
Limits and Applications of Group Algebras
for Parameterized Problems∗

Ioannis Koutis
Computer Science Department

U. of Puerto Rico, Rio Piedras
ioannis.koutis@upr.edu

Ryan Williams
Computer Science Department

Stanford University
rrw@cs.stanford.edu

Abstract

The fastest known randomized algorithms for several parameterized problems are based on reduc-
tions to the k-MLD problem: detection of multilinear monomials of degree k in polynomials presented
as circuits. The algorithm for k-MLD is purely algebraic and uses only oracle accesses to an arithmetic
circuit, i.e. simple evaluations of the circuit on elements from a suitable algebra. In this paper we use
communication complexity to show that the aforementioned algorithm is essentially optimal within this
evaluation oracle framework. On the positive side, we give new applications of the method: finding a
copy of a given tree on k nodes, a minimum set of nodes that dominate at least t nodes, and an m-
dimensional k-matching. In each case we achieve a faster algorithm than what was known before. We
also apply the algebraic method to problems in exact counting. Among other results, we show that a
variation of it can break the trivial upper bounds for the disjoint summation problem.

1 Introduction

The central topic of this article is the parameterized multilinear monomial detection problem.

k-MLD: Given an arithmetic circuit C representing a polynomial P (X) over Z, decide whether
P (X) construed as a sum of monomials contains a multilinear monomial of degree k.

Here, an arithmetic circuit is a directed acyclic graph with nodes corresponding to addition and mul-
tiplication gates, sources (with indegree zero) corresponding to variables, and one terminal (with outde-
gree zero) corresponding to the output gate. The k-MLD problem is arguably a fundamental parameter-
ized problem. Several parameterized problems are reducible to it, and the fastest known algorithms for
many of them are based on the reduction. Notable examples are the k-path problem on directed graphs
and packing k sets of size m [16, 23].

The fastest known algorithm for k-MLD is purely algebraic [16, 23]. It first constructs an ‘extended’
version C̃ of C and labels certain edges of C̃ with random multipliers from a field F. It then chooses a
particular commutative algebra A and an appropriately defined randomized assignment X → A such
that (i) squares (and by commutativity, non-multilinear monomials) evaluate to the zero element of A,
and (ii) some multilinear monomial does not evaluate to zero, with good probability. Finally it evaluates
C̃ on the assignment. By construction the output is non-zero with good probability if and only if the input
instance of k-MLD is positive.1

∗A preliminary version of this article appeared in ICALP’09 [17].
1Note: The proof of [23] was given in the context of the k-path problem and omitted the construction of C̃. We give the missing

details in Section 2.

1

This algebraic framework yields anO∗(2k) time algorithm for k-MLD, by choosing F to beGF (23+log2 k)
and A to be the group algebra F[Zk2] (for the definition of a group algebra, see the Appendix).2 The algo-
rithm can be implemented in polynomial space.

Applications. As a rule of thumb, the k-MLD framework improves upon all parameterized decision
problems that previously solvable using the color coding method [4] and the divide-and-color method [14,
10]. However, depending on the problem, the details of reducing the problem to k-MLD can be tricky and
sometimes requires extensions to the basic framework. To support this claim, Section 3 gives faster algo-
rithms for: (i) finding a copy of a given tree on k nodes, (ii) finding a minimum set of nodes that dominate
at least t nodes in a graph. We also present a faster algorithm for finding an m-dimensional k-matching,
by presenting a tighter reduction to k-MLD.

Limits of group algebras. A faster algorithm for k-MLD would have tremendous implications, not only
in parameterized but also exact in algorithms, as it would imply faster algorithms for problems where
progress has stagnated for nearly 50 years; an example is the Hamiltonian Path problem on directed
graphs. Thus, an intriguing and natural question is whether k-MLD can be solved faster, by evaluating
circuits over a more exoticA supporting faster operations over the circuit.3

The answer is, unfortunately, negative. In Section 4 we use communication complexity to show that for
any commutative algebra A used to evaluate the circuit C, the lengths of elements in Amust be at least
Ω(2k/k) in order to solve k-MLD.4 Thus the O∗(2k) algorithm for k-monomial detection is optimal in a
certain rigorous sense, and further progress on the relevant parameterized problems or k-MLD itself will
require different kinds of operations altogether.

