Lecture 23:
Finish Randomized Complexity,
Begin Review
The Plan For This Week

Today: We’ll finish randomized complexity, and start reviewing the major topics

Thursday: When review is done... Ask Me Anything!

Ask questions in person, or post questions anonymously on piazza. I will answer them in class on Thursday!
Randomized / Probabilistic Complexity
A probabilistic TM M is a nondeterministic TM where:

Each nondeterministic step is called a *coin flip*.

Each nondeterministic step has only two legal next moves *(heads or tails)*.

The probability that M runs on a branch b is:

$$\Pr [b] = 2^{-k}$$

where k is the number of coin flips that occur on branch b.
Definition. A probabilistic TM M decides a language A with error ε if for all strings w,

$$w \in A \Rightarrow \Pr[M \text{ accepts } w] \geq 1 - \varepsilon$$

$$w \notin A \Rightarrow \Pr[M \text{ doesn’t accept } w] \geq 1 - \varepsilon$$

Theorem: A language A is in NP if there is a nondeterministic polynomial time TM M such that for all strings w:

$$w \in A \Rightarrow \Pr[M \text{ accepts } w] > 0$$

$$w \notin A \Rightarrow \Pr[M \text{ accepts } w] = 0$$
BPP = Bounded Probabilistic P

\[\text{BPP} = \{ L \mid L \text{ is recognized by a probabilistic polynomial-time TM with error at most } \frac{1}{3} \} \]

Why \(\frac{1}{3} \)?

It doesn’t matter what error value we pick, as long as the error is smaller than \(\frac{1}{2} \).

When the error is smaller than \(\frac{1}{2} \), we can make it very small by repeatedly running the TM.
Checking Matrix Multiplication

CHECK = \{ (M_1, M_2, N) \mid M_1, M_2 \text{ and } N \text{ are matrices and } M_1 \cdot M_2 = N \}

If \(M_1 \) and \(M_2 \) are \(n \times n \) matrices, computing \(M_1 \cdot M_2 \) takes \(O(n^3) \) time normally, and \(O(n^{2.373}) \) time using very sophisticated methods.

Here is an \(O(n^2) \)-time randomized algorithm for CHECK:

Pick a 0-1 bit vector \(r \) at random, test if \(M_1 \cdot M_2 r = Nr \)

Claim: If \(M_1 \cdot M_2 = N \), then \(\Pr [M_1 \cdot M_2 r = Nr] = 1 \)
If \(M_1 \cdot M_2 \neq N \), then \(\Pr [M_1 \cdot M_2 r = Nr] \leq 1/2 \)

If we pick 20 random vectors and test them all, what is the probability of incorrect output? \(1/2^{20} < 0.000001 \)
An arithmetic formula is like a Boolean formula, except it has $+, -, \text{ and } \ast$ instead of OR, NOT, AND.

$\text{ZERO-POLY} = \{ p \mid p \text{ is an arithmetic formula that is identically zero} \}$

Identically zero means: all coefficients are 0

Theorem: $\text{ZERO-POLY} \in \text{BPP}$

Algorithm A: Given polynomial p,
For all $i = 1, \ldots, k$, choose r_i randomly from $\{1, \ldots, 3n^2\}$
If $p(r_1, \ldots, r_k) = 0$ then output zero
else output nonzero

Schwartz-Zippel \Rightarrow This works!
Equivalence of Arithmetic Formulas

\[\text{EQUIV-POLY} = \{ (p, q) \mid p \text{ and } q \text{ are arithmetic formulas computing the same polynomial} \} \]

Corollary: \(\text{EQUIV-POLY} \in \text{BPP} \)

There is a big contrast with Boolean formulas!

\[\text{EQUIV} = \{ (\phi, \psi) \mid \phi \text{ and } \psi \text{ are Boolean formulas computing the same function} \} \]

We showed \(\text{EQUIV} \) is in \(\text{coNP} \). It’s also \(\text{coNP-complete} \)!

