

Lecture 12: Deep Computability Self-Reference in Computation and The Foundations of Mathematics

6.045

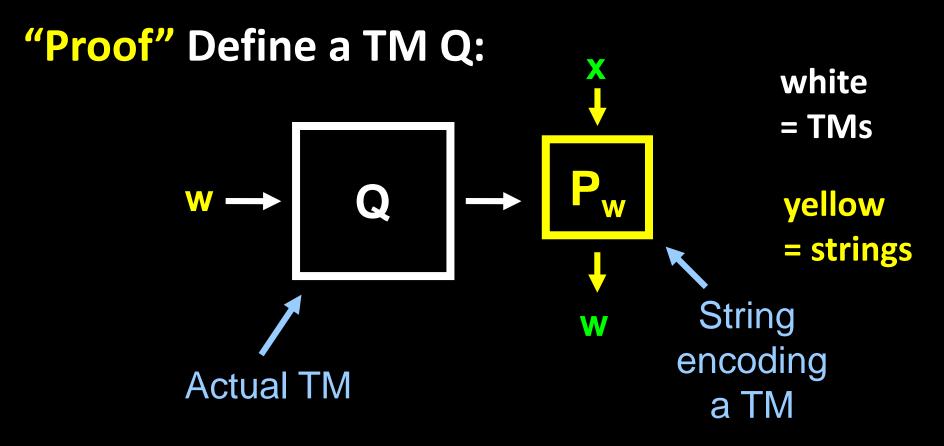
Announcements:

Midterm exam still set for April 2
Will cover Lectures 1-11
Today's material is not on the midterm

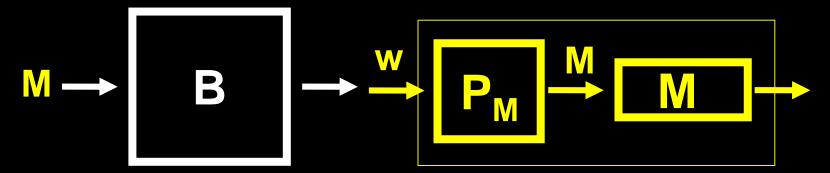
Self-Reference and the Recursion Theorem

"WLOG, a program can always access its own source code as input"

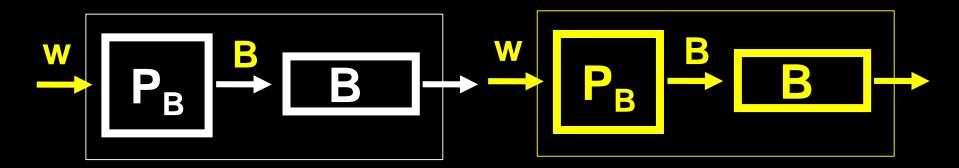
Lemma: There is a computable function $q: \Sigma^* \rightarrow \Sigma^*$ such that for every string w, q(w) is the *description* of a TM P_w that on every input, prints out w and then accepts



Theorem: There is a Self-Printing TM Proof: First define a TM B which does this:



Now consider the TM that looks like this:



This is a TM that prints its own description! **QED**

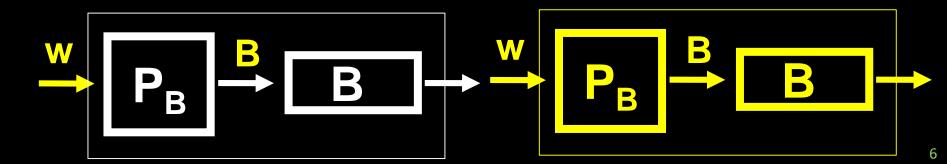
Another Way of Looking At It

Suppose in general we want to design a program that prints its own description. How?

"Print this sentence."

