Lecture 10: Undecidability, Unrecognizability, and Reductions
Next Thursday (3/19)

Your Midterm: 2:35-3:55pm, 32-144 + 155

No pset this week!

Just an optional (not graded) practice midterm

Solutions to practice midterm will come out with the practice midterm. Also all HW solutions.

When you see the practice midterm...

DON’T PANIC!

Practice midterm will be harder than midterm
Next Thursday (3/19)

Your Midterm: 2:35-3:55pm, 32-144 + 155

No pset this week!
Just an optional (not graded) practice midterm

FAQ: What material is on the midterm?
Everything up to Thursday (Lectures 1-11)

FAQ: Can I bring notes?
Yes, one single-sided sheet of notes, US letter paper
A TM M *recognizes* a language L if M *accepts* exactly those strings in L.

A language L is *recognizable* (a.k.a. recursively enumerable) if some TM recognizes L.

A TM M *decides* a language L if M *accepts* all strings in L and rejects all strings not in L.

A language L is *decidable* (a.k.a. recursive) if some TM decides L.

$L(M) := \text{set of strings } M \text{ accepts}$
Thm: There are *unrecognizable* languages

Assuming the Church-Turing Thesis, this means there are problems that *no* computing device will *ever* solve!

The proof will be very *NON-CONSTRUCTIVE*: We will prove there is no *onto* function from the set of all Turing Machines to the set of all languages over \{0,1\}. (But the proof will work for any *finite* \(\Sigma\))

Therefore, the function mapping every TM M to its language \(L(M)\), *fails to cover all possible languages*
“There are more problems to solve than there are programs to solve them.”

 Languages over \{0,1\}
Let L be any set and 2^L be the power set of L.

Theorem: There is no onto function from L to 2^L.

Proof: Let $f : L \to 2^L$ be arbitrary.

Define $S = \{ x \in L \mid x \notin f(x) \} \in 2^L$.

Claim: For all $x \in L$, $f(x) \neq S$.

For all $x \in L$, observe that

$x \in S$ if and only if $x \notin f(x)$ [by definition of S].

Therefore $f(x) \neq S$:

the element x is in *exactly one* of those sets!

Therefore f is *not* onto!
What does this mean?

No function from L to 2^L can “cover” all the elements in 2^L.

No matter what the set L is, the power set 2^L *always* has strictly larger cardinality than L (and all subsets of L).
Thm: There are *unrecognizable* languages

Proof: Suppose all languages are recognizable. Then for all L, there’s a TM M that recognizes L. Thus the function $R: \{\text{Turing Machines}\} \rightarrow \{\text{Languages}\}$ defined by $M \mapsto L(M)$ is an onto function.

But we showed there is *no* onto function from $\{\text{Turing Machines}\} \subseteq T$ to its power set 2^T. Contradiction!
Theorem: There is no onto function from the positive integers \mathbb{Z}^+ to the real numbers in $(0, 1)$.

Proof: Suppose f is such a function. Then we can make a list:

1 \mapsto 0.28347279...
2 \mapsto 0.88388384...
3 \mapsto 0.77635284...
4 \mapsto 0.11111111...
5 \mapsto 0.12345678...

\[\cdots \]

Define: $r \in (0, 1)$

\[[n\text{-th digit of } r] = \begin{cases} 1 & \text{if } [n\text{-th digit of } f(n)] \neq 1 \\ 2 & \text{otherwise} \end{cases} \]

$f(n) \neq r$ for all n (Here, $r = 0.11121\ldots$)
In the early 1900’s, logicians were trying to define consistent foundations for mathematics.

Suppose \(X = \) “Universe of all possible sets”

Frege’s Axiom: Let \(f : X \to \{0, 1\} \)

Then \(\{S \in X \mid f(S) = 1\} \) is a set.

Russell: Define \(F = \{S \in X \mid S \notin S\} \)

Suppose \(F \in F \). Then by definition, \(F \notin F \).

So \(F \notin F \) and by definition \(F \in F \).

This logical system is inconsistent!
A Concrete Undecidable Problem: The Acceptance Problem for TMs

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \} \]

Given: code of a Turing machine \(M \) and an input \(w \) for that Turing machine,
Decide: Does \(M \) accept \(w \)?

