
1

Lecture 20:
PSPACE-Complete problems,

Complexity as Games

6.045

2

P

PSPACE

FACTORING

coNP

TAUT

NP

SAT NPNP

coNPNP

MIN-FORMULA

PNP

EXPTIME

FIRST-SAT

3

PSPACE = SPACE(nk)
k ∈ N

NPSPACE = NSPACE(nk)
k ∈ N

Last time: Savitch’s Theorem

⇒ PSPACE = NPSPACE!

4

PSPACE-complete
problems

5

Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE

2. Every A in PSPACE is poly-time reducible to B
(i.e. B is PSPACE-hard)

Why poly-time?

Theorem: If B is PSPACE-complete and B is in P
then P = PSPACE

Idea: Let A ∈ PSPACE. Our poly-time TM for
A first reduces its input 𝒙 to an instance 𝒚 of B.
Then it runs the poly-time TM for B on 𝒚,
and outputs its answer.

6

Definition: Language B is PSPACE-complete if:

1. B ∈ PSPACE

2. Every A in PSPACE is poly-time reducible to B
(i.e. B is PSPACE-hard)

Why poly-time?

Theorem: If B is PSPACE-complete and B is in NP
then NP = PSPACE

Idea: Let A ∈ PSPACE. Our NP machine for A reduces
its input 𝒙 to an instance 𝒚 of B. Then it runs
a nondeterministic poly-time TM for B on 𝒚,
and outputs its answer.

7

Definition:
A fully quantified Boolean formula is a Boolean
formula where every variable in the formula is
quantified (∃ or ∀) at the beginning the formula.

These formulas are either true or false

x  yxy []

x [x  x]

x [x]

xy [(x  y)  (x  y)]

8

TQBF = {  |  is a true fully quantified
Boolean formula}

Theorem (Meyer-Stockmeyer):
TQBF is PSPACE-complete

- SAT is the special case where all
quantifiers on all variables are ∃

- TAUTOLOGY is the special case where all
quantifiers are ∀

So, SAT ≤𝑷 TQBF and TAUTOLOGY ≤𝑷 TQBF

9

TQBF is in PSPACE

QBF-SOLVER():

1. If  has no quantifiers, then it is an
expression with only constants. Evaluate .
Accept iff  evaluates to 1.

2. If  = x , call QBF-SOLVER on  twice:
first with x set to 0, then with x set to 1.
Accept iff at least one call accepts.

3. If  = x , call QBF-SOLVER on  twice:
first with x set to 0, then with x set to 1.
Accept iff both calls accept.

Why does this take polynomial space?

10

TQBF is PSPACE-hard: Every language A in PSPACE
is polynomial time reducible to TQBF

Our polynomial-time reduction will map every
string w to a fully quantified Boolean formula 
of O(n2c) size that simulates M on w

For every language A is in PSPACE,
there is some k and some deterministic TM M
that decides A using space ≤ cnc

We’ll outline a proof of this. The missing details
aren’t necessary, but please ask questions!

11

A tableau for M on w is an table whose rows are
the configurations of M on input w

q0 w1 wnw2 # #… …

#

#

cnc

2
O(nc)

Could be
exponentially

long!

12

Fix M and w. We’ll construct a QBF  that is true
if and only if M accepts string w of length n

There is a b ≥ 1 such that each configuration C of M on
w can be written as a b ⋅ s(n) bit string 𝑪 = 𝑪𝟏⋯𝑪𝒃⋅𝒔 𝒏
For integers 𝒌 ≥ 0, we’ll construct QBF 𝒌(C,D)

For all strings C,D, 𝒌(C,D) is true if and only if
M starting in config C reaches config D in ≤ 𝟐𝒌 steps

Then we’ll set  := b s(n) (Cstart,Cacc), where

Let s(n) := cnc.

Why would k = b s(n) suffice?

Cstart = initial configuration of M on w,
Cacc = (unique) accepting configuration of M

13

IDEA:

Encode Savitch’s theorem in Logic!
∃ guess the configuration in the “middle” of the

computation, and use recursion and ∀ quantifiers to
write the acceptance condition as a poly-sized QBF!

For two configurations C and D of our TM,
𝒌(C,D) will be true if and only if
C reaches D after ≤ 𝟐𝒌 steps.
𝒌(C,D) ≔ “there exists a configuration E such

that𝒌−1(C,E) is true and 𝒌−1(E,D) is true”

Goal: If M uses nc space on inputs of length n,
then our final QBF will have size O(n2c)

14

If k = 0, then 𝒌(C,D) should look like:

𝟎(C,D) = “C equals D” OR
“D follows from C in a single step of M”

How do we logically express “C equals D”?
Write a Boolean formula saying that the block of
b s(n) variables representing config C equals the
block of b s(n) variables representing config D

“D follows from C in a single step of M”?
Use 2 x 3 windows as in the Cook-Levin theorem:

“For all 2 x 3 windows W between C and D,
and for all illegal windows W’, (W ≠ W’)”

