Lecture 20:
More Friends of NP,
Oracles in Complexity Theory
Definition: coNP = \{ L \mid \neg L \in NP \}

What does a coNP computation look like?

In NP algorithms, we can use a "guess" instruction in pseudocode:

Guess string y of $|x|^k$ length...

and the machine accepts iff some y leads to an accept state

In coNP algorithms, we can use a "try all" instruction:

Try all strings y of $|x|^k$ length...

and the machine accepts iff every y leads to an accept state
Definition: A language B is coNP-complete if

1. $B \in \text{coNP}$

2. For every A in coNP, there is a polynomial-time reduction from A to B
 (B is coNP-hard)

Can use $A \leq_P B \iff \neg A \leq_P \neg B$

to turn NP-hardness into co-NP hardness
TAUTOLOGY = \{ \phi \mid \phi \text{ is a Boolean formula and } no\text{ every variable assignment satisfies } \phi \}\}

Theorem: TAUTOLOGY is coNP-complete

\text{UNSAT} = \{ \phi \mid \phi \text{ is a Boolean formula and no variable assignment satisfies } \phi \} \}
= \{ \phi \mid \neg \phi \in \text{UNSAT} \}

Theorem: UNSAT is coNP-complete
NP \cap \text{coNP} = \{ L \mid L \text{ and } \neg L \in \text{NP} \}

L \in \text{NP} \cap \text{coNP} \text{ means that both } x \in L \text{ and } x \notin L \text{ have “nifty proofs”}

\text{Is P = NP } \cap \text{ coNP?}

\text{THIS IS AN OPEN QUESTION!}
An Interesting Problem in \(NP \cap \text{coNP} \)

FACTORIZING

\[
\{ (m, n) \mid m > n > 1 \text{ are integers, there is a prime factor } p \text{ of } m \text{ where } n \leq p < m \}
\]

Theorem: FACTORIZING \(\in \text{NP } \cap \text{coNP} \)

Theorem: If FACTORIZING \(\in P \), then there is a polynomial-time algorithm which, given an integer \(n \), outputs either “\(n \text{ is PRIME} \)” or a prime factor of \(n \).
NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, ...

(NP \cap coNP)-complete problems:

Nobody knows if they exist!

P, NP, coNP can be defined in terms of specific machine models, and for every possible machine we can give a simple encoding of it.

NP \cap coNP is not known to have a corresponding machine model!
Polynomial Time With Oracles

*We do not condone smoking. Don’t do it. It’s bad. Kthxbye
Oracle Turing Machines

Polynomial time

Is formula F in SAT?

q_{YES} yes

yes

ANPUTURE

INFINITE TAPE
Oracle Turing Machines

An **oracle Turing machine** M^B is equipped with a set $B \subseteq \Gamma^*$ to which a TM M may ask membership queries on a special “oracle tape”

(Formally, M^B enters a special state $q_?$)

and the TM receives a query answer in one step

(Formally, the transition function on $q_?$ is defined in terms of the **entire oracle tape**:

if the string y written on the oracle tape is in B, then state $q_?$ is changed to q_{YES}, otherwise q_{NO})

This notion makes sense even when M runs in *polynomial time* and B is *not* in P!
An oracle Turing machine M with oracle $B \subseteq \Gamma^*$ lets you include the following kind of branching instructions:

```
“if (z in B) then <do something>
else <do something else>”
```

where z is some string defined earlier in pseudocode. By definition, the oracle TM can always check the condition (z in B) in one step.
Some Complexity Classes With Oracles

Let B be a language.

\[P^B = \{ L \mid L \text{ can be decided by some polynomial-time } TM \text{ with an oracle for } B \} \]

\[P^{SAT} = \text{the class of languages decidable in polynomial time with an oracle for SAT} \]

\[P^{NP} = \text{the class of languages decidable by some polynomial-time oracle TM with an oracle for some } B \text{ in NP} \]
Is \(P^{\text{SAT}} \subseteq P^{\text{NP}} \)?

Yes! By definition...

Is \(P^{\text{NP}} \subseteq P^{\text{SAT}} \)?

Yes!

Every NP language can be reduced to SAT!

