Lecture 5: Minimizing DFAs
Announcements:

- Pset 2 is up (as of last night)
 - Dylan says: “It’s fire.”
- How was Pset 1?
DEFINITION

DFAs ↔ NFAs

Regular Languages ↔ Regular Expressions
REPRESENTATION OF EVENTS IN NERVE NETS AND FINITE AUTOMATA

S. C. Kleene

RM-704

15 December 1951
Some Languages Are Not Regular:

Limitations on DFAs/NFAs

a.k.a.

“Lower Bounds” on DFAs/NFAs
Minimizing DFAs
Does this DFA have a minimal number of states?

NO
Is this minimal?

How can we tell in general?
DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $A = L(M^*)$.

Furthermore, there is an *efficient algorithm* which, given any DFA M, will output this unique M^*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!
In general, there isn’t a uniquely minimal NFA
Distinguishing states with strings

For a DFA $M = (Q, \Sigma, \delta, q_0, F)$, and $q \in Q$, let M_q be the DFA equal to $(Q, \Sigma, \delta, q, F)$.

Def. $w \in \Sigma^*$ distinguishes states p and q if:

- M_p accepts $w \iff M_q$ rejects w

OR

- M_p rejects w
- M_q accepts w
Distinguishing states with strings

For a DFA \(M = (Q, \Sigma, \delta, q_0, F) \), and \(q \in Q \), let \(M_q \) be the DFA equal to \((Q, \Sigma, \delta, q, F)\).

Def. \(w \in \Sigma^* \) **distinguishes** states \(p \) and \(q \) if: \(M_p \) and \(M_q \) have **different outputs** on input \(w \).

\[
\begin{array}{c|cc}
\text{M} & \text{accept} & \text{reject} \\
\hline
\text{p} & \text{w} & \text{accept} \\
\text{q} & \text{w} & \text{reject} \\
\end{array}
\]

OR

\[
\begin{array}{c|cc}
\text{M} & \text{reject} & \text{accept} \\
\hline
\text{p} & \text{w} & \text{reject} \\
\text{q} & \text{w} & \text{accept} \\
\end{array}
\]
Distinguishing two states

Def. \(w \in \Sigma^* \) *distinguishes* states \(q_1 \) and \(q_2 \) iff

\[M_p \text{ and } M_q \text{ have different outputs on } w \]

I’m in \(q_1 \) or \(q_2 \), but which?
How can I tell?
Distinguishing two states

Def. \(w \in \Sigma^* \) \textit{distinguishes} states \(p \) and \(q \) iff \(M_p \) and \(M_q \) have \textit{different outputs} on \(w \)

Ok, I’m \textit{accepting}! Must have been \(p \)

Ok, I’m \textit{rejecting}! Must have been \(q \)
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Let $M_p = (Q, \Sigma, \delta, p, F)$ and $M_q = (Q, \Sigma, \delta, q, F)$

Definition(s):

State p is **distinguishable** from state q

iff there is a $w \in \Sigma^*$ that distinguishes p and q

iff there is a $w \in \Sigma^*$ so that

M_p accepts $w \iff M_q$ rejects w

State p is **indistinguishable** from state q

iff p is not distinguishable from q

iff for all $w \in \Sigma^*$, M_p accepts $w \iff M_q$ accepts w

Big Idea: Pairs of indistinguishable states are redundant!
Which pairs of states are distinguishable?

Are q_0 and q_1 distinguishable?