Theorem [Turing]:
\(A_{TM} \) is recognizable but NOT decidable
\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \} \]

Thm. \(A_{TM}\) is undecidable: (proof by contradiction)

Assume \(H\) is a machine that decides \(A_{TM}\)

\[
H(\langle M, w \rangle) =
\begin{cases}
 \text{Accept} & \text{if } M \text{ accepts } w \\
 \text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Define a new TM \(D\) with the following spec:

\(D(\langle M \rangle)\): Run \(H\) on \(\langle M, M \rangle\) and output the *opposite* of \(H\)

\[
D(\langle D \rangle) =
\begin{cases}
 \text{Reject} & \text{if } D \text{ accepts } \langle D \rangle \\
 \text{Accept} & \text{if } D \text{ does not accept } \langle D \rangle
\end{cases}
\]

Set \(M = D?\)
The table of outputs of H on $\langle x, y \rangle$

<table>
<thead>
<tr>
<th>y</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>\ldots</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>\ldots</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>

M_1, M_2, \ldots and w_1, w_2, \ldots are both ordered lists of all binary strings
The table of outputs of H on $\langle x, y \rangle$

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>...</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_1</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>

D on $\langle x \rangle$ outputs the opposite of H on $\langle x, x \rangle$
The behavior of $D(x)$ is a *diagonal* on this table.

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>...</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>?</td>
</tr>
</tbody>
</table>

D on $\langle x \rangle$ outputs the *opposite* of H on $\langle x, x \rangle$. D on $\langle D \rangle$ outputs the *opposite* of D on $\langle D \rangle$.

16
Let U be a machine that recognizes A_{TM}

$$A_{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that accepts string } w \}$$

Thm. A_{TM} is undecidable. (a constructive proof)

Let U be a machine that recognizes A_{TM}

$$U(\langle M, w \rangle) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Rejects or loops} & \text{otherwise}
\end{cases}$$

Define a new TM D_U as follows:

$$D_U(\langle M \rangle): \text{ Run } U \text{ on } \langle M, M \rangle \text{ until it halts.}\text{ Output the opposite answer}$$
\[D_U(\langle D_U \rangle) = \{ \begin{align*}
\text{Reject if } D_U \text{ accepts } \langle D_U \rangle \\
&\text{(i.e. if } H(D_U, D_U) = \text{Accept}) \\
\text{Accept if } D_U \text{ rejects } \langle D_U \rangle \\
&\text{(i.e. if } H(D_U, D_U) = \text{Reject}) \\
\text{Loops if } D_U \text{ loops on } \langle D_U \rangle \\
&\text{(i.e. if } H(D_U, D_U) \text{ loops})
\end{align*} \]

Note: There is no contradiction here!

D_U must run forever on \(\langle D_U \rangle \)

We have an input \(\langle D_U, D_U \rangle \) which is *not* in \(A_{TM} \) but \(U \) infinitely loops on \(\langle D_U, D_U \rangle \)!
In summary:

Given the code of any machine \(U \) that recognizes \(A_{TM} \) (i.e. a Universal Turing Machine) we can effectively construct an input \(\langle D_U, D_U \rangle \), where:

1. \(\langle D_U, D_U \rangle \notin A_{TM} \) (\(D_U \) does not accept \(D_U \))

2. \(U \) runs \textit{forever} on the input \(\langle D_U, D_U \rangle \)

Therefore \(U \) cannot \textit{decide} \(A_{TM} \)

Given any universal Turing machine, we can efficiently construct an input on which the program hangs!

Note how generic this argument is: it does not depend on Turing machines!
A Concrete Unrecognizable Problem: The “Non-Acceptance Problem” for TMs

\[A_{TM} = \{ \langle M, w \rangle \mid M \text{ encodes a TM over some } \Sigma, \]
\[w \text{ encodes a string over } \Sigma \]
\[\text{and } M \text{ accepts } w \} \]

We choose a decoding of pairs, TMs, and strings so that

every binary string decodes to *some* TM \(M \) and string \(w \)

If \(z \in \{0,1\}^* \) doesn’t decode to \(\langle M, w \rangle \) in the usual way, then we *define* that \(z \) decodes to a TM \(D \) and \(\varepsilon \) where \(D \) is a “dummy” TM that accepts nothing.