\(\text{TAUTOLOGY} \leq_p \text{EQUIV}: \) map \(\phi \) to \((\phi, T)\)
BPP = \{ L \mid L \text{ is recognized by a probabilistic polynomial-time TM with error at most } 1/3 \}

BPP \subseteq NP \text{ is open}

BPP \subseteq \text{PSPACE} \text{ is known}

BPP \subseteq \text{NP}^{\text{NP}} \text{ and } BPP \subseteq \text{coNP}^{\text{NP}}, \text{ but } BPP \subseteq \text{P}^{\text{NP}} \text{ is still open!}

\text{NP} \subseteq \text{BPP} \text{ is open}
Is BPP = EXPTIME?

THIS IS AN OPEN QUESTION!?

It’s widely conjectured that P = BPP!

Certain lower bounds \(\implies P = BPP\)
Definition: A language A is in RP (Randomized P) if there is a nondeterministic polynomial time TM M such that for all strings x:

- $x \not\in A \Rightarrow \Pr[M(x) \text{ accepts}] = 0$
- $x \in A \Rightarrow \Pr[M(x) \text{ accepts}] > 2/3$

$\text{NONZERO-POLY} = \{ \text{p} \mid \text{p is an arithmetic formula that is not identically zero} \}$

Theorem: $\text{NONZERO-POLY} \in \text{RP}$
(Our proof of ZERO-POLY in BPP shows this)
Is RP \subseteq NP?

Yes!

Being RP means that not only are there “nifty proofs” but in fact most strings are nifty proofs!
Is $\text{RP} \subseteq \text{BPP}$?

Yes!

RP has “one-sided error”
BPP has “two-sided error”
Review
Deterministic Finite Automata

transition: for every state and alphabet symbol

states

start state (q_0)

accept states (F)

states
Deterministic Computation

Non-Deterministic Computation

Are these equally powerful???
YES for finite automata
Regular Languages are closed under all of the following operations:

Union: \(A \cup B = \{ w | w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w | w \in A \text{ and } w \in B \} \)

Complement: \(\overline{A} = \{ w \in \Sigma^* | w \notin A \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k | w_k \ldots w_1 \in A \} \)

Concatenation: \(A \cdot B = \{ vw | v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k | k \geq 0 \text{ and each } w_i \in A \} \)
DFA Minimization:

There is an **efficient algorithm** which, given any DFA M, will output the unique minimum-state DFA M^* equivalent to M.

If this were true for more general models of computation, that would be an engineering breakthrough!!
(Would imply $P=NP$ and more)

Table-Filling Algorithm
to find “distinguishable” pairs of states
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ iff for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of \equiv_L is finite.

Regular = “easy”
Not Regular = “hard”
The Myhill-Nerode Theorem gives us a (universal) way to prove that a given language is not regular:

L is not regular
if and only if
there are infinitely many equiv. classes of \(\equiv_L \)

L is not regular
if and only if
There are infinitely many strings \(w_1, w_2, \ldots \) so that for all \(w_i \neq w_j \), \(w_i \) and \(w_j \) are distinguishable to \(L \):
there is a \(z \in \Sigma^* \) such that
exactly one of \(w_i z \) and \(w_j z \) is in \(L \)
Streaming Algorithms

Have three components

Initialize:
<variables and their assignments>

When next symbol seen is σ:
<pseudocode using σ and vars>

When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if
A accepts the strings in L, rejects strings not in L
L = \{x \mid x \text{ has odd number of } 1\text{’s}\}

Has streaming algorithms using \(O(1)\) space (that is, it has a DFA)

“very easy”

L = \{x \mid x \text{ has more } 1\text{’s than } 0\text{’s}\}

Has streaming algorithms using \(O(\log n)\) space, no streaming algorithm uses much less

“easy”

L = \{x \mid x \text{ is a palindrome}\}

Has streaming algorithms using \(O(n)\) space, no streaming algorithm uses much less

“hard”
Streaming Lower Bounds via DFAs

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Suppose L' is such that for all n, every DFA M for L'_n requires at least $Q(n) := 2^{S(n)+1}$ states. Then every streaming algorithm for L' requires at least $\log_2(Q(n))$ space.

State lower bounds for DFAs

\rightarrow Space lower bounds for streaming algorithms
L is not regular if and only if there are infinitely many strings w_1, w_2, \ldots so that for all $i \neq j$, there's a string z such that exactly one of w_iz and w_jz is in L.

In fact, Myhill-Nerode shows that the size of a distinguishing set for L is a lower bound on the number of states in a DFA for L.