The empty string ε distinguishes all final states from all non-final states.
The string 10 distinguishes q_0 and q_3
The string 0 distinguishes q_1 and q_2

In this DFA, all pairs of states are distinguishable!
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation \sim on the states of M:

$p \sim q$ iff p is indistinguishable from q

$p \not\sim q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation

$p \sim p$ (reflexive)

$p \sim q \implies q \sim p$ (symmetric)

$p \sim q$ and $q \sim r \implies p \sim r$ (transitive)

Proof? Just look at the definition! $p \sim q$ means for all w, M_p accepts $w \iff M_q$ accepts w
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Therefore, the relation \sim partitions Q into disjoint equivalence classes

Proposition: \sim is an equivalence relation

$$[q] := \{ p \mid p \sim q \}$$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

1. $L(M) = L(M_{\text{MIN}})$ not reachable from start

2. M_{MIN} has no inaccessible states

3. M_{MIN} is irreducible

for all states $p \neq q$ of M_{MIN}, p and q are distinguishable

Theorem: Every M_{MIN} satisfying 1,2,3 is the unique minimal DFA equivalent to M
Intuition:
States of M_{MIN} = Equivalence classes of states of M

We’ll uncover these equivalent states with a dynamic programming algorithm
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$
2. $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and iteration to find those pairs distinguishable with longer strings
- The pairs of states left over will be indistinguishable
The Table-Filling Algorithm

Input: DFA \(M = (Q, \Sigma, \delta, q_0, F) \)

Output: (1) \(D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \} \)

(2) \(\text{EQUIV}_M = \{ [q] \mid q \in Q \} \)
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$
2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that p accepts and q rejects \Rightarrow mark $p \sim q$
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{(p, q) \mid p, q \in Q \text{ and } p \sim q\}$
2. $EQUIV_M = \{[q] \mid q \in Q\}$

Base Case: For all (p, q) such that $p \text{ accepts and } q \text{ rejects} \Rightarrow \text{mark } p \sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

$\delta (p, \sigma) = p'$ \hspace{1cm} \text{mark } p \sim q$

$\delta (q, \sigma) = q'$

Repeat until no more D’s can be added
Are q_1 and q_2 distinguishable?

Are q_0 and q_1 distinguishable?

Are q_0 and q_2 distinguishable?
Claim: If \((p, q)\) is marked D by the Table-Filling algorithm, then \(p \sim q\)

Proof: Induction on the number of iterations \(n\) in the algorithm when \((p, q)\) is marked D

\(n = 0\): If \((p, q)\) is marked D in the base case, then exactly one of them is final, so \(\varepsilon\) distinguishes \(p\) and \(q\)

I.H. For all \((p', q')\) marked D in the first \(n\) iterations, \(p' \sim q'\)

Suppose \((p, q)\) is marked D in \((n + 1)\)th iteration. To be marked, there must be states \(p', q'\) such that:

1. \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\), for some \(\sigma \in \Sigma\)
2. \((p', q')\) is marked D \(\Rightarrow p' \sim q'\) (by induction)

So there's a \(w\) s.t. \(M_{p'}\) and \(M_{q'}\) have different output on \(w\)

Then, the string \(\sigma w\) distinguishes \(p\) and \(q\)!
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):

Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)

Then there is a string \(w\) such that \(|w| > 0\) and:

\(M_p\) and \(M_q\) have different outputs on \(w\) \(\) (Why is \(|w| > 0\)?)

Of all such bad pairs, let \((p, q)\) be a pair with a \textit{minimum-length} distinguishing string \(w\)
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)
Of all such bad pairs, let \((p, q)\) be a pair with a minimum-length distinguishing string \(w\)
\(M_p\) and \(M_q\) have different outputs on \(w\)

We have \(w = \sigma w'\), for some string \(w'\) and some \(\sigma \in \Sigma\)
Let \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\). \((p',q')\) distinguished by \(w'\)
Then \((p', q')\) is also a bad pair!
But then \((p', q')\) has a SHORTER distinguishing string, \(w'\)
Contradiction!
Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

1. Remove all inaccessible states from M

2. Run Table-Filling algorithm on M to get:
 $EQUIV_M := \{ [q] \mid q \text{ is an accessible state of } M \}$

3. Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0\text{MIN}}, F_{\text{MIN}})$

 $Q_{\text{MIN}} = EQUIV_M$, $q_{0\text{MIN}} = [q_0]$, $F_{\text{MIN}} = \{ [q] \mid q \in F \}$

 $\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$ \hspace{1cm} (well-defined??)