Applications in counting. Although group algebras are powerful for k-MLD, their potential has not
been explored in the context of the related counting problem:

(k, n)-MLC: Given a commutative arithmetic circuit C describing an n-variate polynomial P (X), com-
pute the sum of the coefficients of the degree-k multilinear monomials in P (X).

Unlike the k-MLD problem, in the counting problem we specify the number of variables n too. This
is because the problem is #W[1]-hard and so an O∗(f(k)) time algorithm is unlikely to exist for it [11].
The hardness of (k, n)-MLC follows from the parsimonious reduction of the k-path problem to it [16] in
combination with the hardness of the k-path problem [12].

There is anO∗(
(
n
k

)
) time algorithm for the (k, n)-MLC problem, but breaking below this barrier is a sig-

nificant open problem. Alon and Gutner [3] showed that the there is no o∗(nk/2) time algorithm for (k, n)-
MLC based on color-coding; however this theoretical limit hasn’t been met. In Section 5.1 we present
partial progress showing how to solve (k, n)-MLC modulo 2, in O∗(nk/2) time.

Next, we consider special versions of counting, starting with disjoint summation in Section 5.2:

Disjoint Summation: Given two n-variate polynomials P andQ each being a sum of multilinear mono-
mials of total degree k/2, with coefficients from a ring R, find the sum of the coefficient of the multilinear
monomials in the product PQ.

The disjoint summation problem is largely motivated by the problem of counting exactly the number
of k-paths. Before our result it was known how to count 2k-paths in O∗

((
n
k

))
time [7]. For the disjoint

summation problem we present an algorithm that performs O∗(nk/2) operations. As a result we get an
O∗(ndmk/2e) time algorithm for counting k-packings of m-sets. Our result was later improved in [8], but
our techniques are different and may have the potential to solve more difficult problems.

2Following standard conventions, the O∗() notation hides polynomial factors in the instance size.
3Recently, progress has been made on solving Hamiltonian Path in undirected graphs by Björklund [6]; his techniques are in-

spired by those in this work.
4We state our result for commutative algebras, for the sake of clarity and coherence with our algorithmic results that all use

commutativity. However, our lower bound holds in the non-commutative setting as well, under the appropriate definitions.

2

We finally consider the (k, k)-MLC problem, which can be used as a subroutine in a number of recent
algorithms for approximate parameterized counting [5, 19, 2, 3]. We show that (k, k)-MLC can be solved
inO∗(2k) time and polynomial space, a fact that seems to have been missed in the literature. We therefore
reduce the space complexity of all the aforementioned approximate counting algorithms.

We extend our techniques for (k, k)-MLC to the computation of the k×nmatrix permanent. We derive
anO∗(2k) time polynomial space algorithm for the k×n permanent of matrices over rings, and anO∗(2k)
time and space algorithm of matrices over commutative semirings. To the best of our knowledge the
previously5 fastest algorithms useO∗(2k) space and run inO∗(3k) time over rings [13], and inO∗(4k) time
over commutative semirings [22]. The faster permanent algorithms imply speedups in algorithms for
counting weighted subgraphs [22]. The algebraic perspective behind our algorithm allows us to derive an
alternative formula for the n× n permanent, which to the best of our knowledge is new.

2 Background Results

2.1 Generalizing the k-path algorithm to k-MLD

Here we briefly describe how to generalize the multilinear monomial detection algorithm of [23] to arbi-
trary arithmetic circuits over Z. The algorithm in [23] multiplies each edge e coming out of a gate in C
with a new variable ze which is drawn from an additional set of variables Z. The proof assumes that the
coefficient of each multilinear monomial in the resulting polynomial P (X,Z) is 1.