 \approx B

Print two copies of the following, the second copy in quotes: "Print two copies of the following, the second copy in quotes:"



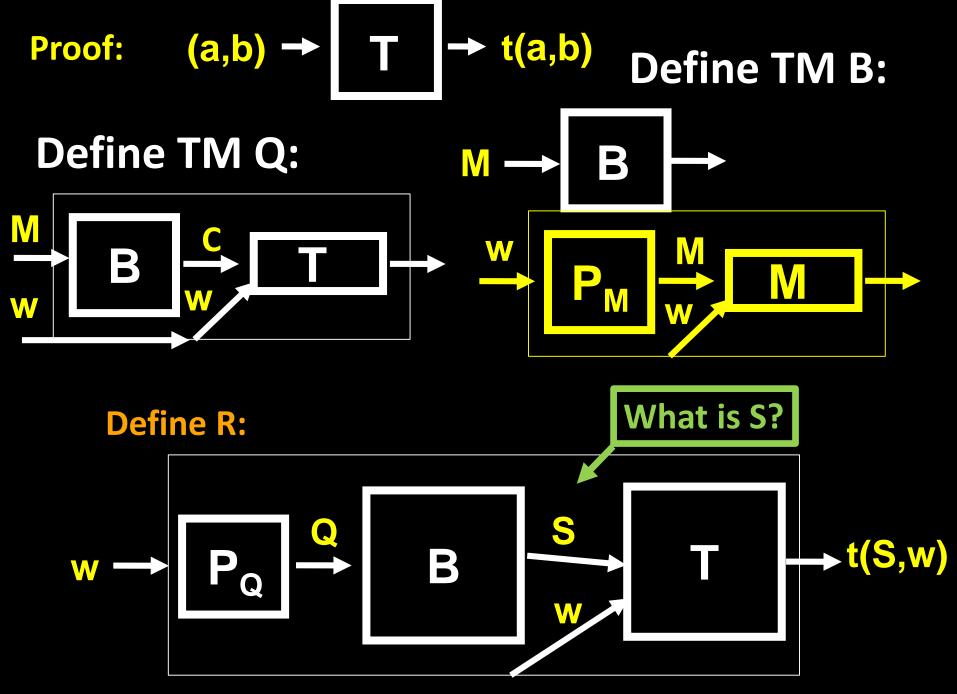
The Recursion Theorem

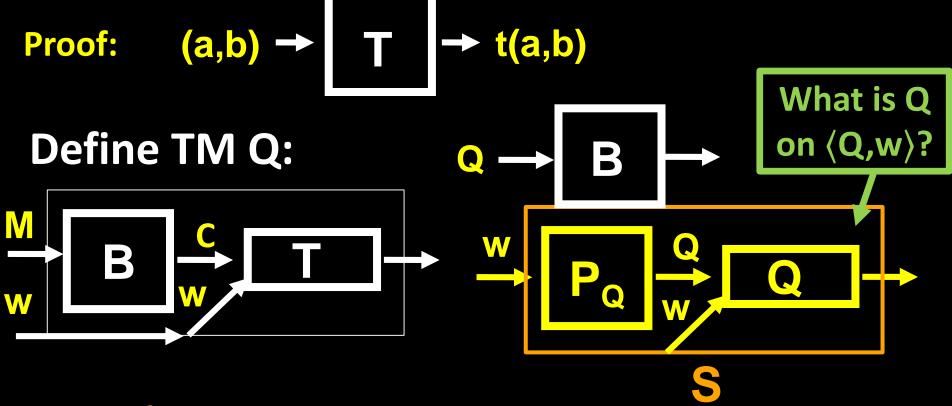
Theorem: For every TM T computing a function $t: \Sigma^* \times \Sigma^* \to \Sigma^*$

there is a Turing machine R computing a function R : $\Sigma^* \rightarrow \Sigma^*$, such that for every string w,

