
1

Lecture 17:
Finish NP-Completeness,

coNP and Friends

6.045

2

Definition: A language B is NP-complete if:

1. B ∈ NP

2. Every A in NP is poly-time reducible to B
That is, A ≤P B
When this is true, we say “B is NP-hard”

Last time: We showed
3SAT ≤P CLIQUE ≤P IS ≤P VC ≤P SUBSET-SUM ≤P KNAPSACK

All of them are in NP, and 3SAT is NP-complete,
so all of these problems are NP-complete!

3

The Knapsack Problem

Input: S = {(𝒗𝟏,𝒄𝟏)…, (𝒗𝒏,𝒄𝒏)} of pairs of positive integers
(items)

a capacity budget C
a value target V

Decide: Is there an 𝑺’ ⊆ {1,…,n} such that
σ𝒊∈𝑺′ 𝒗𝒊 ≥ V and σ𝒊∈𝑺′ 𝒄𝒊 ≤ C ?

Define: KNAPSACK = {(S, C, V) | the answer is yes}

A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete

4

KNAPSACK is NP-complete

KNAPSACK is in NP?

Theorem: SUBSET-SUM P KNAPSACK

Proof: Given an instance (S = {a1,…,an}, t)
of SUBSET-SUM, create a KNAPSACK instance:

For all i, set (vi, ci) := (ai, ai)
Define T = {(v1, c1),…, (vn, cn)}

Define C := V := t

Then, (S,t) 2 SUBSET-SUM  (T,C,V) 2 KNAPSACK

Subset of S that sums to t =
Solution to the Knapsack instance!

5

The Partition Problem

Input: Set 𝑺 = {𝒂𝟏, … , 𝒂𝒏} of positive integers

Decide: Is there an 𝑺’ ⊆ 𝑺 where (σ𝒊∈𝑺′ 𝒂𝒊) = (σ𝒊∈𝑺−𝑺′ 𝒂𝒊)?

(Formally: PARTITION is the set of all encodings of sets 𝑺
such that the answer to the question is yes.)

In other words, is there a way to partition 𝑺 into
two parts, so that both parts have equal sum?

A problem in Fair Division:
Think of 𝒂𝒊 as “value” of item 𝒊. Want to divide a set of items

into two parts 𝑺′ and 𝑺 − 𝑺′, of the same total value.
Give 𝑺′ to one party, and 𝑺 − 𝑺′ to the other.

Theorem: PARTITION is NP-complete

6

PARTITION is NP-complete

(1) PARTITION is in NP

(2) SUBSET-SUM P PARTITION

Input: Set S = {a1,…, an} of positive integers
positive integer t

Claim: (S,t) ∈ SUBSET-SUM ⇔ T ∈ PARTITION
That is, S has a subset that sums to t
⇔ T can be partitioned into two sets with equal sums
Easy case: t > i ai

Reduction: If t > i ai then output {1,2}
Else output T := {a1,…, an,2A-t,A+t}, where A := i ai

7

What’s the sum of all numbers in T? 4A

Therefore: T ∈ PARTITION
⇔ There is a T’ ⊆ T that sums to 2A.

Proof of (S,t) ∈ SUBSET-SUM ⇒ T ∈ PARTITION:

If (S,t) ∈ SUBSET-SUM, then let S’ ⊆ S sum to t.
The set S’ ∪ {2A-t} sums to 2A, so T ∈ PARTITION

Input: Set S = {a1,…, an} of positive integers, positive t

Output: T := {a1,…, an,2A-t,A+t}, where A := σi ai

Claim: (S,t) ∈ SUBSET-SUM ⇔ T ∈ PARTITION

8

Input: Set S = {a1,…, an} of positive integers, positive t

Output: T := {a1,…, an,2A-t,A+t}, where A := σi ai

Remember: sum of all numbers in T is 4A.

T ∈ PARTITION ⇔ There is a T’ ⊆ T that sums to 2A.

Proof of: T ∈ PARTITION ⇒ (S,t) ∈ SUBSET-SUM

If T ∈ PARTITION, let T’ ⊆ T be a subset that sums to 2A.
Observation: Exactly one of {2A-t,A+t} is in T’.

If (2A-t) ∈ T’, then T’ – {2A-t} sums to t. By Observation,
the set T’ – {2A-t} is a subset of S. So (S,t) ∈ SUBSET-SUM.

If (A+t) ∈ T’, then (T – T’) – {2A-t} sums to (2A – (2A-t)) = t
By Observation, (T – T’) – {2A-t} is a subset of S.
Therefore (S,t) ∈ SUBSET-SUM in this case as well.

Claim: (S,t) ∈ SUBSET-SUM ⇔ T ∈ PARTITION

9

The Bin Packing Problem

Input: Set 𝑺 = {a1,…, an} of positive integers,
a bin capacity B, and a number of bins K.

Decide: Can 𝑺 be partitioned into disjoint subsets
𝑺𝟏, … , 𝑺𝒌 such that each 𝑺𝒊 sums to at most B?

Think of 𝒂𝒊 as the capacity of item 𝒊.
Is there a way to pack the items of S into K bins,

where each bin has capacity B?

Ubiquitous problem in shipping and optimization!

Theorem: BIN PACKING is NP-complete

10

BIN PACKING is NP-complete

(1) BIN PACKING is in NP (Why?)

(2) PARTITION P BIN PACKING

Proof: Given an instance S = {a1, …, an} of PARTITION,
output an instance of BIN PACKING with:

S = {a1, …, an}
B = (i ai)/2

k = 2

Then, S ∈ PARTITION ⇔ (S,B,k) ∈ BIN PACKING:
There is a partition of S into two equal sums

iff there is a solution to this Bin Packing instance!

11

Two Problems

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH
= {(G, s, t, k) |

G has a simple path of < k edges from s to t }

LONGEST PATH
= {(G, s, t, k) |

G has a simple path of ≥ k edges from s to t }

Are either of these in P? Are both of them?

12

HAMPATH = { (G,s,t) | G is an directed graph
with a Hamiltonian path from s to t}

Theorem: HAMPATH is NP-Complete

(1) HAMPATH ∈ NP

(2) 3SAT P HAMPATH

Sipser (p.314-318) and recitation!

13

HAMPATH P LONGEST-PATH

LONGEST-PATH
= {(G, s, t, k) |

G has a simple path of ≥ k edges from s to t }

Can reduce HAMPATH to LONGEST-PATH
by observing:

(G, s, t) ∈ HAMPATH
 (G, s, t, |V|-1) ∈ LONGEST-PATH

Therefore LONGEST-PATH is NP-hard.

15

coNP and Friends

coNPNPNP

(Note: any resemblance to other characters,
living or animated, is purely coincidental)

PNP

16

NP: “Nifty Proofs”

For every L in NP,
if x ∈ L then there is a “short proof” that x ∈ L:

L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
But if x ∉ L, there might not be a short proof!

There is an asymmetry between
the strings in L and strings not in L.

Compare with a recognizable language L:
Can always verify x ∈ L in finite time (a TM accepts x),

but if x ∉ L, that could be because
the TM goes in an infinite loop on x!

17

Definition: coNP = { L | L  NP }

The instances 𝑵𝑶𝑻 in L have nifty proofs.
Recall we can write any NP problem L in the form:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}
Therefore:
L = {x | ∃y of poly(|x|) length so that V(x,y) accepts}

= {x | ∀y of poly(|x|) length, V(x,y) rejects}

Instead of using an “existentially guessing”
(nondeterministic) machine,
we can define a “universally verifying” machine!

What does a coNP problem L look like?

18

Definition: coNP = { L | ¬L ∈ NP }

A co-nondeterministic machine
has multiple computation paths,
and has the following behavior:

- the machine accepts
if all paths reach accept state

- the machine rejects
if at least one path reaches
reject state

What does a coNP computation look like?

19

Definition: coNP = { L | ¬L ∈ NP }

In NP algorithms, we can use a
“guess” instruction in pseudocode:
Guess string y of k|x|k length…
and the machine accepts if some y
leads to an accept state

In coNP algorithms, we can use a
“try all” instruction:
Try all strings y of k|x|k length…
and the machine accepts if every y
leads to an accept state

What does a coNP computation look like?

20

TAUTOLOGY = {  |  is a Boolean formula and
every variable assignment satisfies  }

Theorem: TAUTOLOGY is in coNP

How would we write pseudocode for a
coNP machine that decides TAUTOLOGY?

How would we write TAUTOLOGY as the
complement of some NP language?

21

Is P  coNP?

Yes!

L ∈ P implies that ¬L ∈ P
(hence ¬L ∈ NP)

In general, deterministic complexity
classes are closed under complement

22

Is NP = coNP?

It is believed that NP ≠ coNP

THIS IS AN OPEN QUESTION!

23

P
NP

coNP

24

Definition: A language B is coNP-complete if

1. B ∈ coNP

2. For every A in coNP, there is a
polynomial-time reduction from A to B

(B is coNP-hard)

Key Trick: Can use A ≤𝑷 B ⇔ ¬A ≤𝑷 ¬B
to turn NP-hardness into co-NP hardness

coNP = { L | ¬L ∈ NP }

25

UNSAT = {  |  is a Boolean formula and no
variable assignment satisfies  }

Theorem: UNSAT is coNP-complete

Proof: (1) UNSAT ∈ coNP (why?)

(2) UNSAT is coNP-hard:

Let A ∈ coNP. We show A P UNSAT

Since A ∈ NP, we have A P 3SAT by the Cook-
Levin theorem. This reduction already works!

w ∈ A ⇒ w ∈ 3SAT

w ∉  A ⇒ w ∉ 3SAT

w ∉ A ⇒ w ∉ UNSAT

w ∈ A ⇒ w ∈ UNSAT

26

TAUTOLOGY = {  |  is a Boolean formula and
every variable assignment satisfies  }

= { |   UNSAT}

Theorem: TAUTOLOGY is coNP-complete

(1) TAUTOLOGY  coNP (already shown)

(2) TAUTOLOGY is coNP-hard:

UNSAT P TAUTOLOGY:
Given Boolean formula , output 

UNSAT = {  |  is a Boolean formula and no
variable assignment satisfies  }

Theorem: UNSAT is coNP-complete

27

Is P = NP  coNP?

THIS IS AN OPEN QUESTION!

NP ∩ coNP = { L | L and L  NP }

L ∈ NP ∩ coNP means that
both 𝒙 ∈ L and 𝒙 ∉ L have “nifty proofs”

28

Is P = NP ∩ coNP?

Why might this be true?

Why might this be false?

Analogy with computability

If it’s true, most crypto fails!

29

FACTORING
= { (n, k) | n > k > 1 are integers written in binary,
and there is a prime factor p of n where k ≤ p < n }

If FACTORING  P, we could potentially use the
algorithm to factor every integer, and break RSA!
Can binary search on k to find a prime factor of n.
More details in slides posted online

Theorem: FACTORING 2 NP ∩ coNP

An Interesting Problem in NP ∩ coNP

30

PRIMES = {n | n is a prime number
written in binary}

PRIMES is in P
Manindra Agrawal, Neeraj Kayal and Nitin Saxena
Ann. of Math. Volume 160, Number 2 (2004), 781-793.
Abstract
We present an unconditional deterministic polynomial-
time algorithm that determines whether an input
number is prime or composite.

Theorem (Pratt ‘70s): PRIMES  NP  coNP

http://projecteuclid.org/handle/euclid.annm

Theorem: FACTORING  NP  coNP

Proof: (1) FACTORING  NP

(2) FACTORING  coNP

A prime factor p of n such that p ≥ k is a proof that
(n, k) is in FACTORING
(can check primality in P, can check p divides n in P)

The prime factorization p1
e1 … pm

em of n is a proof
that (n, k) is not in FACTORING:

Verify each pi is prime in P, and that p1
e1 … pm

em = n
Verify that for all i=1,…,m that pi < k

FACTORING
= { (n, k) | n > k > 1 are integers written in binary,

there is a prime factor p of n where k ≤ p < n }

Theorem: If FACTORING  P, then there is
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

Idea: Binary search for the prime factor!
Given binary integer n, initialize an interval [2,n].
If (n, 2) is not in FACTORING then output “PRIME”
If (n,⌈n/2⌉) is in FACTORING then

shrink interval to [⌈n/2⌉,n] (set k := ⌈3n/4⌉)
else, shrink interval to [2,⌈n/2⌉] (set k := ⌈n/4⌉)

Keep picking k to halve the interval after each (n,k) call
to FACTORING. Takes O(log n) calls to FACTORING!

FACTORING
= { (n, k) | n > k > 1 are integers written in binary,

there is a prime factor p of n where k ≤ p < n }