Let \(M^B \) be a poly-time TM with oracle \(B \in \text{NP} \). We define \(N^{\text{SAT}} \) that simulates \(M^B \) step for step. When the sim of \(M^B \) makes query \(w \) to oracle \(B \), \(N^{\text{SAT}} \) reduces \(w \) to a formula \(\phi_w \) in poly-time, then calls its oracle for SAT on \(\phi_w \)
Is $\text{NP} \subseteq \text{P}^{\text{NP}}$?

Yes!

Just ask the oracle for the answer!

For every $L \in \text{NP}$ define an oracle TM M^L which asks the oracle if the input is in L, then outputs the answer.
Is \(\text{coNP} \subseteq \text{P}^{\text{NP}} \)?

Yes!

Again, just ask the oracle for the answer!

For every \(L \in \text{coNP} \) we have \(\neg L \in \text{NP} \)

Define an oracle TM \(M^{\neg L} \) which asks the oracle if the input is in \(\neg L \)

- accept if the answer is no,
- reject if the answer is yes

In general, \(\text{P}^{\text{NP}} = \text{P}^{\text{coNP}} \) and \(\text{P}^{\text{SAT}} = \text{P}^{\text{TAUT}} \)
For every poly-time TM M with oracle $B \in P$, we can simulate each query z to oracle B by simply running a polynomial-time decider for B.

Is $P^B \subseteq P$? Yes!

Suppose B is in P. The resulting machine runs in polynomial time!
\(P^{\text{NP}} \) = the class of languages decidable by some polynomial-time oracle TM \(M^B \) for some \(B \) in NP

Informally: \(P^{\text{NP}} \) is the class of problems you can solve in polynomial time, assuming a SAT solver which gives you answers quickly.
\(\mathsf{P}^{\mathsf{NP}} \) = the class of languages decidable by some polynomial-time oracle TM \(M^B \) for some \(B \) in \(\mathsf{NP} \)

Informally, \(\mathsf{P}^{\mathsf{NP}} \) is the class of problems you can solve in polynomial time, if SAT solvers work.

A problem in \(\mathsf{P}^{\mathsf{NP}} \) that looks harder than SAT or TAUT:

\[
\text{FIRST-SAT} = \{ (\phi, i) \mid \phi \in \text{SAT} \text{ and the } i\text{th bit of the lexicographically first SAT assignment of } \phi \text{ is 1} \}
\]

Using polynomially many calls to SAT, we can compute the lexicographically first satisfying assignment.

“Theorem” FIRST-SAT is \(\mathsf{P}^{\mathsf{NP}} \)-complete.
Is \(\text{NP}^B = \text{NP} \)?

It is believed the answers are NO ...

\[\text{NP}^B = \{ L \mid L \text{ can be decided by a polynomial-time nondeterministic TM with an oracle for } B \} \]

\[\text{coNP}^B = \{ L \mid L \text{ can be decided by a poly-time co-nondeterministic TM with an oracle for } B \} \]

Is \(\text{NP} = \text{NP}^{\text{NP}} ? \)

Is \(\text{coNP}^{\text{NP}} = \text{NP}^{\text{NP}} ? \)

THESE ARE OPEN QUESTIONS!
Logic Minimization is in coNP^{NP}

Two Boolean formulas ϕ and ψ over the variables x_1,\ldots,x_n are equivalent if they have the same value on every assignment to the variables.

- Are x and $x \lor x$ equivalent? \textbf{Yes}
- Are x and $x \lor \neg x$ equivalent? \textbf{No}
- Are $(x \lor \neg y) \land \neg(\neg x \land y)$ and $x \lor \neg y$ equivalent? \textbf{Yes}

A Boolean formula ϕ is \textbf{minimal} if no \textit{smaller} formula is equivalent to ϕ (count number of \lor, \land, \neg, and variable occurrences).

$$\text{MIN-FORMULA} = \{ \phi \mid \phi \text{ is minimal} \}$$
Theorem: $\text{MIN-FORMULA} \in \text{coNP}^{\text{NP}}$

Proof:

Define $\text{NEQUIV} = \{ (\phi, \psi) \mid \phi \text{ and } \psi \text{ are not equivalent} \}$

Observation: $\text{NEQUIV} \in \text{NP}$ (Why?)

