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Notes on Communication Complexity

Communication complexity is a modern subject of theoretical computer science that is
extremely relevant to various practical settings. The basic concepts are pretty simple
to understand, and it is relatively easy to prove interesting results on the topic. We’ll
introduce this model, show you some basic properties of it, and then talk about how
the model ties in nicely with DFAs and Streaming Algorithms.

The set-up for communication complexity is a theoretical model of distributed com-
puting with two computers. In general, we want to compute some interesting function

f : {0, 1}? × {0, 1}? → {0, 1}.

That is, our function f takes two binary strings, and outputs a bit. (For simplicity,
we will stick to the binary alphabet throughout these notes.)

So f requires an input x ∈ {0, 1}? and an input y ∈ {0, 1}?. We will assume |x| =
|y| = n, where n is, in general, a huge integer. Furthermore, we assume the input
(x, y) is stored across two computers Alice and Bob. Alice holds x, and Bob holds
y. Let’s suppose Alice and Bob are very far apart – for example, they may be on
different planets, or different sides of the earth. Their goal is to cooperate together in
a communication protocol for computing f(x, y), by communicating bits about their
inputs to each other. To keep the discussion as simple and focused as possible, we
will even assume that Alice and Bob are super-powerful computers, so we don’t even
care about the computational cost of f . We will only care about the number of bits
communicated between Alice and Bob in order to determine f(x, y).

1 The Model and Definitions

Let’s be a little more formal, and first define what is a protocol.

Definition 1 A communication protocol is a pair of functions A,B : {0, 1}? ×
{0, 1}? → {0, 1, STOP}.

So we think of Alice and Bob as implementing functions A and B, respectively, and
both functions take two inputs. The first input to A is the input x, and the second
input to A is the communication history H: the sequence of bits sent back and forth
so far in the communication. Similarly, the first input to B is the input y, and the
second input is the communication history H. The output of A(x,H) is the bit that
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Alice would send, if it was her turn to speak. Similarly, the output of B(y,H) is the
bit that Bob would send.

In general, Alice and Bob will speak one bit each, in rounds. Alice will always start the
communication, and speak one bit in odd-numbered rounds. Bob will always speak a
bit in even-numbered rounds. When one party says STOP, the communication protocol
ends, and the previous bit spoken is taken to be the output of the protocol.

Example 2 Suppose Alice holds x and Bob holds y. The protocol starts with Alice,
who computes a bit b1 := A(x, ε) and sends b1 to Bob. (Since the communication has
just started, there is no history, so the history string is ε.) Bob receives b1, computes
a bit b2 := B(y, b1) (because b1 is part of the history), and sends b2 to Alice. Alice
receives b2 and computes b3 := A(x, b1b2) (because the history is now b1b2). Now, let’s
suppose b3 is not a bit, but rather the symbol STOP. When Alice sends STOP to Bob,
the communication ends, the output of the protocol is the bit b2, and we would say
that this protocol took two rounds on (x, y): two bits were communicated.

Let’s write down the above requirements in pseudocode. Given a pair of functions
A,B : {0, 1}? × {0, 1}? → {0, 1, STOP}, the function they compute is determined by
the following process:

On input (x, y),
Let r := 0, b0 := ε.
While (br 6= STOP),
r := r = 1
If r is odd, Alice sends br := A(x, b1 · · · br−1)

else, Bob sends br := B(y, b1 · · · br−1).
Output br−1.

We say that a protocol (A,B) computes the function f if for all (x, y) ∈ {0, 1}?×
{0, 1}?, the output bit br−1 of the protocol equals f(x, y).

Each iteration of the while loop is one round of the protocol. In the pseudocode, the
total number of rounds is the value of r−1 at the end. Observe that bi is the bit sent in
the i-th round. Note that the number of rounds is exactly the number the number of
bits communicated between Alice and Bob; we want to minimize this. We say that the
total number of rounds is the communication complexity of the protocol (A,B) on the
input (x, y). As is typical for complexity, we measure this communication complexity
in terms of the worst-case pair of inputs (x, y) that make (A,B) communicate as
much as possible.

Definition 3 The cost of the protocol (A,B) on n-bit strings is

max
x,y∈{0,1}n

[number of rounds taken by (A,B) on (x, y)] .
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So the cost is a worst-case measure: we look at the largest number of rounds needed
to compute f(x, y) over all x, y of n bits.

