6.045

Lecture 20:
PSPACE-Complete problems,
Complexity as Games

PSPACE

EXPTIME

PSPACE =\) SPACE(n)
k€N

NPSPACE = __J NSPACE(n¥)
k€N

Last time: Savitch’s Theorem

= PSPACE = NPSPACE!

PSPACE-complete
problems

Definition: Language B is PSPACE-complete if:

1. B € PSPACE
2. Every A in PSPACE is poly-time reducible to B

(i.e. B is PSPACE-hard) .

Theorem: If B is PSPACE-complete and Bisin P
then P = PSPACE

Idea: Let A € PSPACE. Our poly-time TM for
A first reduces its input x to an instance y of B.
Then it runs the poly-time TM for B on y,

and outputs its answer.

Definition: Language B is PSPACE-complete if:

1. B € PSPACE
2. Every A in PSPACE is poly-time reducible to B

(i.e. B is PSPACE-hard) .

Theorem: If B is PSPACE-complete and B is in NP
then NP = PSPACE

Idea: Let A € PSPACE. Our NP machine for A reduces
its input x to an instance y of B. Then it runs

a nhondeterministic poly-time TM for B on y,

and outputs its answer.

Definition:
A fully quantified Boolean formula is a Boolean
formula where every variable in the formula is

quantified (3 or V) at the beginning the formula.
These formulas are either true or false

A3y [X v =y]
VX[XV -—=X]
VX[X]
VXAy [(X VY) A (=X v =y)]

TQBF ={ ¢ | ¢ is a true fully quantified
Boolean formula}

- SAT is the special case where all
quantifiers on all variables are 3

- TAUTOLOGY is the special case where all
quantifiers are V

So, SAT <p TQBF and TAUTOLOGY <p TQBF

Theorem (Meyer-Stockmeyer):
TQBF is PSPACE-complete

TQBF is in PSPACE

QBF-SOLVER(d):

1. If ¢ has no quantifiers, then it is an
expression with only constants. Evaluate ¢.
Accept iff ¢ evaluates to 1.

2. If ¢ = dx v, call QBF-SOLVER on y twice:
first with x set to 0, then with x set to 1.
Accept iff at least one call accepts.

3. If ¢ = Vx vy, call QBF-SOLVER on vy twice:
first with x set to 0, then with x set to 1.
Accept iff both calls accept.

Why does this take polynomial space?

TQBF is PSPACE-hard: Every language A in PSPACE
is polynomial time reducible to TQBF

We’ll outline a proof of this. The missing details
aren’t necessary, but please ask questions!

For every language A is in PSPACE,
there is some k and some deterministic TM M
that decides A using space < cn€

Our polynomial-time reduction will map every
string w to a fully quantified Boolean formula ¢
of O(n2°) size that simulates M on w

10

A tableau for M on w is an table whose rows are
the configurations of M on input w

Could be
exponentially
long!

2O(nc)

Fix M and w. We’ll construct a QBF ¢ that is true
if and only if M accepts string w of length n

Let s(n) := cn®.

There is a b = 1 such that each configuration C of M on
w can be written as a b - s(n) bit string C = C; -+ Cp.5p)
For integers k > 0, we’ll construct QBF ¢, (C,D)

For all strings C,D, ¢,(C,D) is true if and only if
M starting in config C reaches config D in < 2¥ steps

Then we'll set ¢ := ¢y, () (CsaryCacc)y Where

C..... = initial configuration of M on w,
C... = (unique) accepting configuration of M

Why would k = b s(n) suffice?

12

IDEA:

Encode Savitch’s theorem in Logic!

3 guess the configuration in the “middle” of the
computation, and use recursion and V quantifiers to
write the acceptance condition as a poly-sized QBF!

For two configurations C and D of our TM,

¢,(C,D) will be true if and only if

C reaches D after < 2* steps.

¢,(C,D) := “there exists a configuration E such
that ¢,,_,(C,E) is true and ¢,_,(E,D) is true”

Goal: If M uses n¢ space on inputs of length n,
then our final QBF ¢ will have size O(n%°)

13

If k = 0, then ¢, (C,D) should look like:

¢,(C,D) = “C equals D” OR
“D follows from C in a single step of M”

How do we logically express “C equals D”?

Write a Boolean formula saying that the block of
b s(n) variables representing config C equals the
block of b s(n) variables representing config D

b _
/\i=s1(n) (C; = D;) = A ((C; VD) A(—CyV Dy))

“D follows from C in a single step of M"”?
Use 2 x 3 windows as in the Cook-Levin theorem:
“For all 2 x 3 windows W between C and D,
and for all illegal windows W’, (W = W’)”

14

For k > 0, let’s try to construct ¢, recursively:

(I)k (CID) =’3E [(I)k-l(CIE) A (I)k-l(EID)]

de, de,...de; where S =b cn°®

But how long is this formula??