Then, \(\overline{A_{TM}} = \{ z \mid z \text{ decodes to } M \text{ and } w \] such that \(M \) does not accept \(w \} \)
A Concrete Unrecognizable Problem: The “Non-Acceptance Problem” for TMs

A TM M **recognizes** a language L if M accepts exactly those strings in L
(but could run forever on other strings)

A TM M **decides** a language L if M accepts all strings in L and **rejects** all strings not in L

Theorem: L is decidable
\iff L and $\neg L$ are recognizable
Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable

\iff L and $\neg L$ are recognizable

(\Leftarrow) Given: a TM M_1 that recognizes L and a TM M_2 that recognizes $\neg L$, we want to build a new machine M that decides L

How? Any ideas?

Hint: M_1 always accepts x, when x is in L
M_2 always accepts x, when x isn’t in L
Recall: Given $L \subseteq \Sigma^*$, define $\neg L := \Sigma^* \setminus L$

Theorem: L is decidable

\iff L and $\neg L$ are recognizable

(\Leftarrow) Given: a TM M_1 that recognizes L and a TM M_2 that recognizes $\neg L$,

we want to build a new machine M that decides L

$M(x)$: Run $M_1(x)$ and $M_2(x)$ on separate tapes. Alternate between simulating one step of M_1, and one step of M_2.

If M_1 ever accepts, then accept

If M_2 ever accepts, then reject
Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable!

Proof: Suppose $\neg A_{TM}$ is recognizable. Then $\neg A_{TM}$ and A_{TM} are both recognizable... But that would mean they’re both decidable! Contradiction!
The Halting Problem [Turing]

\[\text{HALT}_\text{TM} = \{ \langle M, w \rangle \mid M \text{ is a TM that \textit{halts} on string } w \} \]

Theorem: \text{HALT}_\text{TM} is undecidable

Proof: Assume (for a contradiction) there is a TM \(H \) that decides \text{HALT}_\text{TM}

Idea: Use \(H \) to construct a TM \(M' \) that \textit{decides} \textit{A}_{\text{TM}}

\[M'(\langle M, w \rangle): \text{ Run } H(\langle M, w \rangle) \]

If \(H \) rejects then \textit{reject}

If \(H \) accepts, run \(M \) on \(w \) until it halts:

- If \(M \) accepts, then \textit{accept}
- If \(M \) rejects, then \textit{reject}

Claim: If \(H \) exists, then \(M' \) decides \(A_{\text{TM}} \) \(\implies \) \(H \) does not exist!
\(\langle M, w \rangle \)

\(\langle M, w \rangle \)

Does \(M \) halt on \(w \)?

\(\text{NO} \)

\(\text{Output reject} \)

\(\text{YES} \)

\(\text{Output answer} \)

\(W \)

\(\text{M} \)

\(\text{M}' \) decides \(A_{TM} \)
THE HALTING PROBLEM IS EASY TO SOLVE. IF THE PROGRAM RUNS TOO LONG, I TAKE THIS STICK AND BEAT THE COMPUTER UNTIL IT STOPS.

What if Alan Turing had been an engineer?

http://smbc-comics.com/comic/halting
R. Ryan Williams @rrwilliams

6.045 health reminder: wash your hands for the time it takes to prove that the Halting problem is undecidable.

10:55 AM · Mar 10, 2020 · Twitter for Android

R. Ryan Williams @rrwilliams · 8m

Replying to @rrwilliams

"Suppose Turing machine H can decide, given any string (M,w), whether TM M halts on w. Define a TM D which, on input (M), runs H on (M,M) and halts iff H rejects. So D on (D) halts iff H on (D,D) rejects iff D on (D) does not halt. D cannot both halt and not halt. Contradiction!"
The previous proof is one example of a MUCH more general phenomenon.