Here is a $\text{coNP}^{\text{NEQUIV}}$ machine for MIN-FORMULA:

Given a formula ϕ,

Try all formulas ψ such that ψ is smaller than ϕ.

If $((\phi, \psi) \in \text{NEQUIV})$ then accept else reject

MIN-FORMULA is not known to be in coNP or NP^{NP}
The Difficulty of Formula Minimization

MIN-CNF-FORMULA = \{ \phi \mid \phi \text{ is CNF and is minimal} \}

Theorem: MIN-CNF-FORMULA is coNP^NP-complete

Proof: Beyond the scope of this course...

Note: We don’t know if MIN-FORMULA is coNP^NP complete!
FACTORING
coNP
TAUT
NP
MIN-FORMULA
P
coNP
PNP
NP
FACTORIZING
SAT
Oracles and P vs NP

Everything about TMs we have proved in this class also works for TMs with arbitrary oracles.

Theorem [Baker, Gill, Solovay ’75]:

1. There is an oracle B where $P^B = NP^B$
2. There is an oracle A where $P^A \neq NP^A$

See Sipser 9.2

Moral: Any proof technique that extends to Turing Machines with arbitrary oracles won’t be able to resolve P versus NP!

THE “RELATIVIZATION BARRIER”
Space Complexity
Measuring Space Complexity

We measure space complexity by finding the largest tape index reached during the computation.
Let M be a deterministic Turing machine (not necessarily halting)

Definition: The space complexity of M is the function \(S : \mathbb{N} \rightarrow \mathbb{N} \), where \(S(n) \) is the largest tape index reached by M on any input of length \(n \).

Definition: \(\text{SPACE}(S(n)) = \{ L \mid L \text{ is decided by a Turing machine with } O(S(n)) \text{ space complexity} \} \)
Theorem: \(3\text{SAT} \in \text{SPACE}(n) \)

Proof Idea: Try all possible assignments to the (at most \(n \)) variables in a formula \(\phi \) of length \(n \). Accept iff an assignment makes \(\phi \) true. This can be done in \(O(n) \) space.

Theorem: \(\text{NTIME}(t(n)) \) is in \(\text{SPACE}(t(n)) \)

Proof Idea: Try all possible computation paths of \(t(n) \) steps for an NTM on length-\(n \) input. This can be done in \(O(t(n)) \) space (store a sequence of \(t(n) \) transitions).
Theorem: Let $s : \mathbb{N} \rightarrow \mathbb{N}$ satisfy $s(n) \geq n$, for all n. Then every $s(n)$ space multi-tape TM has an equivalent $O(s(n))$ space one-tape TM.

The simulation of multitape TMs by one-tape TMs already achieves this!

Corollary: The number of tapes doesn’t matter for space complexity! One tape TMs are as good as any other model!
Space Hierarchy Theorem

Intuition: If you have more space to work with, then you can solve strictly more problems!

Theorem: For functions \(s, S : \mathbb{N} \rightarrow \mathbb{N} \) where \(s(n)/S(n) \rightarrow 0 \)

\[
\text{SPACE}(s(n)) \subsetneq \text{SPACE}(S(n))
\]

Proof Idea: Diagonalization

Make a Turing machine \(N \) that on input \(M \), simulates the TM \(M \) on input \(M \) using up to \(S(|M|) \) space, then flips the answer.

Show \(L(N) \) is in \(\text{SPACE}(S(n)) \) but not in \(\text{SPACE}(s(n)) \)
\[PSPACE = \bigcup_{k \in \mathbb{N}} \text{SPACE}(n^k) \]

Since for every \(k \), \(\text{NTIME}(n^k) \) is in \(\text{SPACE}(n^k) \), we have:

\[P \subseteq NP \subseteq PSPACE \]
The class PSPACE formalizes the set of problems solvable by computers with *bounded memory*.

Fundamental (Unanswered) Question:
How does time relate to space, in computing?

SPACE(n^2) problems could potentially take much longer than n^2 time to solve!

Intuition: You can always re-use space, but how can you re-use time?

Is P = PSPACE?