6.045

Lecture 17:
Finish NP-Completeness,
coNP and Friends



Definition: A language B is NP-complete if:

1. BENP

2. Every A in NP is poly-time reducible to B
Thatis, A<, B
When this is true, we say “B is NP-hard”

Last time: We showed
3SAT <, CLIQUE <, IS <, VC <, SUBSET-SUM <, KNAPSACK

All of them are in NP, and 3SAT is NP-complete,
so all of these problems are NP-complete!



The Knapsack Problem .

Input: S ={(v,,c,)..., (v,,,c,)} of pairs of positive integers
(items)
a capacity budget C
a value target V

Decide: Is there an S’ € {1,...,n} such that
Yies,VizVand Y, g ¢c;<C?

Define: KNAPSACK = {(S, C, V) | the answer is yes}
A classic economics/logistics/OR problem!

Theorem: KNAPSACK is NP-complete



KNAPSACK is NP-complete

KNAPSACK is in NP?

Theorem: SUBSET-SUM <, KNAPSACK

Proof: Given an instance (S = {a,,...,a,}, t)
of SUBSET-SUM, create a KNAPSACK instance:
For all i, set (v, ¢;) :=(a,, a,)
Define T = {(v,, ¢,),..., (v, ¢,)}
DefineC:=V:=t

Then, (S,t) € SUBSET-SUM < (T,C,V) € KNAPSACK

Subset of S that sumstot =
Solution to the Knapsack instance!



The Partition Problem

Input: Set § ={a,, ..., a,,} of positive integers
Decide: Is there an S’ C S where ();cq, @) = (X jes_s @i)?

(Formally: PARTITION is the set of all encodings of sets S
such that the answer to the question is yes.)

In other words, is there a way to partition S into
two parts, so that both parts have equal sum?

A problem in Fair Division:
Think of a; as “value” of item i. Want to divide a set of items
into two parts S’ and S — S, of the same total value.
Give S’ to one party, and S — S’ to the other.

Theorem: PARTITION is NP-complete



PARTITION is NP-complete

(1) PARTITION is in NP
(2) SUBSET-SUM <, PARTITION

Input: Set S = {a,,..., a,,} of positive integers
positive integer t
Reduction: If t > >.. a.then output {1,2}
Else output T := {a,,..., a,,2A-t,A+t}, where A := 2. a.

Claim: (S,t) € SUBSET-SUM & T € PARTITION
That is, S has a subset that sums to t

& T can be partitioned into two sets with equal sums
Easy case:t > 2. a.



Input: Set S = {a,,..., a,} of positive integers, positive t
Output: T :={a,,..., a,,2A-t,A+t}, where A := ) . a.

Claim: (S,t) € SUBSET-SUM < T € PARTITION

What’s the sum of all n umbers in T? 4A

Therefore: T € PARTITION
& Thereisa T’ C T that sums to 2A.

Proof of (S,t) € SUBSET-SUM = T € PARTITION:

If (S,t) € SUBSET-SUM, then let S’ € S sum to t.
The set S’ U {2A-t} sums to 2A, so T € PARTITION



Input: Set S = {a,,..., a,} of positive integers, positive t
Output: T :={a,,..., a,,2A-t,A+t}, where A := ) . a.
Remember: sum of all numbers in T is 4A.

Claim: (S,t) € SUBSET-SUM < T € PARTITION
T € PARTITION & Thereisa T’ € T that sums to 2A.
Proof of: T € PARTITION = (S,t) € SUBSET-SUM

If T € PARTITION, let T’ € T be a subset that sums to 2A.
Observation: Exactly one of {2A-t,A+t} isin T'.

If (2A-t) € T/, then T’ — {2A-t} sums to t. By Observation,

the set T’ — {2A-t} is a subset of S. So (S,t) € SUBSET-SUM.

If (A+t) € T, then (T —T’) — {2A-t} sums to (2A — (2A-t)) =t
By Observation, (T — T’) — {2A-t} is a subset of S.
Therefore (S,t) € SUBSET-SUM in this case as well.

8



The Bin Packing Problem $

Input: Set S ={a,,..., a,} of positive integers,
a bin capacity B, and a number of bins K.
Decide: Can S be partitioned into disjoint subsets
S1,...,8 such that each S; sums to at most B?

Think of a; as the capacity of item i.
Is there a way to pack the items of S into K bins,
where each bin has capacity B?

Ubiquitous problem in shipping and optimization!

Theorem: BIN PACKING is NP-complete



BIN PACKING is NP-complete

(1) BIN PACKING is in NP (Why?)

(2) PARTITION <, BIN PACKING

Proof: Given an instance S = {a,, ..., a,} of PARTITION,
output an instance of BIN PACKING with:

S={a, .., a,}
B= (Z. a;)/2
k=2

Then, S € PARTITION < (S,B,k) € BIN PACKING:
There is a partition of S into two equal sums
iff there is a solution to this Bin Packing instance!

10



Two Problems

Let G denote a graph, and s and t denote nodes.

SHORTEST PATH
={(G, s, t, k) |
G has a simple path of < k edges fromstot}

LONGEST PATH
={(G, s, t, k) |
G has a simple path of > k edges fromsto t}

Are either of these in P? Are both of them?

11



HAMPATH = { (G,s,t) | G is an directed graph
with a Hamiltonian path from s to t}

Theorem: HAMPATH is NP-Complete
(1) HAMPATH € NP

(2) 3SAT <, HAMPATH

Sipser (p.314-318) and recitation!

12



HAMPATH <, LONGEST-PATH

LONGEST-PATH
={(G, s, t, k) |
G has a simple path of > k edges fromsto t}

Can reduce HAMPATH to LONGEST-PATH
by observing:

(G, s, t) € HAMPATH
< (G, s, t, |V]-1) € LONGEST-PATH

Therefore LONGEST-PATH is NP-hard.

13



MY HOBBY:
EMBEDDING NP-(OMPLETE PROBLEMS IN RESTAURANT ORDERS

i

% CHOTCHKIES R EsTw;;ﬂ
2 == =TA

«— APPENZERS —
MIXED FRUIT 2.15
FRENCH FRIES 2.75
SIDE SALAD 3.35
HOT WINGS 3.55
MOZZAREUA STICKS  4-20
SAMPLER PLATE 5.80

—— GANDWICHES ~—

WED LIKE EXACTLY §15. 05
WORTH OF APPETIZERS, PLEASE.

ﬁ . EXACTLY?  UHH ..

HERE, THESE PRPERS ON THE KNAPSACK,
PROBLEM MIGHT HELP YOU QUT.

LISTEN, I HAVE 5ix OTHER
TABLES TO GET TD —

= AS FAST A5 POSSIELE (F (DURSE. WA
SCMETHING ON Tﬁmﬂm SALESMANT /

%ﬁ%’%,




coNP and Friends

(Note: any resemblance to other characters,
living or animated, is purely coincidental)

15



NP: “Nifty Proofs™

For every L in NP,
if X € L then there is a “short proof” that x € L:
L ={x | Iy of poly(|x]|) length so that V(x,y) accepts}
But if x € L, there might not be a short proof!

There is an asymmetry between
the strings in L and strings not in L.

Compare with a recognizable language L.:
Can always verify x € L in finite time (a TM accepts x),
but if x € L, that could be because
the TM goes in an infinite loop on x!

16



Definition: coNP={L | —L € NP }
What does a coNP problem L look like?

The instances NOT in L have nifty proofs.

Recall we can write any NP problem L in the form:

L ={x | 3y of poly(|x|) length so that V(x,y) accepts}

Therefore:

—L ={x | =3y of poly(|x|) length so that V(x,y) accepts}
= {x | Vy of poly(|x|) length, V(x,y) rejects}

Instead of using an “existentially guessing”
(nondeterministic) machine,
we can define a “universally verifying” machine!

17



Definition: coNP={L | =L E NP}

What does a coNP computation look like?

/ !\ A co-nondeterministic machine
/'\ I\ has multiple computation paths,
I '/'\' and has the following behavior:
) I /I\ - the machine accepts
/I I ° if all paths reach accept state
< o 7 - the machine rejects
1 if at least one path reaches

/ \ reject state
I

18



Definition: coNP={L | =L E NP}

What does a coNP computation look like?

/I\ In NP algorithms, we can use a
/'\' I\ “guess” instruction in pseudocode:

. ¢« T % Guess string y of k| x|* length...
l / \ and the machine accepts if somey

I /I\ leads to an accept state
/1 | In coNP algorithms, we can use a
) I * “try all” instruction:
. Try all strings y of k[ x[* length...

./ \ and the machine accepts if every y
1 leads to an accept state

19



TAUTOLOGY ={ ¢ | ¢ is a Boolean formula and
every variable assignment satisfies ¢ }

Theorem: TAUTOLOGY is in coNP

How would we write pseudocode for a
coNP machine that decides TAUTOLOGY?

How would we write TAUTOLOGY as the
complement of some NP language?

20



Is P — coNP?

Yes!

L € P implies that L€ P
(hence —L € NP)

In general, deterministic complexity
classes are closed under complement

21



Is NP = coNP?

THIS IS AN OPEN QUESTION!

It is believed that NP #= coNP







coNP={L| =L E NP}

Definition: A language B is coNP-complete if

1. B € coNP

2. For every A in coNP, there is a
polynomial-time reduction from Ato B
(B is coNP-hard)

Key Trick: Canuse A<pB < —-A<p B
to turn NP-hardness into co-NP hardness

24



UNSAT ={ ¢ | ¢ is a Boolean formula and no
variable assighment satisfies ¢ }

Theorem: UNSAT is coNP-complete
Proof: (1) UNSAT € coNP (why?)
(2) UNSAT is coNP-hard:

Let A € coNP. We show A <, UNSAT

Since —A € NP, we have —A <, 3SAT by the Cook-
Levin theorem. This reduction already works!

WE—A = ¢,E3SAT |[w¢ A=, & UNSAT

we&—-A=¢, & 3SAT w E A = ¢, € UNSAT

25



UNSAT ={ ¢ | ¢ is a Boolean formula and no
variable assighment satisfies ¢ }

Theorem: UNSAT is coNP-complete

TAUTOLOGY ={ ¢ | ¢ is a Boolean formula and
every variable assignment satisfies ¢ }
= {0 | ¢ € UNSAT}

Theorem: TAUTOLOGY is coNP-complete

(1) TAUTOLOGY € coNP (already shown)

(2) TAUTOLOGY is coNP-hard:

UNSAT <, TAUTOLOGY:
Given Boolean formula ¢, output —¢

26



NPNcoNP={L|Land—L € NP}

L € NP N coNP means that
both x € L and x & L have “nifty proofs”

Is P= NP N coNP?

THIS IS AN OPEN QUESTION!




Is P= NP N coNP?

w4 i ‘3&2&?«" o \_~ 5\%*‘ A'l

W g e~
AL \ -~ =
A i o= Sam—t II
<] ¥ XS — o 4 >
bl - s e a
y ~ ~ B P —
g > (= R AN |
X = - s o | >
. Bl ~ ,
S pahat S ST oy
- gt % -t l
Y

|\\
'“l,.

= *I? e

Why might this be true?

Analogy with computability {§~<

Why might this be false?

If it’s true, most crypto fails! i

28



An Interesting Problem in NP N coNP

FACTORING
= {(n, k) | n>k>1 are integers written in binary,

and there is a prime factor p of n wherek<p<n}

If FACTORING € P, we could potentially use the
algorithm to factor every integer, and break RSA!
Can binary search on k to find a prime factor of n.
More details in slides posted online

Theorem: FACTORING € NP N coNP

29



PRIMES ={n | nis a prime number
written in binary}

Theorem (Pratt ‘70s): PRIMES € NP N coNP

PRIMES isin P

Manindra Agrawal, Neeraj Kayal and Nitin Saxena

Ann. of Math. Volume 160, Number 2 (2004), 781-793.
Abstract

We present an unconditional deterministic polynomial-
time algorithm that determines whether an input
number is prime or composite.

30


http://projecteuclid.org/handle/euclid.annm

FACTORING
= {(n, k) | n>k >1 are integers written in binary,
there is a prime factor p of n where k<p<n}

Theorem: FACTORING € NP N coNP

Proof: (1) FACTORING € NP

A prime factor p of n such that p = k is a proof that
(n, k) is in FACTORING

(can check primality in P, can check p divides n in P)
(2) FACTORING € coNP

The prime factorization p,el ... p_em of n is a proof

that (n, k) is not in FACTORING:
Verify each p, is prime in P, and that p,el ... p_em=n
Verify that for all i=1,...,m that p, <k



FACTORING
= {(n, k) | n>k > 1 are integers written in binary,
there is a prime factor p of n where k<p<n}

Theorem: If FACTORING € P, then there is
a polynomial-time algorithm which, given an integer n,
outputs either “n is PRIME” or a prime factor of n.

Idea: Binary search for the prime factor!
Given binary integer n, initialize an interval [2,n].
If (n, 2) is not in FACTORING then output “PRIME”
If (n,[n/2]) is in FACTORING then

shrink interval to [[n/2],n] (set k := [3n/4])

else, shrink interval to [2,[n/2]] (set k := [n/4])
Keep picking k to halve the interval after each (n,k) call
to FACTORING. Takes O(log n) calls to FACTORING!