This assumption is true for the k-path circuit, but doesn’t hold in general.6 Nevertheless, it is relatively
easy to massage any given circuit into one in which the assumption does hold (while preserving the mul-
tilinearity of the monomials in the circuit). In particular we can efficiently convert any circuit into one
with the following properties:

(i) Addition gates and multiplication gates alternate, i.e. the inputs of each multiplication gate are
outputs of addition gates and vice-versa (here, source nodes labeled by variables can be considered
as addition gates).

(ii) The fan-out of each addition gate is 1.

(iii) Every scalar in the circuit is either 0 or 1.

To see why these properties ofC imply the desired property for P (X,A), observe that multilinear terms
in P (X) are in a one-to-one correspondence with “valid” connected subcircuits of C. (Here ‘valid’ means
that in the subcircuit, each addition gate has fan-in 1, and each multiplication gate has full fan-in.) Each
valid subcircuit Cs is completely specified by the set Es of edges incoming to its addition gates. This is
because the fan-in of the addition gates in Cs is 1, so the input wires specify the addition gates; in turn,
the fan-out of each edge in Es is 1, which specifies all the multiplication gates in Cs. After introducing
the variables ze on all the edges of the circuit, the multilinear term corresponding to Cs in P (X) appears
in P (X,Z) multiplied by the variables on the edges of Es. Now consider two different multilinear terms
of C corresponding to two different valid subcircuits Cs and C ′s of C. Since Cs and C ′s are different and
the multiplication gates have full fan-in, the sets Es and E′s must differ in at least one edge, so the corre-
sponding multilinear terms in P (X,Z) are different (one contains a variable ze that the other does not).
Therefore every multilinear monomial in P (X,Z) has coefficient 1 (or 0, if not present).

5Similar results were derived using inclusion-exclusion techniques in [9] which cites the conference version of our results [17].
6For example, consider the polynomial P (X) = (x + y)2, implemented in the usual way (one addition gate that takes x and y,

and one multiplication gate that takes the output of the addition gate twice as input). If each edge out of a gate is multiplied by a
new variable ze, we obtain the polynomial ze′′ (zex+ze′y) ·ze′′′ (zex+ze′y) = ze′′ze′′′ (z

2
ex

2+2xyzeze′+y2z2
e′) and the coefficient

of xyzeze′ze′′ze′′′ is not 1, but 2.

3

We can transform any circuit C over Z to an equivalent circuit C̃ that has the three properties above.
First, we can set every non-zero scalar in C to 1; then our C trivially meets property (iii) above, without
changing the multilinearity of the monomials in the circuit. The next step is to construct a circuitC ′where
addition and multiplication gates alternate, to meet property (i). This can be easily done in polynomial
time: for each addition gate g find the set Sg of all multiplication gates and terminals that are reachable
from g via paths that use only addition gates in C. Then replace g with a multiplication gate g̃ with inputs
coming directly from the multiplication gates in Sg. After finishing with addition gates, we perform the
analogous operation to multiplication gates, with the roles of addition and multiplication gates reversed.
It is not hard to see that each new gate g̃ represents the same polynomial as g. Finally, to satisfy property
(ii), we construct C̃ by replacing each addition gate g with a number of addition gates g1, . . . , gk equal to
the fan-out k of g, where each gate gi has the same inputs as g, and each gi exactly one output (namely, gi
sends its output to one of the k gates that g sends its output).

Observe that the size of C̃ is at most quadratic in the size of C. The multilinear monomial detection
algorithm of [23] applies then to C̃, yielding the same time and space upper bounds.

2.2 An extension for k-MLD

The main tool for obtaining faster randomized parameterized algorithms is the following slight general-
ization of our results in [16, 23].

Lemma 2.1. Let P (X, z) be a polynomial represented by a commutative arithmetic circuit C. The exis-
tence of a term of the form ztQ(X) in P (X, z), whereQ(X) is a multilinear monomial of degree at most k,
can be decided in time O∗(2kt log t) and space O∗(t).

