Lecture 6:
The Myhill-Nerode Theorem and Streaming Algorithms
DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $A = L(M^*)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M^*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!
How could we show whether two regular expressions are equivalent?

Claim: There is an algorithm which given regular expressions R and R', determines whether $L(R) = L(R')$.
The Myhill-Nerode Theorem:

For every language
Either there’s a DFA for it
or there’s a set of strings that “trick”
every possible DFA
In DFA Minimization, we defined an equivalence relation between states of a DFA. We can also define a similar equivalence relation over *strings* in a *language*:

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

Def. x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_L ("L-equivalent") is an equivalence relation

Proof is easy! Just as in previous lecture.
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

Suppose we partition all strings in Σ^* into their equivalence classes under \equiv_L

The Myhill-Nerode Theorem:

If the number of parts is finite \rightarrow can construct a DFA!
If the number of parts is infinite \rightarrow there is no DFA!
Mapping strings to DFA states

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we define a function $\Delta : \Sigma^* \rightarrow Q$ as follows:

$\Delta(\epsilon) = q_0$

$\Delta(\sigma) = \delta(q_0, \sigma)$

$\Delta(\sigma_1 \cdots \sigma_{k+1}) = \delta(\Delta(\sigma_1 \cdots \sigma_k), \sigma_{k+1})$

$\Delta(w) = the \ state \ of \ M \ reached \ after \ reading \ in \ w$

Note: $\Delta(w) \in F \iff M$ accepts w
The Myhill-Nerode Theorem:
A language L is regular if and only if the number of equivalence classes of \equiv_L is finite.

Proof (\Rightarrow) Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA for L.

Define the relation: $x \approx_M y \iff \Delta(x) = \Delta(y)$

Claim: \approx_M is an equivalence relation with $|Q|$ classes

Claim: If $x \approx_M y$ then $x \equiv_L y$

Proof: $x \approx_M y$ implies for all $z \in \Sigma^*$, xz and yz reach the same state of M. So $xz \in L \iff yz \in L$, and $x \equiv_L y$

Corollary: The number of \equiv_L classes is at most the number of \approx_M classes (which is $|Q|$)
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$
$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:
A language L is regular if and only if
the number of equivalence classes of \equiv_L is finite.

Claim: If $x \approx_M y$ then $x \equiv_L y$
Corollary: The number of \equiv_L classes is at most
the number of \approx_M classes (which is $|Q|$)
Proof: Let $S = \{x_1, x_2, \ldots\}$ be distinct strings, one
from every \equiv_L-equiv class. $|S| = \text{number of } \equiv_L \text{ classes.}$
Thus for all $i \neq j, x_i \not\equiv_L x_j$. By the claim: $x_i \not\approx_M x_j$.
So each $x_i \in S$ is in a distinct \approx_M equivalence class.
\Rightarrow The number of \approx_M classes is at least $|S|$.
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

(\iff) If the number of equivalence classes of \equiv_L is k
then there is a DFA for L with k states

Idea: Build a DFA whose states are
the equivalence classes of \equiv_L

Define a DFA M where:

Q is the set of equivalence classes of \equiv_L

$q_0 = [\varepsilon] = \{y \mid y \equiv_L \varepsilon\}$

for all $x \in \Sigma^*$, $\delta([x], \sigma) = [x \sigma]$ (well-defined??)

$F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$
Define a DFA M where:

Q is the set of equivalence classes of \equiv_L

$q_0 = [\varepsilon] = \{y \mid y \equiv_L \varepsilon\}$

$\delta([x], \sigma) = [x \sigma]$ (well-defined??)

$F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$

Proof: Let M run on $x = x_1 \cdots x_n \in \Sigma^*$, for $x_i \in \Sigma$. M starts in state $[\varepsilon]$, reads x_1 and moves to $[x_1]$, reads x_2 and moves to $[x_1 x_2]$, ..., and ends in state $[x_1 \cdots x_n]$.

So, M accepts $x_1 \cdots x_n \iff [x_1 \cdots x_n] \in F$

By definition of the set F, $[x_1 \cdots x_n] \in F \iff x \in L$
The Myhill-Nerode Theorem gives us a *new way* to prove that a given language is not regular:

L is not regular

if and only if

there are infinitely many equiv. classes of \(\equiv_L \)

L is not regular

if and only if

There are infinitely many strings \(w_1, w_2, \ldots \) so that for all \(w_i \neq w_j \), \(w_i \) and \(w_j \) are distinguishable to \(L \):

there is a \(z \in \Sigma^* \) such that

exactly one of \(w_i z \) and \(w_j z \) is in \(L \)
L is not regular \textit{if and only if} there are infinitely many strings w_1, w_2, \ldots so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L.