Definition 4 For each n, the communication complexity of f on n-bit strings,
called cc(f), is the minimum cost over all protocols computing f on n-bit strings.
Alternatively, this is the minimum number of rounds used by any protocol computing
f(x, y), over all n-bit inputs x and y.

As we have defined it, cc(f) is a function from N to N: for every n, there is some
minimum communication cost to computing f on n-bit inputs. So technically, we
could write it as cc(f)(n), but the double parentheses notation can be confusing. To
keep the notation simpler, we will assume that the variable n is always the input
length to cc(f), and write cc(f) as a function of the variable n.

2 Some Examples

Let’s start with the simplest possible example. Let f : {0, 1}? × {0, 1}? → {0, 1} be
arbitrary.

There is always a “trivial” protocol for f that uses 2n rounds. Alice simply sends the
bits of her x over to Bob, in odd-numbered rounds. Bob may send whatever bit he
wants in even-numbered rounds (Alice can ignore his blather). After 2n − 1 rounds
of this lopsided interaction, Alice has sent her entire n-bit x. So now, Bob knows x
and (because we’re assuming they’re all-powerful) Bob can send f(x, y) in the next
round. Formally, this means:

Proposition 1 For every f , cc(f) ≤ 2n.

However, recall our assumption that n is very large. A protocol using Θ(n) bits of
communication is highly undesirable, just as a streaming algorithm using Θ(n) bits
of space would be. We want to know: for what problems we can get protocols using
much less than n bits of communication?

2.1 PARITY

The PARITY function is a good example of a problem that requires extremely low
communication. We define

PARITY(x, y) =
n∑

i=1

xi +
n∑

i=1

yi mod 2.
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So, the PARITY function just computes the sum of all bits in Alice and Bob’s inputs,
modulo 2. What’s a good protocol for computing PARITY? Well, Alice could simply
send b1 =

∑
i xi mod 2 to Bob. Then Bob can compute b2 = b1 +

∑
i yi mod 2. This

is the same as PARITY(x, y), so Alice can STOP after that!

Proposition 2 cc(PARITY) ≤ 2.

It’s also the case that cc(PARITY) ≥ 2. Each party needs to send at least one
bit to the other party, because PARITY depends on both party’s inputs. If the
communication complexity was 1, this means that Alice could simply send Bob the
answer to PARITY(x, y) without even looking at Bob’s input! But this is impossible:
if Bob flipped one bit in his own input then Alice’s answer should change, but her
answer doesn’t depend on Bob’s input at all.

2.2 MAJORITY

The MAJORITY function, MAJORITY(x, y), computes the most frequent bit in
the string xy. (And if there is an equal number of 1’s and 0’s in xy, then we say
MAJORITY(x, y) = 1.) This is a natural voting problem for an election: suppose
two polling places are far away from each other, they’ve both tallied up n votes for
candidate 0 versus candidate 1, and they (only) want to determine the winner of the
election.

What’s a good protocol for computing MAJORITY? The natural thing to do is to
have Alice and Bob send the vote counts! Over multiple rounds, when it’s Alice’s
turn, she sends bits of the integer Nx which is the number of 1s in x, Bob computes
Ny which is the number of 1s in y, and Bob sends 1 to Alice if and only if Nx + Ny

is greater than n. (Note the total number of voters is 2n.) If Alice sends Nx encoded
in binary, this takes O(log n) rounds. We therefore have:

Proposition 3 cc(MAJORITY) ≤ O(log n).

2.3 EQUALS

The function EQUALS, defined by

EQUALS(x, y) = 1 ⇐⇒ x = y,

is a very significant function. It’s often the case that databases have “mirrors” that
hold exactly the same information but are geographically far apart, to minimize
their access times for users. A common problem is that errors could happen on one
database, but not the other, or maybe some updates occur on one database but not

4



the other. So one would like to regularly check if the two database mirrors are still
holding exactly the same information. This is precisely what EQUALS models!

