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Lecture 12:

Deep Computability

Self-Reference in Computation

and The Foundations of Mathematics

6.045
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Announcements:

- Midterm exam still set for April 2

- Will cover Lectures 1-11

- Today’s material is not on the midterm

6.045
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Self-Reference and 
the Recursion Theorem

“WLOG, a program can 

always access its own 

source code as input”
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Lemma: There is a computable function
q : Σ* → Σ* such that for every string w, 
q(w) is the description of a TM Pw that on 
every input, prints out w and then accepts 

Qw Pw

x

w

“Proof” Define a TM Q:

Actual TM

String 

encoding

a TM

yellow 
= strings

white 
= TMs
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Theorem: There is a Self-Printing TM

BM
w

MPM

M

w
BPB

B w
BPB

B

Proof: First define a TM B which does this:

Now consider the TM that looks like this:

QEDThis is a TM that prints its own description!
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Another Way of Looking At It

Suppose in general we want to design a 
program that prints its own description.  How?

“Print          sentence.”this

Print two copies of the following, the 
second copy in quotes:
“Print two copies of the following, the 
second copy in quotes:”

≈ B

≈ PB

w
BPB

B w
BPB

B
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The Recursion Theorem

Theorem: For every TM T computing a function 
t : Σ*  Σ*→ Σ*

there is a Turing machine R computing a function 
R : Σ*→ Σ*, such that for every string w,

R(w) = t(⟨R⟩, w)

T(a,b) t(a,b)

Rw t(⟨R⟩,w)

“TMs can 
implement 
recursion!”
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w

Proof: T(a,b) t(a,b)

BPQ
w

BM

T t(S,w)

Define TM Q:

Q S

w

w
MPM

M

ww
TB

M C

Define R: What is S?

Define TM B:
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Proof: T(a,b) t(a,b)

BPQ
w T t(S,w)

Define TM Q:

Q S

w

w
QPQ

Q

ww

M

w
TB

C

S

BQ

Define R:

What is Q 
on ⟨Q,w⟩?
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Proof: T(a,b) t(a,b)

BPQ
w T t(S,w)

Q S

w

w
PQ

Q

w

S

BQ

w
TB

C

S = C = R.    QEDDefine R:



FOOx(y) := Output x and halt. 
BAR(⟨M⟩) := Output “N(w) = Run FOO<M> outputting ⟨M⟩.

Run M on (⟨M⟩, w)” 
Q(⟨M⟩, w) := Run BAR(⟨M⟩) outputting ⟨N⟩.

Run T on (⟨N⟩, w) 

R(w) := Run FOO<Q> outputting ⟨Q⟩.
Run BAR(⟨Q⟩) outputting ⟨N⟩.
Run T on (⟨N⟩, x)

Claim: ⟨N⟩ is a description of R itself! 
N(w) = Run FOO<Q> outputting ⟨Q⟩.

Run Q on (⟨Q⟩, w)



FOOx(y) := Output x and halt. 
BAR(⟨M⟩) := Output “N(w) = Run FOO<M> outputting ⟨M⟩.

Run M on (⟨M⟩, w)” 
Q(⟨M⟩, w) := Run BAR(⟨M⟩) outputting ⟨N⟩.

Run T on (⟨N⟩, w) 

R(w) := Run FOO<Q> outputting ⟨Q⟩.
Run BAR(⟨Q⟩) outputting ⟨N⟩.
Run T on (⟨N⟩, w)

Claim: ⟨N⟩ is a description of R itself! 
N(w) = Run FOO<Q> outputting ⟨Q⟩.

Run BAR(⟨Q⟩) outputting ⟨N⟩.
Run T on (⟨N⟩, w)

Therefore R(w) = T(⟨R⟩, w)
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For every computable t, there is a computable r 
such that r(w) = t(⟨R⟩,w) where 

R is a Turing machine computing r

Moral: Suppose we can design a TM T of the form
“On input (x,w), do bla bla with x, 

do bla bla bla with w, etc. etc.”
We can always find a TM R with the behavior:
“On input w, do bla bla with the code of R, 

do bla bla bla with w, etc. etc.”

We can use the operation:
“Obtain your own description”
in Turing machine pseudocode!
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Theorem: ATM = {⟨M,w⟩ | M accepts w} is undecidable

Proof   (using the recursion theorem)

Assume H decides ATM

T(⟨M⟩,w) := Run H on ⟨M,w⟩. If H accepts, then reject. 
If H rejects, then accept.

Define a TM T as follows:

Recursion Theorem  ⇒ ∃ TM B such that for all w, 
B(w) = T(⟨B⟩,w). 

Now, running B on w outputs T(⟨B⟩,w), which is the 
opposite answer of H on ⟨B,w⟩. Contradiction!

A formalization of “free will” paradoxes!
No single machine can predict behavior of all others
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Theorem: ATM is undecidable

Proof   (using the recursion theorem)

Assume H decides ATM

1. Obtains its own description B

Construct machine B such that on input w:

2. Runs H on ⟨B,w⟩ and flips the output

Running B on any input w always does the opposite
of what H on ⟨B,w⟩ says B would do! Contradiction!
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Turing Machine Minimization

MIN = {⟨M⟩| M is a minimal-state TM over 𝚪={0,1,□}}

Proof:  Suppose we could recognize MIN with TM 𝑴’
𝑴(𝒙) := Obtain the description of 𝑴.