∧𝒊=𝟏
𝒃 𝒔 𝒏 𝑪𝒊 = 𝑫𝒊 ≡ ∧𝒊 ((𝑪𝒊 ∨ ¬𝑫𝒊) ∧ (¬𝑪𝒊 ∨ 𝑫𝒊))

15

For k > 0, let’s try to construct k recursively:

k (C,D) = E [k-1(C,E)  k-1(E,D)]

e1 e2 …eS where S = b cnc

But how long is this formula??

k(C,D) = E X,Y [((X,Y)=(C,E)  (X,Y)=(E,D))
⇒ k-1(X,Y)]

It will be of length ≥ 𝟐𝒌. Every level of the recursion
reduces 𝒌 by 1, but roughly doubles the formula size!
We can get around this. Modify the formula to be:

This “folds” the two recursive sub-formulas into one!

16

Set  = h (Cstart,Cacc) where h = b s(n)

 is true ⇔ On w, reach Cacc from Cstart in ≤ 𝟐𝒃 𝒔 𝒏 steps
⇔ M accepts w

Each recursive step in k adds a subformula of size O(s(n))

The size of k satisfies the recurrence
size(k) ≤ size(k-1) + O(s(n)), size(0) ≤ O(s(n))

which solves to size(k) ≤ O(k s(n))

Number of levels of recursion in  is h ≤ O(s(n))
Therefore the size of  is O(s(n)2)

k(C,D) = E X,Y [((X,Y)=(C,E)  (X,Y)=(E,D))
⇒ k-1(X,Y)]

17

NP captures many “one-player” games
with perfect information

Example 1: Generalized versions of many games
Super Mario, Donkey Kong, Legend of Zelda, etc.

are NP-hard
https://arxiv.org/pdf/1203.1895v1.pdf

In particular, it is NP-hard to tell if you can
finish an arbitrary level of these games!

Complexity Theory as Games

https://arxiv.org/pdf/1203.1895v1.pdf

18

NP captures many “one-player” games
with perfect information

Example 2: There are Android games which
are literally the Circuit-SAT problem!

See Circuit Scramble and Make It True

Complexity Theory as Games

19

Played on an infinite 2d grid
Each cell is “alive” or “dead”
In one step of the game:
• Any live cell with 2 or 3 live

neighbors remains live
• Any dead cell with 3 live neighbors

becomes live
• All other cells are dead

P captures short “zero-player” games
(Letting this game play out by itself, will it lead to a “win” or not?)

Example of a Zero-Player Game: Conway’s Game of Life

Complexity Theory as Games

20

Played on an infinite 2d grid
Each cell is “alive” or “dead”
In one step of the game:
• Any live cell with 2 or 3 live

neighbors remains live
• Any dead cell with 3 live neighbors

becomes live
• All other cells are dead

P captures short “zero-player” games
(Letting this game play out by itself, will it lead to a “win” or not?)

Example of a Zero-Player Game: Conway’s Game of Life

Complexity Theory as Games

21

Theorem: Given an arbitrary 2d grid
with finitely many alive cells and
another given pattern,
it is undecidable to determine if that
pattern will ever eventually appear!

A fundamentally unpredictable
and universal little game!

P captures short “zero-player” games
(Letting this game play out by itself, will it lead to a “win” or not?)

Example of a Zero-Player Game: Conway’s Game of Life

Complexity Theory as Games

22

PSPACE is…

For formalizations of
many popular two-player games,
it is PSPACE-complete to decide

which player has a winning strategy
on a game board!

Complexity Theory as Games

a complexity class for
two-player games of perfect information!

23

TQBF as a Two-Player Game

Two players, called E and A

Given a fully quantified Boolean formula

E chooses values for variables quantified by 

A chooses values for variables quantified by 

The game starts at the leftmost quantified variable

E wins if the resulting formula evaluates to true

A wins otherwise

yx [(x  y)  (x  y)]

24

FG = {  | Player E has a winning strategy on  }

Theorem: FG is PSPACE-Complete

Proof:

FG = TQBF

Examples: xy [(x  y)  (x  y)]

x  yxy []

E has a winning strategy: no matter what A sets x to,
E can set y to make the formula true

E has a winning strategy: set x = 1

 is true  Player E has a winning strategy on !

25

The Geography Game

Two players take turns naming cities from
anywhere in the world

Each city chosen must begin with the same letter
that the previous city ended with

Austin → Newark → Kalamazoo → Opelika

Cities cannot be repeated

Whenever someone can no longer name
any more cities, they lose and the other player wins

26

Geography played on a directed graph

Nodes represent cities. Edges represent moves.
An edge (a,b) means: “if the current city is a, then
a player could choose city b next”

But cities cannot be repeated!
Each city can be visited at most once

Whenever a player cannot move to any adjacent city,
they are “stuck”– they lose and the other player wins

Generalized Geography

Like a two-player Hamiltonian path problem!

Given a graph and a node a,
does Player 1 have a winning strategy starting from a?