To prove that L is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!
Using Myhill-Nerode to prove non-regularity:

Theorem: \(L = \{0^n 1^n \mid n \geq 0\} \) is not regular.

Proof: Consider the infinite set of strings
\(S = \{0, 00, 000, \ldots, 0^n, \ldots\} \)

Claim: \(S \) is a distinguishing set for \(L \).

Take any pair \((0^m, 0^n)\) of distinct strings in \(S \)
Let \(z = 1^m \)

Then \(0^m 1^m \) is in \(L \), but \(0^n 1^m \) is not in \(L \)

So all pairs of strings in \(S \) are distinguishable to \(L \)

Hence there are infinitely many equivalence classes of \(\equiv_L \), and \(L \) is not regular!
Streaming Algorithms
Streaming Algorithms
Streaming Algorithms

Have three components

Initialize:
<variables and their assignments>

When next symbol seen is σ:
<pseudocode using σ and vars>

When stream stops (end of string):
<accept/reject condition on vars>
(or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if
A accepts the strings in L, rejects strings not in L
Streaming Algorithms

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms could output more than one bit

2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings

3. Could also make multiple passes over the input, could be randomized

Can recognize non-regular languages!
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Initialize: C := 0 and B := 0

When next symbol seen is \(\sigma \):
- If (C = 0) then B := \(\sigma \), C := 1
- If (C \neq 0) and (B = \(\sigma \)) then C := C + 1
- If (C \neq 0) and (B \neq \(\sigma \)) then C := C – 1

When stream stops:
- accept if B=1 and C > 0, else reject

B = the majority bit
C = how many more times B appears

On all strings of length n, the algorithm uses \((\log_2 n) + O(1)\) bits of space (*to store B and C*)
How to think of memory usage

The program is not considered as part of the memory.

Space usage of A: $S_A(n) = \text{maximum \# of bits needed to store vars in } A$, over all inputs of length up to n.

Initialize: $C := 0$ and $B := 0$
When the next symbol x is read, if $C = 0$ then $B := x$, $C := 1$
if $(C > 0)$ and $(B = x)$ then $C := C + 1$
if $(C > 0)$ and $(B \neq x)$ then $C := C - 1$
When the stream stops, accept if $B = 1$ and $C > 0$, else reject.
\[L = \{0^n1^n \mid n \geq 0\} \]

Initialize: \(z := 0, \, s := \text{false}, \, \text{fail} := \text{false} \)

When next symbol seen is \(\sigma \):
- If (not \(s \)) and (\(\sigma = 0 \)) then \(z := z + 1 \)
- If (not \(s \)) and (\(\sigma = 1 \)) then \(s := \text{true}; \, z := z - 1 \)
- If (\(s \)) and (\(\sigma = 0 \)) then \(\text{fail} := \text{true} \)
- If (\(s \)) and (\(\sigma = 1 \)) then \(z := z - 1 \)

When stream stops:

\textit{accept} if and only if (not \(\text{fail} \)) and (\(z = 0 \))

\(z \) = how many more times \(0 \) appears than \(1 \)

\(s \) = “Started reading 1s yet?”

\(\text{fail} \) = “Reject for certain?”

On all strings of length \(n \), uses \((\log_2 n) + O(1)\) space
DFAs and Streaming

Thm: Let L' be recognized by DFA M with $\leq 2^p$ states. Then L' is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Define algorithm A as follows.

Initialize: Encode the start state of M in memory.
When next symbol seen is σ:
Update state of M using M’s transition function
When stream stops:
Accept if current state of M is final, else reject
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Let L' be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n.

Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

That is, for all streaming algorithms A using $S(n)$ space, there’s a DFA M of $< 2^{S(n)+1}$ states such that A and M agree on all strings of length up to n.
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Let L' be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

Proof Idea: States of $M = \text{all } 2^{S(n)+1} - 1 \text{ possible memory configurations of } A$, over strings of length up to n
Start state of $M = \text{Initialized memory of } A$
Transition function = Mimic how A updates its memory
Final states of $M = \text{Subset of memory configurations in which } A \text{ would accept, if the string ended there}$
Example: \(L = \{ x \mid x \text{ has more } 1's \text{ than } 0's \} \)

Initialize: \(C := 0 \) and \(B := 0 \)
When the next symbol \(\sigma \) is read,
If \((C = 0) \) then \(B := \sigma, C := 1 \)
If \((C \neq 0) \) and \((B = \sigma) \) then \(C := C + 1 \)
If \((C \neq 0) \) and \((B \neq \sigma) \) then \(C := C - 1 \)
When the stream stops,
 \textit{accept} if \(B=1 \) and \(C > 0 \), else \textit{reject}

Example: A 6-state DFA that agrees with \(L \) on all strings of length \(\leq 3 \)
Theorem: Let L' be computable by streaming algorithm A using $S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$.