Proof. (Sketch). The results in [16, 23] are stated without the special variable z. It is fairly easy
to modify the algorithm in order to handle the extra variable z. At a high level the algorithm works by
summing the outputs of 2k evaluations of C over the ring of bivariate polynomials Z[z, u], modulo zt+1.
The answer is obtained from the coefficient of zt in the sum. By letting z = 1 in the final sum we obtain
exactly the output of the k-MLD algorithm of [23] so the modification amounts to just keeping z uneval-
uated and handling it symbolically. The O∗(t) space is needed to represent the aforementioned bivariate
polynomials, and theO(t log t) factor in the running time comes from using fast Fourier multiplication of
univariate polynomials of degree at most t. We will omit further details here. �

3 Faster Parameterized Algorithms

Using the k-MLD framework we obtain faster randomized algorithms for the following problems:

k-Tree. Given a tree T on k nodes and a graphG on nnodes, decide if there is a (not necessarily induced)
copy of T in G.

t-Dominating Set. Given a graph G = (V,E), find a minimum set of nodes S that dominate at least t
nodes in the graph. That is, |S ∪N(S)| ≥ t where N(S) = {v | (u, v) ∈ E, u ∈ S}.

m-Dimensional k-Matching. Given mutually disjoint sets Ui, for i = 1, . . . ,m, and a collection C of
m-tuples from U1 × . . .×Um, decide whether C contains a sub-collection of k mutually disjointm-tuples.

Each of these can be solved by formulating them as k-MLD instances in some way. To the best of
our knowledge, the only other algorithm we know for k-tree follows from the color-coding method [4],
and runs in O∗((2e)k) time. The best known (randomized) algorithm for t-Dominating Set runs in time
O∗((4 + ε)t) [15]. The best known (randomized) algorithm for the k m-Dimensional Matching Problem

4

runs in time O∗(2mk) [16]. In addition, in all these problems, given an algorithm for the decision version
of the problem, standard reductions can be used to recover an algorithm for the search version, with the
same exponential dependence on the parameter.

Theorem 3.1. The k-Tree problem can be solved in O∗(2k) time.

Proof. Suppose T is a k-node tree we wish to find inG. Let the nodes of T be {1, . . . , k}, and let the
nodes of G be {1, . . . , n}. We define an arithmetic circuit CT,i,j(x1, . . . , xn) inductively, for all i ∈ [k] and
j ∈ [n].

• If |V (T)| = 1, simply define CT,i,j := xj .

• If |V (T)| > 1, let Ti,1, . . . , Ti,` be the connected subtrees of T remaining after node i is removed from
T . For all t = 1, . . . , `, let ni,t ∈ [k] be the (unique) node in Ti,t that is a neighbor of i in T . Define

CT,i,j :=
∏̀
t=1

 ∑
j′:(j,j′)∈E(G)

xj · CTi,t,ni,t,j′

 .

Observe that the size of CT,i,j(x1, . . . , xn) is at most O(|V (T)| · |E(G)|). The polynomial CT,i,j enumer-
ates those homomorphisms that map nodes of T into nodes ofG, such that node i in T is mapped to node
j in G. Each monomial represents the range of some homomorphism. More precisely, the monomial
xj1 · · ·xjk is present in the polynomial if and only if there is a homomorphism where the nodes of T are
mapped to the vertices {j1, . . . , jk} ⊆ V of G. These mappings are all homomorphisms, since i′ ∈ V (T)
can only be mapped to j′ ∈ V (G) if (i, i′) ∈ E(T), (j, j′) ∈ E(G), and i ∈ V (T) is already mapped to
j ∈ V (G).

Now consider the sum-product expansion of Q =
∑
j∈V (G),i∈V (T) CT,i,j . Q is a sum over all connected

subgraphs S ofG on k vertices, where each monomial corresponds to the range of some homomorphism
from T into S. Note Q also includes homomorphisms that map distinct nodes of T to a common node
in G. However, those homomorphisms correspond precisely to monomials with squares in them. That is,
the multilinear monomials ofQ correspond to homomorphisms that map all nodes in T to distinct nodes
in G, i.e. an isomorphic copy of T in G. Therefore, by calling k-MLD on the arithmetic circuit defined by
Q, we can detect whether G contains a copy of T in O∗(2k) time. �

Theorem 3.2. The t-Dominating Set problem can be solved in O∗(2t) time.

