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Lecture 20:
PSPACE-Complete problems,

Complexity as Games
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PSPACE =         SPACE(nk)
k ∈ N

NPSPACE =          NSPACE(nk)
k ∈ N

Last time: Savitch’s Theorem

⇒ PSPACE = NPSPACE!
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PSPACE-complete
problems
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Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE

2. Every A in PSPACE is poly-time reducible to B
(i.e. B is PSPACE-hard)

Why poly-time?

Theorem: If B is PSPACE-complete and B is in P
then P = PSPACE

Idea: Let A ∈ PSPACE. Our poly-time TM for 
A first reduces its input 𝒙 to an instance 𝒚 of B.
Then it runs the poly-time TM for B on 𝒚, 
and outputs its answer.



6

Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE

2. Every A in PSPACE is poly-time reducible to B
(i.e. B is PSPACE-hard)

Why poly-time?

Theorem: If B is PSPACE-complete and B is in NP
then NP = PSPACE

Idea: Let A ∈ PSPACE. Our NP machine for A reduces 
its input 𝒙 to an instance 𝒚 of B. Then it runs 
a nondeterministic poly-time TM for B on 𝒚, 
and outputs its answer.
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Definition: 
A fully quantified Boolean formula is a Boolean 
formula where every variable in the formula is 
quantified (∃ or ∀) at the beginning the formula.

These formulas are either true or false

x  yxy [ ]

x [ x  x ]

x [ x ]

xy [ (x  y)  (x  y) ]



8

TQBF = {  |  is a true fully quantified 
Boolean formula}

Theorem (Meyer-Stockmeyer): 
TQBF is PSPACE-complete

- SAT is the special case where all 
quantifiers on all variables are ∃

- TAUTOLOGY is the special case where all 
quantifiers are ∀

So, SAT ≤𝑷 TQBF and TAUTOLOGY ≤𝑷 TQBF
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TQBF is in PSPACE

QBF-SOLVER():

1. If  has no quantifiers, then it is an 
expression with only constants. Evaluate .
Accept iff  evaluates to 1.

2. If  = x , call QBF-SOLVER on  twice:
first with x set to 0, then with x set to 1. 
Accept iff at least one call accepts.   

3. If  = x , call QBF-SOLVER on  twice: 
first with x set to 0, then with x set to 1. 
Accept iff both calls accept.   

Why does this take polynomial space? 
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TQBF is PSPACE-hard: Every language A in PSPACE 
is polynomial time reducible to TQBF

Our polynomial-time reduction will map every 
string w to a fully quantified Boolean formula 
of O(n2c) size that simulates M on w

For every language A is in PSPACE, 
there is some k and some deterministic TM M
that decides A using space ≤ cnc

We’ll outline a proof of this. The missing details 
aren’t necessary, but please ask questions!
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A tableau for M on w is an table whose rows are 
the configurations of M on input w

q0 w1 wnw2 # #… …

# #

# #

cnc

2
O(nc)

Could be
exponentially 

long!



12

Fix M and w. We’ll construct a QBF  that is true 
if and only if M accepts string w of length n

There is a b ≥ 1 such that each configuration C of M on 
w can be written as a b ⋅ s(n) bit string 𝑪 = 𝑪𝟏⋯𝑪𝒃⋅𝒔 𝒏
For integers 𝒌 ≥ 0,  we’ll construct QBF 𝒌(C,D)

For all strings C,D,  𝒌(C,D) is true if and only if 
M starting in config C reaches config D in ≤ 𝟐𝒌 steps

Then we’ll set  := b s(n) (Cstart,Cacc), where

Let s(n) := cnc. 

Why would k = b s(n) suffice?

Cstart = initial configuration of M on w, 
Cacc = (unique) accepting configuration of M
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IDEA:

Encode Savitch’s theorem in Logic!
∃ guess the configuration in the “middle” of the 

computation, and use recursion and ∀ quantifiers to 
write the acceptance condition as a poly-sized QBF! 

For two configurations C and D of our TM, 
𝒌(C,D) will be true if and only if 
C reaches D after ≤ 𝟐𝒌 steps.
𝒌(C,D) ≔ “there exists a configuration E such 

that𝒌−1(C,E) is true and 𝒌−1(E,D) is true”

Goal: If M uses nc space on inputs of length n, 
then our final QBF will have size O(n2c)
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If k = 0, then 𝒌(C,D) should look like:

𝟎(C,D) = “C equals D” OR
“D follows from C in a single step of M” 

How do we logically express “C equals D”?
Write a Boolean formula saying that the block of  
b s(n) variables representing config C equals the 
block of b s(n) variables representing config D

“D follows from C in a single step of M”? 
Use 2 x 3 windows as in the Cook-Levin theorem:

“For all 2 x 3 windows W between C and D,
and for all illegal windows W’, (W ≠ W’)”