Claim: $L(M_{\text{MIN}}) = L(M)$
The MINIMIZE Algorithm in Pictures

1. Remove all inaccessible states
The MINIMIZE Algorithm in Pictures

2. Run Table-Filling to get equiv classes

\[[q] := \{ p \mid p \sim q \} \]
The MINIMIZE Algorithm in Pictures

3. Define M_{MIN} with states = equiv classes

States of $M_{\text{MIN}} = \text{Equivalence classes of states of M}$
Thm: M_{MIN} is the *unique* minimal DFA equivalent to M.

Claim: Let M' be any DFA where $L(M') = L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an *isomorphism* between M' and M_{MIN}.

Suppose we have proved the **Claim** is true. Assuming the **Claim** we can prove the **Thm**:

Proof of Thm: Let M' be any minimal DFA for M. Since M' is minimal, M' has no inaccessible states and is irreducible (*otherwise, we could make M' smaller!*).

By the **Claim**, there is an isomorphism between M' and the DFA M_{MIN} that is output by MINIMIZE(M). That is, M_{MIN} is isomorphic to every minimal M'.

40
Thm: M_{MIN} is the unique minimal DFA equivalent to M.

Claim: Let M' be any DFA where $L(M')=L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an isomorphism between M' and M_{MIN}.

Proof: We recursively construct a map from the states of M_{MIN} to the states of M'.

Base Case: $q_{0_{\text{MIN}}} \mapsto q_{0'}$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$
Base Case: \(q_{0_{MIN}} \mapsto q_0' \)

Recursive Step: If \(p \mapsto p' \)

\[
\begin{align*}
\sigma & \downarrow \quad \sigma & \downarrow \\
q & \mapsto q' & q' & \mapsto q'
\end{align*}
\]

Then \(q \mapsto q' \)
Base Case: \(q_{0_{\text{MIN}}} \mapsto q_0' \)

Recursive Step: If \(p \mapsto p' \)

\[
\begin{array}{c}
\sigma \\
\downarrow \\
q
\end{array}
\quad \begin{array}{c}
\sigma \\
\downarrow \\
q'
\end{array}
\quad \text{Then } q \mapsto q'
\]

Claim: Map is an isomorphism. Need to prove:

- The map is defined everywhere
- The map is well defined
- The map is a bijection (one-to-one and onto)
- The map preserves all transitions:
 If \(p \mapsto p' \) then \(\delta_{\text{MIN}}(p, \sigma) \mapsto \delta'(p', \sigma) \)

(this follows from the definition of the map!)
Base Case: $q_0 \xrightarrow{\text{MIN}} q_0'$

Recursive Step: If $p \xrightarrow{\sigma} p'$

Then $q \xrightarrow{\sigma} q'$

Let q' be the state of M' after reading in w.

Claim: $q \xrightarrow{\text{MIN}} q'$ (proof by induction on $|w|$)
Want to show: For all states q' of M' there is a state q of M_{MIN} such that $q \mapsto q'$

For every q' in M' there is a string w such that M' reaches state q' after reading in w

Let q be the state of M_{MIN} after reading in w.

Claim: $q \mapsto q'$ (proof by induction on $|w|$)
Base Case: $q_{0\text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$

The map is well defined: $\forall q \exists! q'$ such that $q \mapsto q'$

Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

We show that q' and q'' are *indistinguishable*, so it must be that $q' = q''$ (why?)
Suppose there are states q' and q'' such that $q \mapsto q'$ and $q \mapsto q''$

Assume for contradiction q' and q'' are distinguishable.

\[M_{\text{MIN}} \quad \text{Contradiction!} \]
Map is 1-to-1: \(\forall p \neq q, p \mapsto q' \) and \(q \mapsto q'' \implies q' \neq q'' \)

Proof by contradiction. Suppose there are states \(p \neq q \) such that \(p \mapsto q' \) and \(q \mapsto q' \)
If \(p \neq q \), then \(p \) and \(q \) are distinguishable
How can we prove that two regular expressions are equivalent?