Proof. Let the vertex set be V = {1, . . . , n} and X = {x1, . . . , xn}, where xi corresponds to the
vertex i. Consider the polynomial

P (X, z) =

∑
i∈V

(1 + z · xi) ·
∏

j : (i,j)∈E

(1 + z · xj)

k

,

where z is an extra indeterminate. P is a sum of monomials in which each monomial of the form ztxi1 · · ·xit
for distinct ij appears if and only if the t nodes {i1, . . . , it} are dominated by a set of at most k nodes. In
addition, every other term of the form ztQ(X) contains a square since Q(X) has total degree t. Then, the
proof follows from Lemma 2.1 and trials with increasing values of k. �

Theorem 3.3. The m-Dimensional k-Matching problem can be solved in O∗(2(m−1)k) time.

5

Proof. Encode each element u in U =
⋃m
i=2 Ui by a variable xu ∈ X. Encode each m-tuple t =

(u1, . . . , um) ∈ C ⊆ U1 × · · · × Um by the monomial Mt =
∏m
i=2 xui

. Assume U1 = {u1,1, . . . , u1,n}, and let
Tj ⊆ C denote the subset of m-tuples whose first coordinate is u1,j . Consider the polynomial

P (X, z) =

n∏
j=1

1 +
∑
t∈Tj

(z ·Mt)

 ,

where z is an extra indeterminate. The coefficient of zk is a polynomial Q(X). There is a one-to-one
correspondence between the terms of Q(X) and collections of k m-tuples, where the m-tuples in each k-
collection have mutually different first coordinates. Each term is the product of the (m−1)k variables cor-
responding to the elements in the other (m− 1) coordinates of the m-tuples of each k-collection. Hence,
each k-collection contributes a multilinear term if and only if them-tuples in it form a k-matching. There-
fore, the coefficient of zk contains a multilinear ((m − 1)k)-term if and only if C contains a k-matching.
The proof follows from Lemma 2.1. �

4 Lower Bound for Multilinear Detection

We now investigate whether the algebraic approach to k-MLD in [16, 23] can be improved upon further.
One basic open question is whether is it possible to determine if an arbitrary arithmetic circuit C has
a multilinear k-monomial in much less time than ∗O(2k), by evaluating C over a more exotic algebraic
structure. We shall prove that this is not the case. For any commutativeA, we show that if it can be used to
detect multilinear monomials in an arithmetic circuit (even randomly), then |A| ≥ 2Ω(2k/

√
k). This implies

a lower bound of Ω∗(2k/
√
k). That is, the group algebras used in [16, 23] (which have |A| ≤ 2O(2k log k)) are

essentially optimal for their purpose.

At a high level, our proof uses hypothetical fast multilinear monomial detection in order to design com-
munication protocols that are too efficient to exist. Let us informally recall some notions from commu-
nication complexity. Let f : {0, 1}n × {0, 1}n → {0, 1}. Suppose two parties wish to compute f(x, y), but
one party is given x (the x-party), the other is given y (the y-party). The parties must communicate bits
about their inputs in order to compute f . A simultaneous public-coin protocol for f on n-bits is specified
by a pair of functions (g1, g2), and works as follows on all n-bit strings. Initially, the x-party and y-party
see a common string z chosen at random from a distribution independent of x and y (to maximize the
parties’ capabilities, we assume the distribution is uniform). The x-party computes g1(x, z), the y-party
computes g2(y, z), and both send their answers to a third party. We require that the third party holding
the two messages can compute f (with high probability), on all x and y of length n. The randomized
public-coin simultaneous communication complexity of (g1, g2) is the maximum length L(n) of a message
sent in the protocol (g1, g2) over all n-bit strings. The corresponding communication complexity of f is
the minimum L(n) achieved by any n-bit protocol (g1, g2) for f .