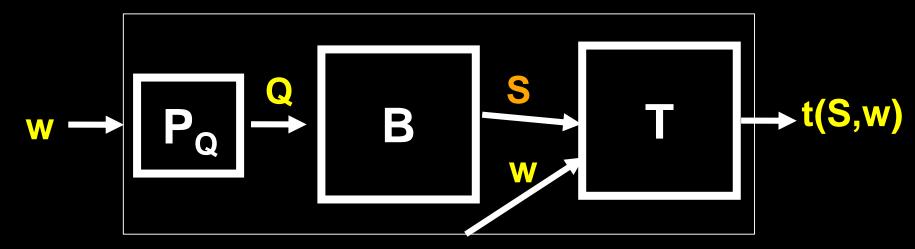
 $R(w) = t(\langle R \rangle, w)$

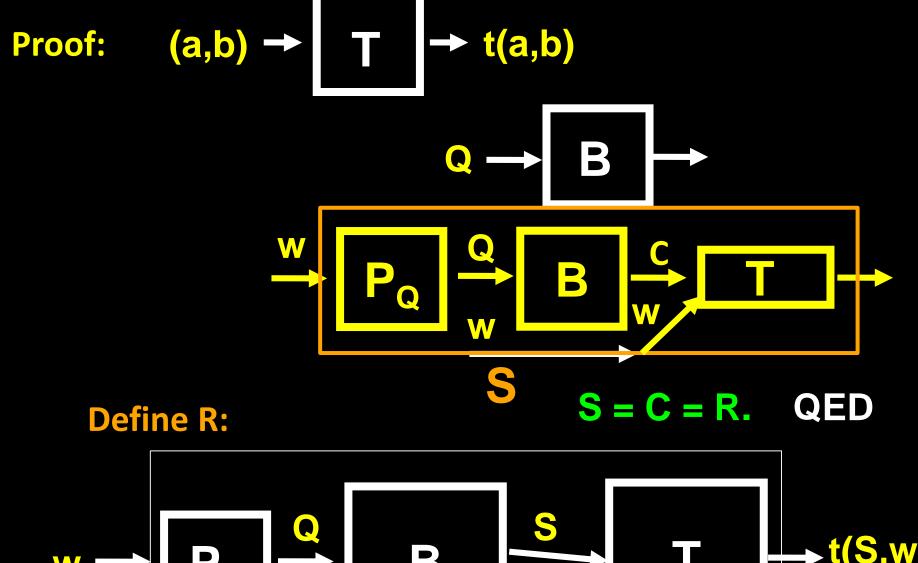
 $(a,b) \longrightarrow \begin{bmatrix} T \\ T \end{bmatrix} \longrightarrow t(a,b) \qquad \begin{array}{c} \text{``TMs can} \\ \text{implement} \\ \text{recursion!''} \\ w \longrightarrow \begin{bmatrix} R \\ \end{array} \longrightarrow t(\langle R \rangle, w) \end{array}$

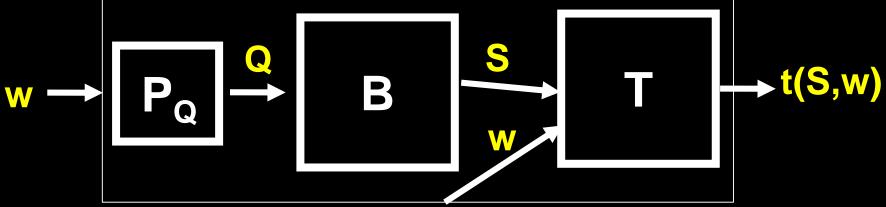




Define R:







 $FOO_{y}(y) := Output x and halt.$ **BAR(\langle M \rangle) := Output "N(w) = Run FOO_{<M>} outputting \langle M \rangle.** Run M on $(\langle M \rangle, w)''$ $Q(\langle M \rangle, w) := Run BAR(\langle M \rangle)$ outputting $\langle N \rangle$. Run T on $(\langle N \rangle, w)$ **R(w)** := Run FOO_{<O>} outputting $\langle \mathbf{Q} \rangle$. Run BAR($\langle Q \rangle$) outputting $\langle N \rangle$. Run T on $(\langle N \rangle, x)$ Claim: (N) is a description of R itself! $N(w) = Run FOO_{\langle Q \rangle}$ outputting $\langle Q \rangle$. Run Q on $(\langle Q \rangle, w)$