Corollary: Suppose every DFA M such that $L'_n = L(M)_n$ requires at least $Q(n) := 2^{S(n)+1}$ states. Then L' is not computable by a streaming algorithm using $S(n) = \log_2(Q(n)/2) = \log_2(Q(n))-1$ space! That is, L' requires at least $\log_2(Q(n))$ space.
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Is there a streaming algorithm for L using much \textit{less than} \((\log_2 n)\) space?

\textbf{Theorem:} Every streaming algorithm for L needs at least \((\log_2 n)\) bits of space over all strings of length up to \(n\)

We will use:
\begin{itemize}
 \item Myhill-Nerode Theorem
 \item The connection between DFAs and streaming
\end{itemize}
\[L = \{ x \mid x \text{ has more 1’s than 0’s} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n)\) bits of space

Proof Idea: Let \(n \) be even, and \(L_n = \{ x \in L \mid |x| \leq n \} \)

We will give a set \(T_n \) of \(n \) strings such that each pair in \(T_n \) is \textit{distinguishable} to \(L_n \)

By the Myhill-Nerode Thm
\[\Rightarrow \text{Every DFA for } L_n \text{ needs at least } n \text{ states} \]
\[\Rightarrow \text{Every streaming algorithm for } L \text{ needs at least } (\log n) \text{ space on strings of length } \leq n \]
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)\) bits of space.

Suppose we partition all strings into their equivalence classes under \(\equiv_{L_n}\).

Construct \(T_n\),

The number of states in a DFA recognizing \(L_n\) is \textit{at least} the number of equivalence classes under \(\equiv_{L_n}\).
\[L = \{ x \mid x \text{ has more } 1\text{'s than } 0\text{'s} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n) \) bits of space

Proof (Slide 1): Let \(T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\} \)
Claim: \(T_n \) is distinguishable to \(L_n \)
Case 1: Let \(x=0^a \) and \(y=1^b \) be any strings from \(T_n \)
Claim: \(z = \varepsilon \) distinguishes \(x \) and \(y \) in \(L_n \)

\(xz \) has more 0s than 1s \(\Rightarrow xz \not\in L_n \)
\(yz \) has length \(\leq n \) and more 1s than 0s \(\Rightarrow yz \in L_n \)
So the string \(z \) distinguishes \(x \) and \(y \), and \(x \not\equiv_{L_n} y \)
$L = \{x \mid x \text{ has more 1's than 0's}\}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)$ bits of space.

Proof (Slide 2): Let $T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\}$

Claim: T_n is distinguishable to L_n

Case 2: Let $x = 0^a$ and $y = 0^b$ be from T_n, with $a < b$

Claim: $z = 1^b$ distinguishes x and y in L_n

xz has length $\leq n$, a 0's and b 1's $\Rightarrow xz \in L_n$

yz has b zeroes and b ones $\Rightarrow yz \notin L_n$

So the string z distinguishes x and y, and $x \not\equiv_{L_n} y$
L = \{x \mid x \text{ has more 1's than 0's}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)\) bits of space

Proof (Slide 3): Let \(T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\}\)
Claim: \(T_n\) is distinguishable to \(L_n\)
Case 3: Let \(x=1^a\) and \(y=1^b\) be from \(T_n\), with \(a < b\)
Claim: \(z = 0^a\) distinguishes \(x\) and \(y\) in \(L_n\)

\(xz\) has a ones and a zeroes \(\Rightarrow xz \notin L_n\)
\(yz\) has length \(\leq n\), a zeroes and \(b\) ones \(\Rightarrow yz \in L_n\)
So the string \(z\) distinguishes \(x\) and \(y\), and \(x \not\equiv_{L_n} y\)
$L = \{ x \mid x \text{ has more 1’s than 0’s} \}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)$ bits of space

Proof (Slide 4): Let $T_n = \{ 0^i, 1^i \mid i = 1, ..., n/2 \}$
All pairs of strings in T_n are distinguishable to L_n
⇒ There are at least $|T_n|$ equiv classes of \equiv_{L_n}
By the Myhill-Nerode Theorem:
⇒ All DFAs recognizing L_n need $\geq |T_n|$ states
⇒ Every streaming algorithm for L
needs at least $S(n) = (\log_2 |T_n|)$ bits of space.
Finally, note $|T_n| = n$ and we’re done!