It will be of length > 2. Every level of the recursion
reduces k by 1, but roughly doubles the formula size!
We can get around this. Modify the formula to be:

¢, (C,D)=3E VXY [((X,Y)=(C,E) v (X,Y)=(E,D))
= ¢k-1(X)Y)]
This “folds” the two recursive sub-formulas into one!

15

0, (C,D) = 3E VXY [((X,Y)=(C,E) v (X,Y)=(E,D))
= (I)k-l(XIY)]

Set ¢ = @, (C,,,1,C,cc) Where h = b s(n)

distrue < Onw,reach C__fromC,..in < 205 steps
& M accepts w

Each recursive step in ¢, adds a subformula of size O(s(n))

The size of ¢, satisfies the recurrence
size(k) < size(k-1) + O(s(n)), size(0) < O(s(n))
which solves to size(k) < O(k s(n))

Number of levels of recursion in ¢ is h < O(s(n))
Therefore the size of ¢ is O(s(n)?)

16

Complexity Theory as Games

NP captures many “one-player” games
with perfect information

Example 1: Generalized versions of many games
Super Mario, Donkey Kong, Legend of Zelda, etc.
are NP-hard
https://arxiv.orgd/pdf/1203.1895v1.pdf

In particular, it is NP-hard to tell if you can
finish an arbitrary level of these games!

17

https://arxiv.org/pdf/1203.1895v1.pdf

Complexity Theory as Games

NP captures many “one-player” games
with perfect information

Example 2: There are Android games which

are literally the Circuit-SAT problem!

18

See Circuit Scramble | i

Complexity Theory as Games

P captures short “zero-player” games
(Letting this game play out by itself, will it lead to a “win” or not?)

Example of a Zero-Player Game: Conway’s Game of Life

Played on an infinite 2d grid

Each cell is “alive” or “dead”

In one step of the game:

 Any live cell with 2 or 3 live
neighbors remains live

 Any dead cell with 3 live neighbors
becomes live

* All other cells are dead

19

Complexity Theory as Games

P captures short “zero-player” games
(Letting this game play out by itself, will it lead to a “win” or not?)

Example of a Zero-Player Game: Conway’s Game of Life

Played on an infinite 2d grid

Each cell is “alive” or “dead”

In one step of the game:

 Any live cell with 2 or 3 live
neighbors remains live

 Any dead cell with 3 live neighbors
becomes live

* All other cells are dead

20

Complexity Theory as Games

P captures short “zero-player” games
(Letting this game play out by itself, will it lead to a “win” or not?)

Example of a Zero-Player Game: Conway’s Game of Life

Theorem: Given an arbitrary 2d grid
with finitely many alive cells and
another given pattern,

it is undecidable to determine if that
pattern will ever eventually appear!

A fundamentally unpredictable
and universal little game!

P

Complexity Theory as Games

PSPACE is...

a complexity class for
two-player games of perfect information!

For formalizations of
many popular two-player games,
it is PSPACE-complete to decide
which player has a winning strategy
on a game board!

TQBF as a Two-Player Game

Two players, called E and A

Given a fully quantified Boolean formula

AyVX[(X VY) A (—=XxV —y)]

The game starts at the leftmost quantified variable

E chooses values for variables quantified by

A chooses values for variables quantified by V

E wins if the resulting formula evaluates to true

A wins otherwise

23

Examples: Vx3y [(x Vy) A (—x Vv —y)]

E has a winning strategy: no matter what A sets x to,
E can set y to make the formula true

IxVy[xv—-y |

E has a winning strategy: setx =1

FG = { ¢ | Player E has a winning strategy on ¢ }
Theorem: FG is PSPACE-Complete

FG = TQBF

¢ is true < Player E has a winning strategy on ¢!

Proof:

24

The Geography Game

Two players take turns naming cities from
anywhere in the world

Each city chosen must begin with the same letter
that the previous city ended with

Austin > Newark —» Kalamazoo — Opelika

Cities cannot be repeated

Whenever someone can no longer name
any more cities, they lose and the other player wins

25

Generalized Geography

Geography played on a directed graph

Nodes represent cities. Edges represent moves.
An edge (a,b) means: “if the current city is a, then
a player could choose city b next”

But cities cannot be repeated!
Each city can be visited at most once

Whenever a player cannot move to any adjacent city,
they are “stuck”— they lose and the other player wins

Given a graph and a node 3,
does Player 1 have a winning strategy starting from a?

Like a two-player Hamiltonian path problem!

26

