Lecture 6:
The Myhill-Nerode Theorem and Streaming Algorithms
DFA Minimization Theorem:

For every regular language A, there is a unique (up to re-labeling of the states) minimal-state DFA M^* such that $A = L(M^*)$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M^*.

If such algorithms existed for more general models of computation, that would be an engineering breakthrough!!
How could we show whether two regular expressions are equivalent?

Claim: There is an algorithm which given regular expressions R and R', determines whether $L(R) = L(R')$.
The Myhill-Nerode Theorem:

For every language:

Either there’s a DFA for it

or there’s a set of strings that “trick” every possible DFA
In DFA Minimization, we defined an equivalence relation between states of a DFA. We can also define a similar equivalence relation over *strings* in a *language*:

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

Def. x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_L ("L-equivalent") is an equivalence relation

Proof is easy! Just as in previous lecture.
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

Suppose we partition all strings in Σ^* into their equivalence classes under \equiv_L

The Myhill-Nerode Theorem:

If the number of parts is finite \rightarrow can construct a DFA!
If the number of parts is infinite \rightarrow there is no DFA!
Mapping strings to DFA states

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we define a function $\Delta : \Sigma^* \rightarrow Q$ as follows:

$\Delta(\epsilon) = q_0$

$\Delta(\sigma) = \delta(q_0, \sigma)$

$\Delta(\sigma_1 \cdots \sigma_{k+1}) = \delta(\Delta(\sigma_1 \cdots \sigma_k), \sigma_{k+1})$

$\Delta(w) = \text{the state of } M \text{ reached after reading in } w$

Note: $\Delta(w) \in F \iff M \text{ accepts } w$
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:

A language L is regular if and only if the number of equivalence classes of \equiv_L is finite.

Proof (\Rightarrow) Let $M = (Q, \Sigma, \delta, q_0, F)$ be any DFA for L.

Define the relation: $x \approx_M y \iff \Delta(x) = \Delta(y)$

Claim: \approx_M is an equivalence relation with $|Q|$ classes

Claim: If $x \approx_M y$ then $x \equiv_L y$

Proof: $x \approx_M y$ implies for all $z \in \Sigma^*$, xz and yz reach the same state of M. So $xz \in L \iff yz \in L$, and $x \equiv_L y$

Corollary: The number of \equiv_L classes is at most the number of \approx_M classes (which is $|Q|$)
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \iff yz \in L$

The Myhill-Nerode Theorem:
A language L is regular *if and only if* the number of equivalence classes of \equiv_L is *finite.*

Claim: If $x \approx_M y$ then $x \equiv_L y$

Corollary: The number of \equiv_L classes is *at most* the number of \approx_M classes (which is $|Q|$)

Proof: Let $S = \{x_1, x_2, \ldots\}$ be distinct strings, one from every \equiv_L-equiv class. $|S| = \text{number of } \equiv_L \text{ classes.}$

Thus for all $i \neq j, x_i \not\equiv_L x_j$. By the claim: $x_i \approx_M x_j$.

So each $x_i \in S$ is in a distinct \approx_M equivalence class.

\Rightarrow The number of \approx_M classes is *at least* $|S|.$
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ means: for all $z \in \Sigma^*$, $xz \in L \Leftrightarrow yz \in L$

(\Leftarrow) If the number of equivalence classes of \equiv_L is k
then there is a DFA for L with k states

Idea: Build a DFA whose states are the equivalence classes of \equiv_L

Define a DFA M where:

- Q is the set of equivalence classes of \equiv_L
- $q_0 = [\varepsilon] = \{ y | y \equiv_L \varepsilon \}$
- for all $x \in \Sigma^*$, $\delta([x], \sigma) = [x \sigma]$ \hspace{1cm} (well-defined??)
- $F = \{ [x] | x \in L \}$

Claim: M accepts x if and only if $x \in L$
Define a DFA M where:

- Q is the set of equivalence classes of \equiv_L
- $q_0 = [\varepsilon] = \{y | y \equiv_L \varepsilon\}$
- $\delta([x], \sigma) = [x \sigma]$ (well-defined??)
- $F = \{[x] | x \in L\}$

Claim: M accepts x if and only if $x \in L$

Proof: Let M run on $x = x_1 \cdots x_n \in \Sigma^*$, for $x_i \in \Sigma$. M starts in state $[\varepsilon]$, reads x_1 and moves to $[x_1]$, reads x_2 and moves to $[x_1 x_2]$, ..., and ends in state $[x_1 \cdots x_n]$.

So, M accepts $x_1 \cdots x_n \iff [x_1 \cdots x_n] \in F$

By definition of the set F, $[x_1 \cdots x_n] \in F \iff x \in L$
The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:

L is not regular if and only if there are infinitely many equiv. classes of \equiv_L

L is not regular if and only if there are infinitely many strings w_1, w_2, \ldots so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L: there is a $z \in \Sigma^*$ such that exactly one of w_iz and w_jz is in L
L is not regular if and only if
There are infinitely many strings w_1, w_2, \ldots so that for all $w_i \neq w_j$, w_i and w_j are distinguishable to L.