Can often prove a language L is undecidable by proving: “If L is decidable, then so is A_{TM}”

We reduce A_{TM} to the language L:

$$A_{TM} \leq L$$

Intuition: L is “at least as hard as” A_{TM}

Given the ability to solve problem L, we can solve A_{TM}
Theorem [Turing]: HALT^TM is undecidable

Proof: Assume some TM H decides HALT^TM.
We’ll make an M' that decides A^TM.

$M'(\langle M, w \rangle)$: Run H on $\langle M, w \rangle$
 If H rejects then reject
 If H accepts, run M on w until it halts:
 If M accepts, then accept
 If M rejects, then reject

This is called a TURING REDUCTION:
Using a TM for deciding HALT^TM we could decide A^TM.
Reducing One Problem to Another

$f : \Sigma^* \rightarrow \Sigma^*$ is a **computable function** if there is a Turing machine M that halts with just $f(w)$ written on its tape, for every input w.

A language A is **mapping reducible** to language B, written as $A \leq_m B$, if there is a computable $f : \Sigma^* \rightarrow \Sigma^*$ such that for every $w \in \Sigma^*$,

$$w \in A \iff f(w) \in B$$

f is called a mapping reduction (or many-one reduction) from A to B.
Let $f : \Sigma^* \to \Sigma^*$ be a computable function such that for all $w \in \Sigma^*$, $w \in A \iff f(w) \in B$.

Say: "A is mapping reducible to B"
Write: $A \leq_m B$
Theorem: If $A \leq_m B$ and $B \leq_m C$, then $A \leq_m C$.

Let $w \in A \iff f(w) \in B \iff g(f(w)) \in C$.
Some (Simple) Examples

\(A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ encodes a DFA over some } \Sigma, \text{ and } D \text{ accepts } w \in \Sigma^* \} \)

\(A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ encodes an NFA, } N \text{ accepts } w \} \)

Theorem: For every regular language \(L' \), \(L' \leq_m A_{\text{DFA}} \)

For every regular \(L' \), there’s a DFA \(D \) for \(L' \). So here’s a mapping reduction \(f \) from \(L' \) to \(A_{\text{DFA}} \):

\[f(w) := \text{Output } \langle D, w \rangle \]

Then, \(w \in L' \iff D \text{ accepts } w \iff f(w) = \langle D, w \rangle \in A_{\text{DFA}} \)

So \(f \) is a mapping reduction from \(L' \) to \(A_{\text{DFA}} \)
Some (Simple) Examples

\(A_{\text{DFA}} = \{ \langle D, w \rangle \mid D \text{ encodes a DFA over some } \Sigma, \text{ and } D \text{ accepts } w \in \Sigma^* \} \)

\(A_{\text{NFA}} = \{ \langle N, w \rangle \mid N \text{ encodes an NFA, } N \text{ accepts } w \} \)

Theorem: \(A_{\text{DFA}} \leq_m A_{\text{NFA}} \)

Every DFA can be trivially written as an NFA. So here’s a reduction \(f \) from \(A_{\text{DFA}} \) to \(A_{\text{NFA}} \):

\(f(\langle D, w \rangle) := \text{Write down NFA } N \text{ equivalent to } D \)

Output \(\langle N, w \rangle \)

Theorem: \(A_{\text{NFA}} \leq_m A_{\text{DFA}} \)

\(f(\langle N, w \rangle) := \text{Use subset construction to convert NFA } N \text{ into an equivalent DFA } D. \) Output \(\langle D, w \rangle \)
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

“If A is as hard as B, and B is decidable, then A is decidable”

Proof: Let M decide B.

Let f be a mapping reduction from A to B.

We build a machine M' deciding A as follows:

$M'(w)$:

1. Compute $f(w)$
2. Run M on $f(w)$, output its answer

Then: $w \in A \iff f(w) \in B$ [since f reduces A to B]

$\iff M$ accepts $f(w)$ [since M decides B]

$\iff M'$ accepts w [by def of M']
Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable.

Proof: Let M recognize B. Let f be a mapping reduction from A to B.

To recognize A, we build a machine M':

$M'(w)$:

1. Compute $f(w)$
2. Run M on $f(w)$, output its answer if you ever receive one.
Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable.

Theorem: If $A \leq_m B$ and B is decidable, then A is decidable.

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable.