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Lecture 15:
NP-Complete Problems

and the
Cook-Levin Theorem
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Turing machine M has time complexity O(t(n)) if 
there is a c > 0 such that for all inputs 𝒙, 
M running on 𝒙 halts within c t(|𝒙|) + c steps

Definition: 

TIME(t(n)) = { L’ | there is a Turing machine M
with time complexity O(t(n)) so that L’ = L(M) }

= { L’ | L’ is a language decided by a Turing 
machine with ≤ c t(n) + c running time,

for some c ≥ 1 }

Time-Bounded Complexity Classes
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P =        TIME(nk)
k  N

Polynomial Time

The analogue of “decidability”
in the world of complexity theory
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{ L | L is decided by an O(t(n)) time 
nondeterministic Turing machine }

Definition: NTIME(t(n)) =

Note: TIME(t(n))  NTIME(t(n))

Is TIME(t(n)) = NTIME(t(n)) for all t(n)?

THIS IS AN OPEN QUESTION!

What can be done in “short” NTIME 
that cannot be done in “short” TIME?
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NP =       NTIME(nk)
k  N

Nondeterministic Polynomial Time

The analogue of “recognizability” in complexity

Last time we saw: 
3SAT, CLIQUE, HAMPATH are in NP
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P

Computation

NP

Computation

accept or reject accept

reject

nk

exp(nk)
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Theorem: L  NP  There is a constant k and 
polynomial-time TM V such that

L = { x |  y ϵ Σ* [|y| ≤ |x|k and V(x,y) accepts ] }

A language L is in NP if and only if there are 
“polynomial-length proofs’’ for membership 

in the language L



8

P = the problems that can be efficiently solved

NP = the problems where proposed solutions 
can be efficiently verified

Is P = NP?
Can problem solving be automated?
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Is SAT solvable in
O(𝒏) time on a multitape TM?

Logic circuits of 𝟏𝟎𝒏 gates for SAT?

If yes, then there would be a “dream machine” that 
could crank out short proofs of theorems, 

quickly optimize all aspects of life…
recognizing quality work is all you would need 

to produce quality work

THIS IS AN OPEN QUESTION!
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So how do we get a handle on a problem 
that we have no idea how to resolve?

Try to understand its consequences! 
Understand its meaning! 

Try to better understand NP problems!

In computability theory, we related problems by 
mapping reductions and oracle reductions….
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Polynomial Time Reductions

f : Σ* → Σ* is a polynomial time computable function

Language A is poly-time reducible to language B, 

written as A P B, 

if there is a poly-time computable f : Σ* → Σ* so that:

w  A  f(w)  B

We say: f is a polynomial time reduction from A to B

Note: there is a k such that for all w, |f(w)| ≤ k|w|k

if there is a poly-time Turing machine M that on 
every input w, halts with just f(w) on its tape
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A B
f

f

f converts any string w into a string f(w) such that 
w  A   f(w)  B

w f(w)

n ≤knk

n ≤knk
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Theorem: If A P B and B P C, then A P  C

A Bf

f

g

g

C

n

cnc
cdncd



14

Theorem: If A P B and B  P, then A  P

Proof: Let MB be a poly-time TM that decides B.
Let f be a poly-time reduction from A to B.

We build a machine MA that decides A as follows:

MA = On input w,

1. Compute f(w)

2. Run MB on f(w), output its answer

w  A  f(w)  B
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Theorem: If A P B and B  NP, then A  NP

Proof: Analogous…
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Theorem: If A P B and B 2 P, then A 2 P

Corollary: If A P B and A ∉ P, then B ∉ P

Theorem: If A P B and B 2 NP, then A 2 NP

Question: What are the “hardest” NP problems
under this partial ordering ≤𝑷 ?

Does there even exist a “hardest” NP problem??
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Definition: A language B is NP-complete if:

1. B  NP

2. Every A ∈ NP is poly-time reducible to B
That is, A ≤P B
When this is true, we say “B is NP-hard”

On homework, you showed (or will show!)
A language L is recognizable  iff L ≤m ATM

ATM is “complete for recognizable languages”:
ATM is recognizable, and for all recognizable L, L ≤m ATM



18

Suppose L is NP-Complete…

P
NP

L

If L  P, then P = NP!  If L ∉ P, then P ≠ NP!
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Suppose L is NP-Complete…

Then assuming the conjecture P  NP,

L is not decidable in nk time, for every k 
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NHALT = { ⟨N, x, 1𝒕⟩ | Nondeterministic TM N 
accepts input x in ≤ 𝒕 steps }

1. NHALT  NP

2. Every A in NP is poly-time reducible to NHALT
In other words, NHALT is NP-hard

Thm: There exists an NP-complete problem

Nondeterministically guess a sequence of 𝒕 transitions of N, 
then check that N following these 𝒕 transitions accepts x. 

Takes time polynomial in 𝒕, |x|, and |N|. 

For each A ∈ NP, there is an 𝒌 𝒏𝒌-time NTM N such that  
A = { x | N(x) accepts }

Reduction: Map string x to the string ⟨N, x, 1p(|x|)⟩.

Without 1𝒕, this is undecidable!
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There are thousands of 
natural NP-complete problems!

Your favorite topic certainly has an 
NP-complete problem somewhere in it

Even the other sciences are not safe:
biology, chemistry, physics have 

NP-complete problems too!
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A 3cnf-formula has the form:

(x1  x2  x3)   (x4  x2  x5)  (x3  x2  x1)

clauses

3SAT = {  |  is a satisfiable 3cnf-formula }

literals
where x1 , x2 , … are 
Boolean variables

A 3cnf-formula is satisfiable if there is a setting to 
the variables that makes the formula true.
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The Cook-Levin Theorem:
3SAT is NP-complete

“Simple Logic can encode any NP problem!”

1. 3SAT  NP
A satisfying assignment is a “proof” that a
3cnf formula is satisfiable (already done!)

2. 3SAT is NP-hard
Every language in NP can be polynomial-time 
reduced to 3SAT (complex logical formula)

Corollary:  3SAT  P if and only if P = NP
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The Cook-Levin Theorem:
3SAT is NP-complete

“Simple Logic can encode any NP problem!”

This theorem is a cornerstone of complexity theory
AND of modern (practical) system verification!

There are entire fields and conferences 
devoted solely to SAT solving!

Few theorems have had 
such an impact on both theory and practice!



25

Theorem (Cook-Levin): 3SAT is NP-complete

Proof Idea:

(1) 3SAT  NP (done)

(2) Every language A ∈ NP is polynomial time 
reducible to 3SAT (this is the challenge)

We give a poly-time reduction from A to 3SAT

For A  NP, let N be a nondeterministic TM 
deciding A in nk time

The reduction converts a string w into a 
3cnf formula  such that w  A iff   3SAT 

Idea:  will “simulate” N on w
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Let L(N)  NTIME(nk). A tableau for N on w is an 
nk  nk matrix whose rows are the configurations 
of some computation history of N on w

q0 w1 wnw2 # #… …

# #

# #

nk

nk

Each “cell” contains a
𝜎 ∈ Q  Γ  { # }
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A tableau is accepting if the last row of the tableau 
has an accept state

Therefore, N accepts string w  if and only if 
there is an accepting tableau for N on w 

Given w, we will construct a 3cnf formula  with 
O(|w|2k) clauses, describing logical constraints 
that any accepting tableau for N on w must satisfy

The 3cnf formula  will be satisfiable 
if and only if

there is an accepting tableau for N on w

Programming with Boolean logic!
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Let C = Q  Γ { # }   (constant-sized set!)

For every i and j (1  i, j  nk) and for every s  C

we make a Boolean variable xi,j,s in 

Variables of formula  will encode a tableau

Each cell of a tableau contains a symbol from C

cell[i,j]  = symbol in the cell at row i and column j
= the jth symbol in the ith configuration

The  xi,j,s variables represent the cells of a tableau

We will enforce the condition:  for all i, j, s,  

xi,j,s = 1   cell[i,j] = s

Total number of variables  = |C|n2k, which is O(n2k)
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accept : the last row of the table has an accept state

Idea: Make  so that every satisfying assignment to the 
variables xi,j,s corresponds to an accepting tableau for N
on w (an assignment to all cell[i,j]’s of the tableau)

The formula  will be the AND of four CNF formulas:

 = cell  start  accept  move

cell : for all i, j, there is a unique s  C with xi,j,s = 1

start : the first row of the table equals the start 
configuration of N on w

move : every row is a configuration that yields the 
configuration on the next row
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start = x1,1,#  x1,2,q  

x1,3,w   x1,4,w   …  x1,n+2,w  

x1,n+3,  …  x1,n  -1,  x1,n   ,#

0

1 2 n

k k

q0 w1 wnw2 # #… …

# #

start : the first row of the table equals the start 
configuration of N on w

O(nk) clauses
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accept =

1  j  nk

xn
k
,j, q

accept

accept : the last row of the table has an accept state

q0 w1 wnw2 # #… …

# #

# #qaccept
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accept =

1  j  nk

xn
k
,j, q

accept

accept : the last row of the table has an accept state

Can write the clause (a1  a2  …  at) as

(a1  a2  z1)  (z1  a3  z2)  …  (zt-3  at-1  at) 

O(nk) 3cnf clauses

How can we convert accept into a 3-cnf formula?

where zi are brand new variables.
This produces O(t) new 3cnf clauses, and the 

new formula is SAT iff the old one is SAT.
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

1  i, j  nk s  C

xi,j,s (xi,j,s  xi,j,t )cell =

s,t  C

s ≠ t

at least one 
xi,j,s is set to 1

at most one 
xi,j,s is set to 1

for all i,j

cell : for all i, j, there is a unique s  C with xi,j,s = 1

O(n2k) 3cnf clauses
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Key Question: If one row yields the next row, how 
many cells can be different between the two rows? 

move : every row is a configuration that yields the 
configuration on the next row 

Answer: AT MOST THREE CELLS!

a q1 b

q2 a c

# b a

# b a

c b #

c b #
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Key Question: If one row yields the next row, how 
many cells can be different between the two rows? 

move : every row is a configuration that yields the 
configuration on the next row 

Answer: AT MOST THREE CELLS!

a q1 b

q2 a c

# b a

# b a

c b #

c b #
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Idea: check that every 2  3 “window” of cells is legal:
consistent with the transition function of N

q0 w1 wnw2 # #… …

# #

# #

move : every row is a configuration that yields the 
configuration on the next row 

i

j

the (i,j) window
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If (q1,a) = {(q1,b,R)} and (q1,b) = {(q2,c,L), (q2,a,R)}

which of the following windows are legal?

a q1 b

q2 a c

# b a

# b a

a b a

a a a

a q1 b

a a q2

a b a

a b q2

a a q1

a a b

b b b

c b b

a q1 b

q1 a a

b q1 b

q2 b q2
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Key Lemma: 
IF  Every window of the tableau is legal, and

The 1st row is the start configuration of N on w
THEN   for all i = 1,…,nk – 1, the ith row of the tableau is 
a configuration which yields the (i+1)th row.

Proof Sketch: (Strong) induction on i. 
The 1st row is a configuration. If it didn’t yield the 2nd

row, there’s a 2 x 3 “illegal” window on 1st and 2nd rows
Assume rows 1,…,L are all configurations which yield 
the next row, and assume every window is legal. 
If row L+1 did not yield row L+2, then there’s a 2 x 3 
window along those two rows which is “illegal”
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a1 a2 a3

a4 a5 a6

row i

row i+1

col. j col. j+1 col. j+2

The (i, j) window of a tableau is the tuple (a1,…, a6)  C6

such that
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move =

1  i  nk -1 

1  j  nk -2

( the (i, j) window is legal )

(the (i, j) window is legal) = 

(a1, …, a6)

is a legal window

( xi,j,a  xi,j+1,a  xi,j+2,a  xi+1,j,a  xi+1,j+1,a  xi+1,j+2,a ) 
1 2 3 4 5 6

(a1, …, a6)

is NOT a legal window

1 2 3 4 5 6

- -- - - -≡                ( xi,j,a  xi,j+1,a  xi,j+2,a  xi+1,j,a  xi+1,j+1,a  xi+1,j+2,a ) 

move : every row is a configuration that legally
follows from the previous configuration
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move =

1  i, j  nk

( the (i, j) window is “legal” )

O(n2k) clauses

the (i, j) window is “legal” = 

(a1, …, a6)

ISN’T “legal”

1 2 3 4 5 6

- -- - - -≡                ( xi,j,a  xi,j+1,a  xi,j+2,a  xi+1,j,a  xi+1,j+1,a  xi+1,j+2,a ) 
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Summary. Our goal was to prove:
Every A in NP has a polynomial time reduction to 3SAT

For every A ∈ NP,  we know A is decided by some 
nondeterministic nk time Turing machine N

We gave a generic method to reduce N and a string w
to a 3cnf formula  of O(|w|2k) clauses such that

satisfying assignments to the variables of 
directly correspond to 

accepting computation histories of N on w

The formula  is the AND of four 3cnf formulas:
 = cell  start  accept  move



https://iwastesomuchtime.com/43776

https://iwastesomuchtime.com/43776
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Reading Assignment

Read Luca Trevisan’s notes for an 
alternative proof of the Cook-Levin Theorem!

Sketch:
1. Define CIRCUIT-SAT: Given a logical circuit C,

is there an input a such that C(a)=1? 

2. Show that CIRCUIT-SAT is NP-hard:
The nk x nk tableau for N on w can be 
simulated using a logical circuit of O(n2k) gates

3. Reduce CIRCUIT-SAT to 3SAT in polytime

4. Conclude 3SAT is also NP-hard