To prove that L is regular, we have to show that a special finite object (DFA/NFA/regex) exists.

To prove that L is not regular, it is sufficient to show that a special infinite set of strings exists!

We can prove the nonexistence of a DFA/NFA/regex by proving the existence of this special string set!
Using **Myhill-Nerode** to prove non-regularity:

Theorem: $L = \{0^n 1^n \mid n \geq 0\}$ is not regular.

Proof: Consider the infinite set of strings

$$S = \{0, 00, 000, \ldots, 0^n, \ldots\}$$

Claim: S is a distinguishing set for L.

Take any pair $(0^m, 0^n)$ of distinct strings in S

Let $z = 1^m$

Then $0^m 1^m$ is in L, but $0^n 1^m$ is *not* in L

So all pairs of strings in S are distinguishable to L

Hence there are infinitely many equivalence classes of \equiv_L, and L is not regular!
Streaming Algorithms
Streaming Algorithms

Have three components

Initialize:
 <variables and their assignments>

When next symbol seen is σ:
 <pseudocode using σ and vars>

When stream stops (end of string):
 <accept/reject condition on vars>
 (or: <pseudocode for output>)

Algorithm A computes $L \subseteq \Sigma^*$ if

A accepts the strings in L, rejects strings not in L
Streaming Algorithms

Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms could output more than one bit
2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings
3. Could also make multiple passes over the input, could be randomized

Can recognize non-regular languages!
L = \{x \mid x\text{ has more }1\text{'s than }0\text{'s}\}

Initialize: C := 0 and B := 0

When next symbol seen is \(\sigma\):

- If (C = 0) then B := \(\sigma\), C := 1
- If (C \neq 0) and (B = \(\sigma\)) then C := C + 1
- If (C \neq 0) and (B \neq \(\sigma\)) then C := C – 1

When stream stops:

- accept if B=1 and C > 0, else reject

B = the majority bit

C = how many more times B appears

On all strings of length n, the algorithm uses \((\log_2 n)+O(1)\) bits of space (to store B and C)
How to think of memory usage

The program is *not considered* as part of the memory

Space usage of A:

$$S(n) = \text{maximum \# of bits needed to store vars in A, over all inputs of length up to } n$$
\[L = \{0^n1^n \mid n \geq 0\} \]

Initialize: \(z := 0, s := \text{false}, \text{fail} := \text{false} \)

When next symbol seen is \(\sigma \):

1. If (not \(s \)) and (\(\sigma = 0 \)) then \(z := z + 1 \)
2. If (not \(s \)) and (\(\sigma = 1 \)) then \(s := \text{true}; z := z - 1 \)
3. If (\(s \)) and (\(\sigma = 0 \)) then \(\text{fail} := \text{true} \)
4. If (\(s \)) and (\(\sigma = 1 \)) then \(z := z - 1 \)

When stream stops:

\textit{accept} if and only if (not \text{fail}) and (\(z = 0 \))

\(z \) = how many more times 0 appears than 1
\(s \) = “Started reading 1s yet?”
\(\text{fail} \) = “Reject for certain?”

On all strings of length \(n \), uses \((\log_2 n) + O(1)\) space
DFAs and Streaming

Thm: Let \(L' \) be recognized by DFA \(M \) with \(\leq 2^p \) states. Then \(L' \) is computable by a streaming algorithm \(A \) using \(\leq p \) bits of space.

Proof Idea: Define algorithm \(A \) as follows.

Initialize: Encode the *start state of \(M \)* in memory.

When next symbol seen is \(\sigma \):

Update state of \(M \) using \(M \)'s transition function

When stream stops:

Accept if current state of \(M \) is final, else reject
DFAs and Streaming

For any $L \subseteq \Sigma^*$ define $L_n = \{ x \in L \mid |x| \leq n \}$

Theorem: Let L' be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n.
Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

That is, for all streaming algorithms A using $S(n)$ space, there’s a DFA M of $< 2^{S(n)+1}$ states such that A and M agree on all strings of length up to n.
Theorem: Let L' be computable by streaming algorithm A using $\leq S(n)$ bits of space on all strings of length up to n. Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$

Proof Idea: States of $M = \text{all } 2^{S(n)+1} - 1 \text{ possible memory configurations of } A, \text{ over strings of length up to } n$
Start state of $M = \text{Initialized memory of } A$
Transition function = Mimic how A updates its memory
Final states of $M = \text{Subset of memory configurations in which } A \text{ would accept, if the string ended there}$

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$
Initialize: $C := 0$ and $B := 0$

When the next symbol σ is read,
If $(C = 0)$ then $B := \sigma$, $C := 1$
If $(C \neq 0)$ and $(B = \sigma)$ then $C := C + 1$
If $(C \neq 0)$ and $(B \neq \sigma)$ then $C := C - 1$

When the stream stops,
accept if $B=1$ and $C > 0$, else reject

Example: $L = \{x \mid x$ has more 1's than 0's$\}$

Example: A 6-state DFA that agrees with L on all strings of length ≤ 3
Streaming Lower Bounds via DFAs

For any $L \subseteq \Sigma^*$ define $L_n = \{x \in L \mid |x| \leq n\}$

Theorem: Let L' be computable by streaming algorithm A using $S(n)$ bits of space on all strings of length up to n.
Then for all n, there is a DFA M with $< 2^{S(n)+1}$ states such that $L'_n = L(M)_n$.

Corollary: Suppose every DFA M such that $L'_n = L(M)_n$ requires at least $Q(n) := 2^{S(n)+1}$ states. Then L' is not computable by a streaming algorithm using $S(n) = \log_2(Q(n)/2) = \log_2(Q(n))-1$ space! That is, L' requires at least $\log_2(Q(n))$ space.
L = \{x | x \text{ has more 1’s than 0’s}\}

Is there a streaming algorithm for L using much \textit{less than} \((\log_2 n)\) space?

\textbf{Theorem:} Every streaming algorithm for L needs at least \((\log_2 n)\) bits of space over all strings of length up to n.

We will use:

• Myhill-Nerode Theorem
• The connection between DFAs and streaming
L = \{ x \mid x \text{ has more 1's than 0's}\}

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)$ bits of space.

Proof Idea: Let n be even, and $L_n = \{ x \in L \mid |x| \leq n \}$

We will give a set T_n of n strings such that each pair in T_n is distinguishable to L_n.

By the Myhill-Nerode Thm

- Every DFA for L_n needs at least n states.
- Every streaming algorithm for L needs at least $(\log n)$ space on strings of length $\leq n$.

$L = \{x \mid x \text{ has more 1's than 0's}\}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)$ bits of space

Suppose we partition all strings into their equivalence classes under \equiv_{L_n}

Construct T_n

The number of states in a DFA recognizing L_n is at least the number of equivalence classes under \equiv_{L_n}
L = \{x \mid x \text{ has more 1's than 0's}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)\) bits of space

Proof (Slide 1): Let \(T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\}\)

Claim: \(T_n\) is distinguishable to \(L_n\)

Case 1: Let \(x = 0^a\) and \(y = 1^b\) be any strings from \(T_n\)

Claim: \(z = \varepsilon\) distinguishes \(x\) and \(y\) in \(L_n\)

\(xz\) has more 0s than 1s \(\Rightarrow xz \not\in L_n\)

\(yz\) has length \(\leq n\) and more 1s than 0s \(\Rightarrow yz \in L_n\)

So the string \(z\) distinguishes \(x\) and \(y\), and \(x \not\sim_{L_n} y\)
\[L = \{ x \mid x \text{ has more 1's than 0's} \} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n)\) bits of space

Proof (Slide 2): Let \(T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\} \)

Claim: \(T_n \) is distinguishable to \(L_n \)

Case 2: Let \(x=0^a \) and \(y=0^b \) be from \(T_n \), with \(a < b \)

Claim: \(z = 1^b \) distinguishes \(x \) and \(y \) in \(L_n \)

\(xz \) has length \(\leq n \), \(a \) 0's and \(b \) 1's \(\Rightarrow xz \in L_n \)

\(yz \) has \(b \) zeroes and \(b \) ones \(\Rightarrow yz \notin L_n \)

So the string \(z \) distinguishes \(x \) and \(y \), and \(x \not\equiv_{L_n} y \)
$L = \{ x \mid x \text{ has more } 1\text{'s than } 0\text{'s} \}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)$ bits of space

Proof (Slide 3): Let $T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\}$

Claim: T_n is *distinguishable* to L_n

Case 3: Let $x = 1^a$ and $y = 1^b$ be from T_n, with $a < b$

Claim: $z = 0^a$ distinguishes x and y in L_n

xz has a ones and a zeroes $\Rightarrow xz \notin L_n$

yz has length $\leq n$, a zeroes and b ones $\Rightarrow yz \in L_n$

So the string z distinguishes x and y, and $x \not\equiv_{L_n} y$
Let $L = \{x \mid x \text{ has more 1's than 0's}\}$

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)$ bits of space

Proof (Slide 4): Let $T_n = \{0^i, 1^i \mid i = 1, \ldots, n/2\}$

All pairs of strings in T_n are distinguishable to L_n

\Rightarrow There are at least $|T_n|$ equiv classes of \equiv_{L_n}

By the Myhill-Nerode Theorem:

\Rightarrow All DFAs recognizing L_n need $\geq |T_n|$ states

\Rightarrow Every streaming algorithm for L needs at least $S(n) = (\log_2 |T_n|)$ bits of space.

Finally, note $|T_n| = n$ and we’re done!