 $FOO_{y}(y) := Output x and halt.$ **BAR((M)) := Output "N(w) = Run FOO**_{<M>} outputting $\langle M \rangle$. Run M on $(\langle M \rangle, w)''$ $Q(\langle M \rangle, w) := Run BAR(\langle M \rangle)$ outputting $\langle N \rangle$. Run T on $(\langle N \rangle, w)$ $R(w) := Run FOO_{\langle Q \rangle}$ outputting $\langle Q \rangle$. Run BAR($\langle Q \rangle$) outputting $\langle N \rangle$. Run T on $(\langle N \rangle, w)$ Claim: (N) is a description of R itself! $N(w) = Run FOO_{\langle Q \rangle}$ outputting $\langle Q \rangle$. Run BAR($\langle \mathbf{Q} \rangle$) outputting $\langle \mathbf{N} \rangle$. Run T on $(\langle N \rangle, w)$ Therefore $R(w) = T(\langle R \rangle, w)$

For every computable t, there is a computable r such that r(w) = t((R),w) where *R is a Turing machine computing r*

Moral: Suppose we can design a TM T of the form "On input (x,w), do bla bla with x, do bla bla bla with w, etc. etc." We can always find a TM R with the behavior: "On input w, do bla bla with the code of R, do bla bla bla with w, etc. etc."

> We can use the operation: *"Obtain your own description"* in Turing machine pseudocode!

Theorem: $A_{TM} = \{\langle M, w \rangle \mid M \text{ accepts } w\}$ is undecidable Proof (using the recursion theorem) Assume H decides A_{TM} Define a TM T as follows: $T(\langle M \rangle, w) := Run H \text{ on } \langle M, w \rangle$. If H accepts, then reject. If H rejects, then accept.

Recursion Theorem $\Rightarrow \exists TM B \text{ such that for all } w, B(w) = T(\langle B \rangle, w).$

Now, running **B** on w outputs $T(\langle B \rangle, w)$, which is the *opposite answer* of H on $\langle B, w \rangle$. Contradiction!

A formalization of "free will" paradoxes! No single machine can predict behavior of all others **Theorem:** A_{TM} is undecidable **Proof** (using the recursion theorem) Assume H decides A_{TM} **Construct machine B such that on input w: 1. Obtains its own description B 2.** Runs H on $\langle B, w \rangle$ and flips the output

Running **B** on any input w always does the *opposite* of what **H** on (**B**,w) says **B** would do! Contradiction!

Turing Machine Minimization MIN = { $\langle M \rangle$ | M is a minimal-state TM over Γ = {0,1, \Box } **Theorem:** MIN is undecidable **Proof:** Suppose we could recognize MIN with TM <u>M</u> M(x) := Obtain the description of M.For k = 1, 2, 3, ...Run M' on the first k TMs $M_1, \dots M_k$ for k steps, Until M' accepts some M_i with more states than MWhy does M_i exist? Output M_i on x. We have: 1. $L(M) = L(M_i)$ [by construction] 2. *M* has *fewer* states than *M*_i **3.** M_i is minimal [by definition of MIN] **CONTRADICTION!** 16 Computability, Logic, and the Foundations of Mathematics: Math is Incomplete!

Formal Systems of Mathematics

A formal system describes a formal language for

- writing (finite) mathematical statements as strings,
- has a definition of a proof of a statement (as strings)
- has a notion of "true" statements

Example: Every TM M can be used to define a formal system *F* with the properties:

- {Mathematical statements in \mathcal{F} } = Σ^* String w represents the statement "M halts on w"

- A proof of "M halts on w" can be defined as the computation history of M on w: the sequence of configurations $C_0 C_1 \cdots C_t$ that M goes through while computing on w

Interesting Systems of Mathematics

Define a formal system **F** to be *interesting* if:

- Mathematical statements about computation can be (computably) described as a statement of *F*. *Given (M, w), there is a (computable)* S_{M,w} of *F* such that S_{M,w} is true in *F* if and only if M accepts w.
- 2. Proofs are "convincing" a TM can check that a candidate proof of a theorem is correct. This set is decidable: {(S, P) | P is a proof of S in F}

 Mathematical proofs with computation histories can be expressed in *F*.
If TM M halts on w, then there's either a proof P of S_{M,w} or a proof P of ¬S_{M,w}

Consistency and Completeness

A formal system F is *inconsistent* if there is a statement S in F such that both S and ¬S are provable in F F is consistent if it is NOT inconsistent

A formal system F is *incomplete* if there is a statement S in F such that neither S nor ¬S are provable in F F is complete if it is NOT incomplete

We want consistent and complete systems!

Limitations on Mathematics!

For every consistent and interesting *F*,

Theorem 1. (Gödel 1931) **F** must be *incomplete*! "There are mathematical statements that are *true* but cannot be proved."

Theorem 2. (Gödel 1931) The consistency of \mathcal{F} cannot be proved in \mathcal{F} .

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in \mathcal{F} has a proof is undecidable.

Unprovable Truths in Mathematics

(Gödel) Every consistent interesting **F** is *incomplete:* there are statements that cannot be proved or disproved.

Let $S_{M,w}$ in F be true if and only if TM M accepts string w Proof: Define TM G(w):

> Obtain own description G [Recursion Theorem!]
> For all strings P in lexicographical order, If (P is a proof of S_{G, w} in F) then reject

If (P is a proof of $\neg S_{G, w}$ in \mathcal{F}) then accept

Note: If *F* is complete then G cannot run forever!

If (G accepts w) then have proof P of "G doesn't accept w"
If (G rejects w) then have proof P of "G accepts w"
In either case, F is inconsistent! Proof of S_{G, w} and ¬S_{G, w}

Unprovable Truths in Mathematics

(Gödel) Every consistent interesting **F** is *incomplete:* there are statements that cannot be proved or disproved.

Let $S_{M,w}$ in \mathcal{F} be true if and only if TM M accepts string w Proof: Define TM G(w):

> Obtain own description G [Recursion Theorem!]
> For all strings P in lexicographical order, If (P is a proof of S_{G, w} in F) then reject

> > If (P is a proof of $\neg S_{G, w}$ in \mathcal{F}) then accept

Note: If *F* **is complete then G cannot run forever!**

Conclusion: G must run forever. So in fact $\neg S_{G, w}$ is a true statement, but it (and its negation) have no proof in F! (Gödel 1931) The consistency of *F* cannot be proved within any interesting consistent *F*

- Proof Sketch: Assume we can prove " \mathcal{F} is consistent" in \mathcal{F} We constructed $\neg S_{G,w} = "G$ does not accept w" which *has no proof* in \mathcal{F}
 - **G** accepts w \Rightarrow There are proofs of $S_{G, w}$ and $\neg S_{G, w}$ in \mathcal{F}

But if there's a proof P of " \mathcal{F} is consistent" in \mathcal{F} , then there is a proof of $\neg S_{G, w}$ in \mathcal{F} (here's the proof):

" \mathcal{F} is consistent, because <insert proof P here>. If $S_{G, w}$ is true, then both $S_{G, w}$ and $\neg S_{G, w}$ have proofs in \mathcal{F} . But \mathcal{F} is consistent, so this is a contradiction. Therefore, $\neg S_{G, w}$ is true."

This contradicts the previous theorem!

Undecidability in Mathematics

 $\mathsf{PROVABLE}_{\mathcal{F}} = \{\mathsf{S} \mid \mathsf{there's} \text{ a proof in } \mathcal{F} \text{ of } \mathsf{S}, \mathsf{or} \\ \mathsf{there's} \text{ a proof in } \mathcal{F} \text{ of } \neg \mathsf{S} \}$

(Church-Turing 1936) For every interesting consistent \mathcal{F} , PROVABLE $_{\mathcal{F}}$ is undecidable

Proof: Suppose PROVABLE $_{a}$ is decidable with TM P. Then we could decide A_{TM} with the following procedure: On input (M, w), run the TM P on input S_{M.w} If P accepts, examine all proofs in lex order If a proof of S_{M,w} is found then accept If a proof of $\neg S_{M,w}$ is found then reject If P rejects, then reject. Why does this work?

Next Episode:

Your Midterm... Good Luck!