For 𝒌 = 1,2,3,…
Run 𝑴’ on the first 𝒌 TMs 𝑴𝟏, …𝑴𝒌 for 𝒌 steps, 

Until 𝑴’ accepts some 𝑴𝒊 with more states than 𝑴
Output 𝑴𝒊 on 𝒙. 

We have:  1. 𝑳 𝑴 = 𝑳 𝑴𝒊 [by construction]
2. 𝑴 has fewer states than 𝑴𝒊

3. 𝑴𝒊 is minimal   [by definition of MIN]
CONTRADICTION!

Theorem: MIN is undecidable

Why does 𝑴𝒊 exist?
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Computability, Logic, and the

Foundations of Mathematics:

Math is Incomplete!
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A formal system describes a formal language for
- writing (finite) mathematical statements as strings, 
- has a definition of a proof of a statement (as strings)
- has a notion of “true” statements

Example:  Every TM M can be used to define a formal 
system F  with the properties:

- {Mathematical statements in F } = 𝚺*
String w represents the statement “M halts on w”

- A proof of “M halts on w” can be defined as the
computation history of M on w: the sequence of 
configurations 𝑪𝟎 𝑪𝟏⋯𝑪𝒕 that M goes through while 
computing on w

Formal Systems of Mathematics
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Define a formal system F to be interesting if:

1. Mathematical statements about computation
can be (computably) described as a statement of F.
Given (M, w), there is a (computable) SM,w of F
such that SM,w is true in F if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a 
candidate proof of a theorem is correct.
This set is decidable: {(S, P) | P is a proof of S in F }

3. Mathematical proofs with computation histories
can be expressed in F .
If TM M halts on w, then 
there’s either a proof P of SM,w or a proof P of ¬SM,w

Interesting Systems of Mathematics
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A formal system F is inconsistent if 
there is a statement 𝑺 in F

such that both 𝑺 and ¬𝑺 are provable in F

F  is consistent if it is NOT inconsistent

A formal system F is incomplete if 
there is a statement 𝑺 in F

such that neither 𝑺 nor ¬𝑺 are provable in F
F  is complete if it is NOT incomplete

Consistency and Completeness

We want consistent and complete systems!
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For every consistent and interesting F,

Theorem 1. (Gödel 1931) F must be incomplete!
“There are mathematical statements that are 
true but cannot be proved.”

Theorem 2. (Gödel 1931)
The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem 
of checking whether a given statement in F has 
a proof is undecidable.

Limitations on Mathematics!
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Proof: Define TM G(w): 
1. Obtain own description G [Recursion Theorem!]

Unprovable Truths in Mathematics

(Gödel) Every consistent interesting F is incomplete:
there are statements that cannot be proved or disproved.

Let SM, w in F be true  if and only if  TM M accepts string w

2. For all strings P in lexicographical order,
If (P is a proof of SG, w in F ) then reject
If (P is a proof of ¬SG, w in F ) then accept 

In either case, F is inconsistent!  Proof of SG, w and ¬SG, w

1. If (G accepts w) then have proof P of “G doesn’t accept w”
2. If (G rejects w) then have proof P of “G accepts w”

Note: If F is complete then G cannot run forever!
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Define TM G(w): 
1. Obtain own description G [Recursion Theorem!]

Unprovable Truths in Mathematics

(Gödel) Every consistent interesting F is incomplete:
there are statements that cannot be proved or disproved.

2. For all strings P in lexicographical order,
If (P is a proof of SG, w in F ) then reject
If (P is a proof of ¬SG, w in F ) then accept 

Conclusion: G must run forever.
So in fact ¬SG, w is a true statement, but it

(and its negation) have no proof in F! 

Note: If F is complete then G cannot run forever!

Proof:

Let SM, w in F be true  if and only if  TM M accepts string w
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Proof Sketch:  Assume we can prove “F  is consistent” in F

We constructed :SG, w = “G does not accept w”

which has no proof in F

But if there’s a proof P of “F is consistent” in F , then 
there is a proof of :SG, w in F  (here’s the proof):

“F is consistent, because <insert proof P here>.
If SG, w is true, then both SG,w and :SG, w have proofs in F.

But F is consistent, so this is a contradiction.
Therefore, :SG, w is true.”

This contradicts the previous theorem!

(Gödel 1931) The consistency of F cannot be 
proved within any interesting consistent F

G accepts w ⇒ There are proofs of SG, w and :SG, w in F
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Proof: Suppose PROVABLEF is decidable with TM P.

Then we could decide ATM with the following procedure:

On input (M, w), run the TM P on input SM,w

If P rejects, then reject.

Undecidability in Mathematics

(Church-Turing 1936) For every interesting 
consistent F,   PROVABLEF  is undecidable

If P accepts, examine all proofs in lex order
If a proof of SM,w is found then accept
If a proof of ¬SM,w is found then reject

PROVABLEF  = {S | there’s a proof in F of S, or
there’s a proof in F of :S}

Why does this work?
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Next Episode:
Your Midterm… Good Luck!