The set disjointness function DISJn(x, y) on x, y ∈ {0, 1}n is defined to be ∨ni=1(xi ∧ yi). We utilize the
following fact:

Theorem 4.1. [[18],p.79] The randomized public-coin communication complexity of DISJn is Ω(n).

Theorem 4.2. Let A be a commutative semiring. Suppose there is a distribution D on elements from A,
an element e ∈ A, and constants d1, d2 ∈ [0, 1], d1 < d2 such that for every circuit C(x1, . . . , xn) represent-
ing a degree-k polynomial:

• C has a multilinear monomial =⇒ Pr(e1,...,en)∈Dn [C(e1, . . . , en) = e] ≤ d1

6

• C does not have a multilinear monomial =⇒ Pr(e1,...,en)∈Dn [C(e1, . . . , en) = e] ≥ d2.

Then |A| ≥ 2Ω(2k/
√
k). Furthermore, for every k there is a circuit C with n = k for which this lower

bound holds.

In other words, the group algebra utilized in [23] is optimal within poly(k) factors: any other algebra
could only yield a slightly better asymptotic upper bound. As a consequence it is not possible to solve
Hamilton Path much faster than O(2n) by solving k-MLD over a more interesting algebra.

Proof. Using multilinear detection, we design a protocol for DISJN . Let N > 0 and k = n =
logN + 1

2 log logN + c where c > 0 is sufficiently large. Without loss of generality, assume k is even. Let
S = {S1, . . . , S`} be an intersecting set system over [k] such that |Si| = k/2, for all i, and ` ≥ N . That is, we
have Si ∩ Sj 6= ∅ for all i, j. For example, we may take S = {S ⊆ [k] | |S| = k/2 & 1 ∈ S}. Observe that for
this collection, when c is large enough we have

|S| =
(
k − 1

k/2

)
≥ Ω

(
2k√
k

)
= Ω

 2logN+ 1
2 log logN+c√

logN + 1
2 log logN + c

 ≥ N
by Stirling’s inequality. Hence ` ≥ N .

We now give a protocol for set disjointness, assuming the existence of a good A. Let a, b ∈ {0, 1}N . For
all i = 1, . . . , `, define the monomials

Pi =
∏
j∈Si

xj and Qi =
∏
j /∈Si

xj .

Now define an arithmetic circuit

C(x1, . . . , xk) =

(
n∑
i=1

aiPi

)
·

(
n∑
i=1

biQi

)
.

Note that C represents a homogeneous polynomial of degree k. We claim that C has a square-free mono-
mial if and only if DISJN (a, b) = 1. This follows from the fact that the monomial Pi · Qj has a square if
and only if i 6= j.7

Let Ca =
∑n
i=1 aiPi and Cb =

∑n
i=1 biQi. To get a communication protocol for set disjointness, the

x-party uses public randomness to obtain ei ∈ A for each xi, computes v = Ca(e1, . . . , ek) ∈ A, and
sends an O(log |A|)-bit string corresponding to v. Similarly, the y-party obtains all ei ∈ A, evaluates
w = Cb(e1, . . . , ek), and sends w. The third party outputs disjoint if and only if e = v · w (where e ∈ A has
the properties of the theorem’s hypothesis).

Under the hypotheses of the theorem (and repeating the protocolO(1) times to obtain a good estimate
of Pr(e1,...,en)∈Dn [C(e1, . . . , en) = e]), the above is a correct public-coin protocol forDISJn. It follows from

Theorem 4.1 that log |A| ≥ cN , for some constant c > 0. Finally, note that N ≥ Ω
(

2k
√
k

)
. �

5 Applications in Counting

In this section we give algorithms for exact counting of multilinear monomials. We will be making use
of facts about group algebras presented in the Appendix. We also need the following (properly adapted)

7Note this is the portion of the argument where commutativity of multiplication is used. In the non-commutative setting, the
condition is that the monomial Pi · Qj contains two instances of the same variable in its product. This condition is precisely the
same as that required for all the algorithmic applications.

7

theorem from the theory of error correcting codes [20][Chap. 5, Theorem 8] also used in the deterministic
construction of k-wise probability spaces [1][Proposition 6.5].