What’s a good protocol for EQUALS? Hmm. Somehow Alice and Bob have to figure
out where their strings differ, but they could differ in only one bit. We could try the
following: Alice sends the odd-numbered bits of her input in odd-numbered rounds,
and Bob sends the even-numbered bits of his input in even-numbered rounds. After
these bits are communicated in n rounds, Alice knows all of Bob’s even-numbered
bits, and Bob knows all of Alice’s odd-numbered bits. If the two strings are not equal,
then at least one of the two parties now knows that! (If x and y are different, they’re
either different in an even-numbered bit, or they’re different in an odd-numbered bit,
or both.) Let’s suppose n is even, so that after n rounds, it’s Alice’s turn. (If n is
odd, we can just exchange the roles of Alice and Bob below.) Alice sends 0 if the
strings differ in an even-numbered bit, and sends 1 if they do not. Bob can reply
STOP if Alice sent 0. Otherwise, he replies 0 if the strings differ in an odd-numbered
bit, and 1 otherwise. This takes n + 2 rounds.

Proposition 4 cc(EQUALS) ≤ n + 2.

Can we do better than this? They are basically sending their inputs to each other!

To be continued...

3 Connection to Streaming Algorithms and DFAs

We can use communication complexity as a tool to understand the space usage of a
streaming algorithm, and to prove that some languages are not regular. To understand
how, we first show how to re-interpret every language L ⊂ {0, 1}? as a communication
problem fL : {0, 1}?×{0, 1}? → {0, 1}. The idea is to give Alice one half of the input,
give Bob the other half, and ask them to determine whether or not the concatenation
of their inputs is in L. Formally, for inputs x, y ∈ {0, 1}? where |x| = |y|, we define

fL(x, y) =

{
1 if xy ∈ L

0 otherwise.

Let us start with a simple example that may be instructive:

Example 5 L = {z | z begins with a 0}. Recall this is a regular language. Observe
that cc(fL) = 1: Alice holds the first half of the input xy, so she only has to commu-
nicate to Bob the answer!

Example 6 Here are some languages L, where the corresponding functions fL are
communication problems that we defined earlier in these notes.
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• L = {z | z has an odd number of 1s}.
Then, fL(x, y) equals the PARITY function that we defined earlier!

• L = {z | z has at least as many 1s then 0s}.
Then, fL(x, y) equals the MAJORITY function.

• L = {z | z = xx for some x}.
Then, fL(x, y) equals the EQUALS function.

It is not hard to imagine that there are many more examples beyond these; we have
picked these to be illustrative.

3.1 The Connection

Now that for every language L we have a communication problem fL, we can state
the connection:

Theorem 7 If L has a streaming algorithm using ≤ s(n) bits of space on all inputs
of length ≤ 2n, then cc(fL) ≤ 4s(n) + 4.

That is, if L has a good low-space streaming algorithm, then the communication
complexity of fL is similarly low: Alice and Bob don’t have to communicate much
to decide if xy ∈ L. (Note: you will improve this protocol in your next pset/pset, so
don’t worry if the below proof looks sub-optimal — it is!)

Proof: Here is the general idea. Suppose we have a streaming algorithm A for L
that uses ≤ s(n) bits of space on inputs of length n. We want an efficient protocol
for computing fL. How should Alice and Bob speak to each other?

Naturally, they should use the streaming algorithm A! Alice starts by running A on
her input x, and when she is done reading x she has reached some memory state m
of the algorithm. Then, she passes the state m over to Bob as a bit string, using
4s(n) + 3 rounds of communication. Then, Bob runs A on his input y, starting from
the memory state m. Eventually he gets an output bit, which he then sends back to
Alice as the final output.

How can Alice send her memory state in 4s(n) + 3 rounds? The tricky part is that,
because A uses ≤ s(n) bits of space on inputs of length ≤ 2n, the memory state as
a bit string can have variable length: the length could be any integer between 0 and
s(n). We need to encode the memory state in a way that Bob can easily interpret
it. One way of doing this is to re-encode m into a bit string m′ of length 2|m| + 2:
each 0-bit of m is replaced with 00, each 1-bit of m is replaced with 01, and we put
11 at the end to indicate the end of the string. Now, if Alice sends this m′, Bob will
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be able to tell when the string encoding the memory state has ended, and can start
running the streaming algorithm on his input.

Recall that Alice only speaks in odd-numbered rounds; we could have Bob just send
back the bit 0 in even-numbered rounds, until Alice has sent the entire memory state.
Using the above encoding, sending the memory state m takes in total 4s(n)+3 rounds:
Sending one bit of m takes four rounds each, and three more rounds (Alice-Bob-Alice)
for Alice to send the 11 string at the end of m′. �

We note that the above theorem extends to streaming algorithms that make multiple
passes over the input as well.

Theorem 8 If L has a k-pass streaming algorithm using ≤ s(n) space (in bits), then
cc(fL) ≤ O(k · s(n)).

