6.045

Lecture 12:
Deep Computability
Self-Reference in Computation
and The Foundations of Mathematics

6.045

Announcements:
- Midterm exam still set for April 2
- Will cover Lectures 1-11
- Today’s material is not on the midterm

Self-Reference and
the Recursion Theorem

“WLOG, a program can
always access its own
source code as input”

Lemma: There is a computable function
q:2* — 2* such that for every string w,
q(w) is the description of a TM P, that on
every input, prints out w and then accepts

“Proof” Definea TM Q:

X

W =—p — YUY

\
‘ \ = strings

/ W String

encoding
Actual TM A TM

white
= TMs

Theorem: There is a Self-Printing TM
Proof: First define a TM B which does this:

M_._J._M.q

Now consider the TM that looks like this:

“[po |> 3~ pe |~ BT

This is a TM that prints its own description! QED

)

Another Way of Looking At It

Suppose in general we want to design a
program that prints its own description. How?

“Print this sentence.”

Print two copies of the following, the ~ B
second copy in quotes:
“Print two copies of the following, the ~ P,

second copy in quotes:”

=[P o3[P [* BT

The Recursion Theorem

Theorem: For every TM T computing a function
t:2*¥ xI* o5 3*

there is a Turing machine R computing a function

R:Z* > I*, such that for every string w,

R(w) = t((R), w)

“TMs can
(a,b) — — t(a,b) implement

recursion!”

W —»E—» t((R),w)

Proof: (a,b) "" (@b) pefine TM B:
Define TM Q: M
W

M C
= _,
Define R:
S
W

8

Proof: (a,b) =

Define TM Q:

o
W W

Define R:

ke B
W

)

Proof: (a,b) = -> t(a,b)
o[|~
Tl

Define R: S=C=R. QED

ke B
W

10

FOO, (y) := Output x and halt.
BAR((M)) := Output “N(w) = Run FOO_,,. outputting (M).
Run M on ({M), w)”
Q((M), w) := Run BAR({(M)) outputting (N).
Run T on ((N), w)

R(w) := Run FOO_,, outputting (Q).
Run BAR({Q)) outputting (N).
Run T on ((N), x)

Claim: (N) is a description of R itself!
N(w) = Run FOO_, outputting (Q).
Run Q on ((Q), w)

FOO, (y) := Output x and halt.
BAR((M)) := Output “N(w) = Run FOO_,,. outputting (M).
Run M on ({M), w)”
Q((M), w) := Run BAR({(M)) outputting (N).
Run T on ((N), w)

R(w) := Run FOO_,, outputting (Q).
Run BAR({Q)) outputting (N).
Run T on ((N), w)

Claim: (N) is a description of R itself!

N(w) = Run FOO_, outputting (Q).
Run BAR({Q)) outputting (N).
Run T on ((N), w)

Therefore R(w) = T((R), w)

For every computable t, there is a computable r
such that r(w) = t((R),w) where
R is a Turing machine computing r

Moral: Suppose we can desighn a TM T of the form
“On input (x,w), do bla bla with x,

do bla bla bla with w, etc. etc.”
We can always find a TM R with the behavior:
“On input w, do bla bla with the code of R,

do bla bla bla with w, etc. etc.”

We can use the operation:
“Obtain your own description” 9
in Turing machine pseudocode!

13

Theorem: A;,, = {(M,w) | M accepts w} is undecidable

Proof (using the recursion theorem)
Assume H decides A;,, Definea TM T as follows:

T((M),w) := Run H on (M,w). If H accepts, then reject.
If H rejects, then accept.

Recursion Theorem = 3 TM B such that for all w,
B(w) = T((B),w).

Now, running B on w outputs T((B),w), which is the
opposite answer of H on (B,w). Contradiction!

A formalization of “free will” paradoxes!
No single machine can predict behavior of all others

14

Theorem: A;,, is undecidable

Proof (using the recursion theorem)
Assume H decides A,
Construct machine B such that on input w:

1. Obtains its own description B

2. Runs H on (B,w) and flips the output

Running B on any input w always does the opposite
of what H on (B,w) says B would do! Contradiction!