In other words, if S is a distinguishing set for L, then any DFA for L must have at least $|S|$ states.

We can use this fact to prove lower bounds on streaming algorithms!
Communication Complexity

A theoretical model of distributed computing

• **Function** $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
 - Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$
 - We assume $|x| = |y| = n$. Think of n as HUGE

• **Two computers:** Alice and Bob
 - Alice *only* knows x, Bob *only* knows y

• **Goal:** Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We *only* care about the number of bits communicated.
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L: \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Theorem: If L has a streaming algorithm using $\leq s$ space, then $cc(f_L)$ is at most $2s + 1$.

Lower bounds on cc ➔ Lower bounds on streaming
Connection to Streaming and DFAs

Let $L \subseteq \{0,1\}^*$

Def. $f_L : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$

for x, y with $|x| = |y|$ as:

$$f_L(x, y) = 1 \iff xy \in L$$

Examples:

$L = \{ x \mid x \text{ has an odd number of } 1s\}$

$\Rightarrow f_L(x, y) = \text{PARITY}(x,y) \text{ has } \Theta(1) \text{ comm. compl.}$

$L = \{ x \mid x \text{ has more } 1\text{s than } 0\text{s} \}$

$\Rightarrow f_L(x, y) = \text{MAJORITY}(x,y) \text{ has } \Theta(\log n) \text{ comm. compl.}$

$L = \{ xx \mid x \in \{0,1\}^* \}$

$\Rightarrow f_L(x, y) = \text{EQUALS}(x,y) \text{ has } \Theta(n) \text{ comm. compl.}$
Theorem: \(L \) is decidable iff both \(L \) and \(\neg L \) are recognizable

\(\begin{align*}
\text{L is decidable} & \quad \text{“easy”} \\
\text{L is recognizable} & \quad \text{“not so easy”}
\end{align*} \)
Theorem: L is recognizable \iff There is a TM V halting on all inputs such that
\[L = \{ x \mid \exists y \in \Sigma^* [V(x, y) \text{ accepts}] \} \]
Are these equally powerful???
NO for Turing Machines
Decidable = Recognizable ∩ Co-recognizable

Church-Turing Thesis
\[A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \} \]

Thm. \(A_{TM} \) is undecidable. (proof by contradiction)

Suppose \(H \) is a machine that decides \(A_{TM} \)

\[
H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Define a new TM \(D \) with the following spec:

\(D(M) \): Run \(H \) on \((M,M) \) and output the opposite of \(H \)

\[
D(D) = \begin{cases}
\text{Reject} & \text{if } D \text{ accepts } D \\
\text{Accept} & \text{if } D \text{ does not accept } D
\end{cases}
\]

Contradiction!
Mapping Reductions

$f : \Sigma^* \rightarrow \Sigma^*$ is a computable function if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w.

A language A is *mapping reducible* to language B, written as $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that for every $w \in \Sigma^*$,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B.
Rice’s Theorem: *Program Analysis is Hard*

Let \(P : \{\text{Turing Machines}\} \rightarrow \{0,1\} \).
(Think of 0=false, 1=true) Suppose \(P \) satisfies:

1. **(Nontrivial)** There are TMs \(M_1 \) and \(M_0 \) where \(P(M_1) = 1 \) and \(P(M_0) = 0 \)

2. **(Semantic)** For all TMs \(M \) and \(M' \),
 If \(L(M) = L(M') \) then \(P(M) = P(M') \)

Then, \(\{M \mid P(M) = 1\} \) is undecidable.
In other words, function \(P \) is undecidable.

A Huge Hammer for Undecidability!
Recursion Thm: For every computable t, there is a computable r such that $r(w) = t(R,w)$ where R is a description of a TM computing r

Moral: Suppose we can design a TM T of the form “On input (x,w), do bla bla with x, do bla bla bla bla with w, etc. etc.”

We can always find a TM R with the behavior: “On input w, do bla bla bla with code of R, do bla bla bla bla with w, etc. etc.”

We can use the operation: “Obtain your own description” in Turing machine pseudocode!
Limitations on Mathematics

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete:
There are mathematical statements in F that are true but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Kolmogorov Complexity

Def: The *shortest description of* x, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that M on w halts with only x on its tape.

Def: The *Kolmogorov complexity of* x, $K(x)$, is $|d(x)|$.