The idea behind this extension is simple: for a streaming algorithm that makes k
passes, Alice and Bob can simply repeat the protocol above for k times, once for each
pass over the input. (We have used big-O notation here to hide/forget the specific
constants involved.)

We can use Theorem 7 to quickly get interesting communication protocols for known
functions.

Corollary 9 For every regular language L, cc(fL) ≤ O(1).

Corollary 9 follows because every regular language L can be modeled by an O(1)-
space (constant-space) streaming algorithm! (In fact, given our definitions, DFAs are
exactly the O(1)-space one-pass streaming algorithms.)

As an example, remember that L = {z | z has an odd number of 1s} is a regular
language, and that its corresponding function fL = PARITY. We already saw that
cc(PARITY) = 2, so Corollary 9 is consistent with these observations.

Corollary 10 cc(MAJORITY) ≤ O(log n).

This follows because there’s a streaming algorithm for

L′ = {z | z has at least as many 1s then 0s},

and fL′ = MAJORITY.

Still, these theorems don’t help us get a protocol for EQUALS, because the corre-
sponding language {z | z = xx} requires large space with streaming algorithms!
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4 Lower Bounds on Communication Complexity

Earlier we saw that cc(EQUALS) ≤ n+2 with what looked like a pretty bad protocol.
We will show that is practically the best possible protocol one could have!

Theorem 11 cc(EQUALS) ≥ n. That is, every communication protocol for EQUALS
must communicate at least n bits between Alice and Bob.

In other words, no communication protocol for EQUALS can do much better than
essentially sending your input, no matter how Alice and Bob speak back and forth!
This is a very powerful lower bound. The key to this lower bound is a simple concept
and lemma:

Definition 12 Let (A,B) be a communication protocol. The communication pat-
tern of (A,B) on the input (x, y) is the communication history of Alice and Bob on
(x, y), including the output bit.

Example 13 For example, suppose for A and B running on the input (x, y), A sends
0, B sends 1, A sends 1, B sends 0, and A sends STOP. Then the pattern on (x, y) is
0110.

The following key lemma shows that if two distinct input pairs have the same com-
munication pattern, then two other pairs also have the same pattern.

Lemma 14 (Key Lemma for Communication Complexity) If the input pairs
(x, y) and (x′, y′) both have the same communication pattern P on a protocol, then
the input pairs (x, y′) and (x′, y) also have the communication pattern P .

Proof: Remember how protocols work: each bit sent is a function of the player’s
input and the bits seen so far. Let Alice’s protocol be A, and let Bob’s be B. Suppose
the input pairs (x, y) and (x′, y′) both have the same communication pattern P =
b1 · · · bk. So, Alice and Bob speak for k rounds on both (x, y) and (x′, y′), and say
exactly the same bits to each other, and conclude exactly the same output.

Then we have:

b1 = A(x, ε) = A(x′, ε),

for all even i, bi+1 = A(x, b1 · · · bi) = A(x′, b1 · · · bi)
for all odd i, bi+1 = B(y, b1 · · · bi) = B(y′, b1 · · · bi)

From the above equations, it follows that the pattern for (x′, y) and for (x, y′) is also
b1 · · · bk. In particular, for i = 1, . . . , k, the i-th bit of the pattern for (x′, y) (and for
(x, y′)) is bi.
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To see this, note that since b1 = A(x, ε) = A(x′, ε), we know the first bit of the pattern
for (x′, y) and the pattern for (x, y′) is b1. Then, since b2 = B(y, b1) = B(y′, b1), we
conclude that the second bit of the pattern for (x′, y) and for (x, y′) is b2. Continuing
in this way, we find that all four of (x, y), (x′, y′), (x′, y), and (x, y′) must have the same
communication pattern! (If you wanted to be super-formal, you could use induction
on i = 1, . . . , k to prove this.) �

Now we are ready to prove the communication lower bound for EQUALS:

Proof: Of Theorem 11

By contradiction. Assume cc(EQUALS) ≤ n− 1. That means there is a protocol for
computing EQUALS that uses at most n−1 bits of communication on all input pairs
(x, y) where |x| = |y| = n.

For such a protocol, how many possible communication patterns can there be, on
inputs x and y of length n? By assumption, each communication pattern in this
protocol is a binary string of length at most n− 1, and there are

n−1∑
i=0

2i = 2n − 1

such binary strings. So this EQUALS protocol has at most 2n − 1 possible commu-
nication patterns, over all pairs (x, y).

