(\delta(q_3,1) = \emptyset \)

\(\delta(q_1,0) = \{ q_3 \} \)

Set of strings accepted = \{1,00,01\}
Def. Let \(w \in \Sigma^* \). Let \(N \) be an NFA. \(N \) accepts \(w \) if there’s a sequence of states \(r_0, r_1, \ldots, r_k \in Q \) and \(w \) can be written as \(w_1 \cdots w_k \) with \(w_i \in \Sigma \cup \{\varepsilon\} \) such that

1. \(r_0 \in Q_0 \)
2. \(r_i \in \delta(r_{i-1}, w_i) \) for all \(i = 1, \ldots, k \), and
3. \(r_k \in F \)

\[L(N) = \text{the language recognized by } N \]
\[= \text{set of all strings that NFA } N \text{ accepts} \]

A language \(L' \) is recognized by an NFA \(N \) if \(L' = L(N) \).
Deterministic Computation

Non-Deterministic Computation

Are these equally powerful???
NFAs are generally simpler than DFAs

A DFA recognizing the language \{1\}

An NFA recognizing the language \{1\}
Every NFA can be perfectly simulated by some DFA!

Theorem: For every NFA N, there is a DFA M such that $L(M) = L(N)$

Corollary: A language A is regular if and only if A is recognized by an NFA

Corollary: A is regular iff A^R is regular left-to-right DFAs \equiv right-to-left DFAs
From NFAs to DFAs

Input: NFA \(N = (Q, \Sigma, \delta, Q_0, F) \)

Output: DFA \(M = (Q', \Sigma, \delta', q_0', F') \)

To learn if NFA \(N \) accepts, we could do the computation of \(N \) \textit{in parallel}, maintaining the set of \textit{all} possible states that can be reached.

\textbf{Idea:}

Set \(Q' = 2^Q \)
From NFAs to DFAs: Subset Construction

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

$Q' = 2^Q$

$\delta' : Q' \times \Sigma \rightarrow Q'$

For $S \in Q'$, $\sigma \in \Sigma$: $\delta'(S, \sigma) = \bigcup_{q \in S} \varepsilon(\delta(q, \sigma))$

$q_0' = \varepsilon(Q_0)$

$F' = \{ S \in Q' \mid f \in S \text{ for some } f \in F \}$

For $S \subseteq Q$, the ε-closure of S is

$\varepsilon(S) = \{ r \in Q \text{ reachable from some } q \in S \text{ by taking zero or more } \varepsilon\text{-transitions} \}$
Example of the ε-closure

$\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$

$\varepsilon(\{q_1\}) = \{q_1, q_2\}$

$\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, \ldots)$

$\varepsilon(\{1\}) = \{1,3\}$