15

Turing Machine Minimization
MIN = {(M)| M is a minimal-state TM over I'={0,1,0}}

Theorem: MIN is undecidable

Proof: Suppose we could recognize MIN with TM M’
M(x) := Obtain the description of M.
Fork=1,2,3,..
Run M’ on the first Kk TMs M 4, ... M, for k steps,
Until M’ accepts some M; with more states than M
Output M; on x. Why does M; exist?

We have: 1. L(M) = L(M;) [by construction]
2. M has fewer states than M;
3. M; is minimal [by definition of MIN]
CONTRADICTION! "

Computability, Logic, and the
Foundations of Mathematics:
Math is Incomplete!

Formal Systems of Mathematics

A formal system describes a formal language for

- writing (finite) mathematical statements as strings,
- has a definition of a proof of a statement (as strings)
- has a notion of “true” statements

Example: Every TM M can be used to define a formal
system F with the properties:

- {Mathematical statements in #} = X*
String w represents the statement “M halts on w”

- A proof of “M halts on w” can be defined as the
computation history of M on w: the sequence of
configurations Cy C4 --- C; that M goes through while
computing on w

18

Interesting Systems of Mathematics

Define a formal system F to be interesting if:

1. Mathematical statements about computation
can be (computably) described as a statement of .

Given (M, w), there is a (computable) S,, , of F
such that s, is true in Fif and only if M accepts w.

2. Proofs are “convincing” —a TM can check that a

candidate proof of a theorem is correct.
This set is decidable: {(S, P) | P is a proof of S in F}

3. Mathematical proofs with computation histories
can be expressed in F.
If TM M halts on w, then
there’s either a proof P of S, , or a proof P of —=S,, ,

19

Consistency and Completeness

A formal system & is inconsistent if
there is a statement S in ¥
such that both S and —S§ are provable in ¥
F is consistent if it is NOT inconsistent

A formal system & is incomplete if
there is a statement S in ¥
such that neither S nor —S are provable in F
F is complete if it is NOT incomplete

We want consistent and complete systems!

20

Limitations on Mathematics! @

For every consistent and interesting ,

Theorem 1. (Godel 1931) F must be incomplete!

“There are mathematical statements that are
true but cannot be proved.”

Theorem 2. (Godel 1931)
The consistency of cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem
of checking whether a given statement in & has

a proof is undecidable.

21

Unprovable Truths in Mathematics

Let S, , in F be true if and only if TM M accepts string w
Proof: Define TM G(w):
1. Obtain own description G [Recursion Theorem!]
2. For all strings P in lexicographical order,
If (P is a proof of S; , in F) then reject
If (P is a proof of —S; , in) then accept

Note: If F is complete then G cannot run forever!

1. If (G accepts w) then have proof P of “G doesn’t accept w”
2. If (G rejects w) then have proof P of “G accepts w”

In either case, ¥ is inconsistent! Proof of S , and —S; ,

Py

Unprovable Truths in Mathematics

Let S, , in F be true if and only if TM M accepts string w

Proof: Define TM G(w):
1. Obtain own description G [Recursion Theorem!]
2. For all strings P in lexicographical order,
If (P is a proof of S; , in F) then reject
If (P is a proof of —S; , in) then accept

Note: If F is complete then G cannot run forever!

Conclusion: G must run forever.

So in fact —S; , is a true statement, but it
(and its negation) have no proof in #!

23

Proof Sketch: Assume we can prove “F is consistent” in F
We constructed —S; |, = “G does not accept w”

which has no proof in F
G accepts w = There are proofs of S; ,, and =S; ,, in F

But if there’s a proof P of “F is consistent” in F, then
there is a proof of =S , in F (here’s the proof):

“F is consistent, because <insert proof P here>.
If S , is true, then both S; , and =S¢ , have proofs in .

But Z is consistent, so this is a contradiction.
Therefore, =S¢ |, is true.”

This contradicts the previous theorem!

24

Undecidability in Mathematics

PROVABLE . = {S | there’s a proof in F of S, or
there’s a proof in F of —S}

(Church-Turing 1936) For every interesting
consistent Z PROVABLE is undecidable

Proof: Suppose PROVABLE_ is decidable with TM P.
Then we could decide A;,, with the following procedure:
On input (M, w), run the TM P on input S, ,

If P accepts, examine all proofs in lex order
If a proof of S, , is found then accept
If a proof of —S, , is found then reject

If P rejects, then reject. Why does this work?

25

Next Episode:

Your Midterm... Good Luck!