Now consider the set of input pairs S = {(x, x) | x ∈ {0, 1}n}. Clearly |S| = 2n.
By the pigeonhole principle, there must be two pairs (x, x) and (y, y) from S, where
x 6= y, for which our protocol has the same communication pattern. Call this pattern
P . By the Key Lemma, the pairs (x, y) and (y, x) must also have communication
pattern P on this protocol. Since the communication pattern includes the output bit,
Alice and Bob must output the same bit on all pairs (x, x), (y, y), (x, y) and (y, x).
However,

EQUALS(x, x) = EQUALS(x, x) = 1, but EQUALS(x, y) = EQUALS(y, x) = 0.

This is a contradiction! �

In general, one can prove a communication complexity lower bound for other func-
tions, using the following set-up. Take your favorite communication problem f that
you want to prove a lower bound for. Then, your lower bound proof can have the
following framework:

• Assume cc(f) ≤ k(n).

• Therefore, there is a protocol for f over n-bit strings, where Alice and Bob can
compute f and exchange at most k(n) bits.
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• Find a set S = {(x, y)} of devilish input pairs, where |S| ≥ 2k(n)+1.

• By pigeonhole, there must be two pairs (x, y) and (x′, y′) from S which have
the same communication pattern.

• By the Key Lemma, all four pairs (x, y), (x′, y′), (x′, y) and (x, y′) must have
the same communication pattern.

• Therefore f(x, y) = f(x′, y′) = f(x′, y) = f(x, y′). If your set S was devilish
enough, you will have a contradiction.

You will work through other lower bounds in the pset/pests!

4.1 Applications to Streaming Lower Bounds

The contrapositives of Theorem 7 and Theorem 8, combined with our lower bounds on
communication, can be used to prove powerful lower bounds on streaming algorithms,
even with multiple passes:

Theorem 15 (Contrapositive of Theorem 8) Let L ⊆ {0, 1}?. Suppose cc(fL) ≥
Ω(k · s(n)). Then every k-pass streaming algorithm for L needs to use ≤ s(n) space
(in bits).

For example, we know cc(EQUALS) ≥ n, and we know that for L = {z | z =
xx for some x}, fL = EQUALS. Applying Theorem 15:

Corollary 16 Every streaming algorithm for the language L = {z | z = xx for some x}
must use ≥ cn bits of space, for some constant c > 0.

In other words, the space lower bound for L is Ω(n). Even a streaming algorithm
that used two passes, or ten passes, or a hundred passes, would need Ω(n) bits of
space (the constant in that Ω would be decreasing as the number of passes goes up,
but it would still be constant).

5 Some Good News (Optional Reading)

There is a bright side to all of the sad lower bounds for communication. While
EQUALS needs at least n bits of communication in our deterministic model, there
are very efficient protocols for computing EQUALS using randomness !
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Theorem 17 There is a randomized protocol for EQUALS(x, y) using only O(log n)
bits of communication on x, y of length n. On all (x, y), the protocol outputs the
correct answer with probability greater than 99.9%.

The idea can be put in two words: random hashing. Alice and Bob think of their
two n-bit strings x and y as numbers in the interval [1, 2n]. Alice picks a random
prime number p between 2 and n2. She sends p and her number x modulo p. This
is a number between 0 and n2, so it takes O(log n) bits to send. Bob checks whether
y = x modulo p; if they are equal, he outputs 1, otherwise he outputs 0.

This protocol outputs the correct answer with (very) high probability! First, note
that if x = y, then we always have x = y mod p. So if x and y are equal, this protocol
always outputs the correct answer. Second, if x 6= y, how can this protocol fail? It
would fail if we managed to pick a prime p such that x − y mod p equals 0, i.e. p
is a factor of x − y. (In such a case, the protocol would conclude x = y when they
actually aren’t.) Now, x− y is an integer in [−2n+1, 2n+1]; it is not hard to show that
every such integer has at most n + 1 prime factors. Call these annoying primes “bad
primes”.

What are the chances we randomly picked a bad prime p? We are choosing p from
[2, n2], and the prime number theorem says there are Θ(n2/ log n) primes in that
interval. So the chances we pick a “bad” prime is at most

n + 1

Θ(n2/ log n)
≤ O(log n)

n
,

which is very low for large n.
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