COMPRESS = $\{(x,c) \mid K(x) \leq c\}$ is undecidable (but is recognizable)
-Time Complexity

Definition:

\[
\text{TIME}(t(n)) = \{ L' \mid \text{there is a Turing machine } M \text{ with time complexity } O(t(n)) \text{ so that } L' = L(M) \} \\
= \{ L' \mid L' \text{ is a language decided by a Turing machine with } \leq c t(n) + c \text{ running time} \}
\]

The Time Hierarchy Theorem

Intuition: The more computing time you have, the more problems you can solve.

Theorem: For all “reasonable” \(f, g : \mathbb{N} \rightarrow \mathbb{N} \) where for all \(n \), \(g(n) > n^2 f(n)^2 \), \(\text{TIME}(f(n)) \not\subseteq \text{TIME}(g(n)) \)
Deterministic Poly-Time Computation

Non-Deterministic Poly-Time Computation

"easy"
accept or reject

"probably not easy"
accept

Are these equally powerful???
P = NP ????
Theorem: $L \in \text{NP} \iff$ There is a constant k and polynomial-time TM V such that

$$L = \{ x \mid \exists y \in \Sigma^* \ [|y| \leq |x|^k \text{ and } V(x,y) \text{ accepts} \} \}$$

Moral: A language L is in NP if and only if there are polynomial-length ("nifty") proofs for membership in L

Theorem: L is recognizable \iff There is a TM V that halts on all inputs such that

$$L = \{ x \mid \exists y \in \Sigma^* \ [V(x,y) \text{ accepts}] \}$$
Definition: A language B is NP-complete if:

1. $B \in \text{NP}$

2. Every A in NP is poly-time reducible to B
 That is, $A \leq_p B$
 When this is true, we say “B is NP-hard”

NP-complete problems: “probably hard”
3SAT, SAT, CLIQUE, IS, VC, SUBSET-SUM, KNAPSACK, PARTITION, BIN-PACKING, ...
Definition: \(\text{coNP} = \{ L \mid \neg L \in \text{NP} \} \)

What does a coNP problem \(L \) look like?

The instances *not* in \(L \) have *nifty proofs*. Recall we can write any NP problem \(L \) in the form:

\[
L = \{ x \mid \exists y \text{ of poly}(|x|) \text{ length so that } V(x,y) \text{ accepts} \}
\]

\[
\neg L = \{ x \mid \neg \exists y \text{ of poly}(|x|) \text{ length so that } V(x,y) \text{ accepts} \}
\]

\[
= \{ x \mid \forall y \text{ of poly}(|x|) \text{ length, } V(x,y) \text{ rejects} \}
\]

Instead of using an "existentially guessing" (nondeterministic) machine, we can define a "universally verifying" machine!
Complexity Classes With Oracles

Let B be a language.

$P^B = \{ L \mid L \text{ can be decided by some } \text{polynomial-time TM } \text{ with an oracle for } B \}$

$P^{NP} = \text{the class of languages decidable by } \text{some polynomial-time oracle TM with an oracle for some } B \text{ in } NP$

$NP^{NP} = \text{the class of languages decidable by } \text{some nondeterministic polynomial-time oracle TM with an oracle for some } B \text{ in } NP$
NP-complete problems:

SAT, 3SAT, CLIQUE, VC, SUBSET-SUM, ...

coNP-complete problems:

UNSAT, TAUTOLOGY, NOHAMPATH, ...

PSPACE-complete problems:

TQBF, GG

There are also NP^{NP}-complete and $coNP^{NP}$ problems

(but you don’t need to know them for the final!)
Factors: coNP, SAT, FACTORING, MIN-FORMULA.

Classes:
- P
- NP
- coNP
- PNP
- NPNP
- EXPTIME
- coNPNP

Time Hierarchy
Poly-time Reductions
NP Completeness

Oracles:
- PNP
- NPNP
- coNPNP
What’s next?

A few possibilities...

6.046 – Design and Analysis of Algorithms
6.841/18.405 – Advanced Complexity Theory
18.408 – Topics in Theoretical Computer Science
18.416 – Randomized Algorithms
6.875 – Cryptography and Cryptanalysis

Many more! There’s a big group at MIT!
Ask Me Anything!