∧𝒊=𝟏
𝒃 𝒔 𝒏 𝑪𝒊 = 𝑫𝒊 ≡ ∧𝒊 ((𝑪𝒊 ∨ ¬𝑫𝒊) ∧ (¬𝑪𝒊 ∨ 𝑫𝒊))
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For k > 0, let’s try to construct k recursively:

k (C,D) = E [k-1(C,E)  k-1(E,D)]

e1 e2 …eS where S = b cnc

But how long is this formula??

k(C,D) = E X,Y [( (X,Y)=(C,E)  (X,Y)=(E,D) ) 
⇒ k-1(X,Y) ]

It will be of length ≥ 𝟐𝒌. Every level of the recursion 
reduces 𝒌 by 1, but roughly doubles the formula size!
We can get around this. Modify the formula to be:

This “folds” the two recursive sub-formulas into one!
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Set  = h (Cstart,Cacc) where h = b s(n)

 is true ⇔ On w, reach Cacc from Cstart in ≤ 𝟐𝒃 𝒔 𝒏 steps 
⇔ M accepts w

Each recursive step in k adds a subformula of size O(s(n))

The size of k  satisfies the recurrence
size(k) ≤ size(k-1) + O(s(n)),  size(0) ≤ O(s(n))

which solves to size(k) ≤ O(k s(n))

Number of levels of recursion in  is h ≤ O(s(n))
Therefore the size of  is O(s(n)2)

k(C,D) = E X,Y [( (X,Y)=(C,E)  (X,Y)=(E,D) ) 
⇒ k-1(X,Y) ]
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NP captures many “one-player” games 
with perfect information

Example 1: Generalized versions of many games
Super Mario, Donkey Kong, Legend of Zelda, etc. 

are NP-hard
https://arxiv.org/pdf/1203.1895v1.pdf

In particular, it is NP-hard to tell if you can 
finish an arbitrary level of these games!

Complexity Theory as Games

https://arxiv.org/pdf/1203.1895v1.pdf
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NP captures many “one-player” games 
with perfect information

Example 2: There are Android games which 
are literally the Circuit-SAT problem!

See Circuit Scramble              and Make It True          

Complexity Theory as Games
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Played on an infinite 2d grid
Each cell is “alive” or “dead”
In one step of the game:
• Any live cell with 2 or 3 live 

neighbors remains live
• Any dead cell with 3 live neighbors 

becomes live
• All other cells are dead

P captures short “zero-player” games 
(Letting this game play out by itself, will it lead to a “win” or not?) 

Example of a Zero-Player Game: Conway’s Game of Life

Complexity Theory as Games
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Played on an infinite 2d grid
Each cell is “alive” or “dead”
In one step of the game:
• Any live cell with 2 or 3 live 

neighbors remains live
• Any dead cell with 3 live neighbors 

becomes live
• All other cells are dead

P captures short “zero-player” games 
(Letting this game play out by itself, will it lead to a “win” or not?) 

Example of a Zero-Player Game: Conway’s Game of Life

Complexity Theory as Games



21

Theorem: Given an arbitrary 2d grid 
with finitely many alive cells and 
another given pattern, 
it is undecidable to determine if that 
pattern will ever eventually appear!

A fundamentally unpredictable
and universal little game!

P captures short “zero-player” games 
(Letting this game play out by itself, will it lead to a “win” or not?) 

Example of a Zero-Player Game: Conway’s Game of Life

Complexity Theory as Games
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PSPACE is…

For formalizations of 
many popular two-player games, 
it is PSPACE-complete to decide 

which player has a winning strategy
on a game board!

Complexity Theory as Games

a complexity class for
two-player games of perfect information!
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TQBF as a Two-Player Game

Two players, called E and A

Given a fully quantified Boolean formula 

E chooses values for variables quantified by 

A chooses values for variables quantified by 

The game starts at the leftmost quantified variable

E wins if the resulting formula evaluates to true

A wins otherwise

yx [ (x  y)  (x  y) ]
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FG = {  | Player E has a winning strategy on  }

Theorem: FG is PSPACE-Complete

Proof: 

FG = TQBF

Examples: xy [ (x  y)  (x  y) ]

x  yxy [ ]

E has a winning strategy: no matter what A sets x to, 
E can set y to make the formula true

E has a winning strategy: set x = 1

 is true  Player E has a winning strategy on !
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The Geography Game

Two players take turns naming cities from 
anywhere in the world

Each city chosen must begin with the same letter 
that the previous city ended with

Austin → Newark → Kalamazoo → Opelika

Cities cannot be repeated

Whenever someone can no longer name 
any more cities, they lose and the other player wins
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Geography played on a directed graph

Nodes represent cities. Edges represent moves.
An edge (a,b) means: “if the current city is a, then 
a player could choose city b next”

But cities cannot be repeated! 
Each city can be visited at most once  

Whenever a player cannot move to any adjacent city,
they are “stuck”– they lose and the other player wins

Generalized Geography 

Like a two-player Hamiltonian path problem!

Given a graph and a node a, 
does Player 1 have a winning strategy starting from a?