Theorem 5.1. There is a 0-1 matrixM with n columns andm rows with 2m ≤ 2(n+1)bk/2c, such that every
k columns of M are linearly independent over Z2. Moreover, the matrix can be constructed in O(nk/2+1)
time.

5.1 The (k, n)-MLC mod 2 problem

Using the above matrices, we can readily give a deterministic algorithm computing a version of the mul-
tilinear monomial detection problem:

Theorem 5.2. Let C be a circuit representing a polynomial P (X) over Z. The parity of the sum of the co-
efficients of the multilinear monomials of degree k in P (X) can be computed in deterministic O∗(ndk/2e)
time and polynomial space.

Proof. Let m be the number of rows of the matrix M in Theorem 5.1. Note that m ≤ k
2 log n + 1. Let

z be an indeterminate. We define an assignment A as follows: xi 7→ z(v0 +Mi), where Mi ∈ Zm2 is the ith

column of M , and v0 ∈ Zm2 is the zero vector. P (A) is an element of the group algebra R[Zm2] where R is
the ring of univariate polynomials Z2[z]. So, the coefficient of v0 in P (A) is a univariate polynomial Q(z).
We claim that the coefficient of zk in Q(z) is equal modulo 2 to the desired quantity.

To see why we consider the properties of the assignment A, which was also used in [16, 23] with the
only difference being the multiplication by z. By the results of [16], X̄ has two properties. (i) Any non-
multilinear term of P (X) evaluates to 0 mod 2. (i) Any multilinear monomial t(X) of P (X) with total
degree d evaluates to an element of the form zdt(A) where t(A) is an element of the group algebra Z2[Zm2].
The coefficient of v0 in t(A) is 1. By the associativity and commutativity of addition inR[Zm2] the monomial
t(X) contributes one copy of zd to the coefficient of v0 in P (A).

This gives a correct algorithm: evaluate Q(z) and return the coefficient of zk in it. The proof for the
running time and space claims is analogous to that of Lemma 2.1, with the only difference being the
dimension of the algebra. �

5.2 The disjoint summation problem

Theorem 5.3. Let P (X), Q(X) be two n-variate polynomials over a ring R, each consisting of multilinear
monomials of degree k/2. The sum of the coefficients of the (degree k) multilinear terms in the product
PQ, can be computed with O∗(ndk/2e) operations over R.

Proof. Let m be the number of rows of the matrix M in Theorem 5.1. Note that . The algorithm is as
follows. Let A : X → R[Zm2] be the assignment xi 7→ (v0 + Mi), where Mi ∈ Zm2 is the ith column of M ,
and v0 ∈ Zm2 is the zero vector. Let Ā be the assignment xi 7→ (v0 −Mi). Compute Π = P (A)Q(Ā) over
R[Zm2], and return the coefficient of v0 in Π.

Let us first consider the algorithm’s correctness. Every term in PQ is a product of the form

σPσQtP (A)tQ(Ā)

where tP , tQ are multilinear monomials in P and Q respectively, and σP , σQ are their coefficients. If tP
and tQ both contain a variable xi, then by commutativity tP (A) · tQ(Ā) is a multiple of (v0 +Mi)(v0−Mi)

8

which is equal to 0, since v0
2 = M2

i = v0. If tP tQ is multilinear, then because the columns of Mi are
independent and by Lemma 2.2 of [16], the coefficient of v0 in tP (A) · tQ(Ā) equals σPσQ. This proves
correctness.

Now we concentrate on the time complexity. We start with the evaluation of an individual term t(A)
of P (A). By Lemma 2.2 of [16], we know that t(A) is a sum of 2k distinct vectors from Zm2 . Our goal is to
compute the list Lt of these vectors, each requiring m bits of space for its description. We will grow the
list Lt inductively. Assume we have computed the list Lt′ for t′(A) where t′ consists of the first k′ factors
of t. The list with the vectors in t′(A)(v0 + Mi) can be constructed fairly simply with O∗(2k

′
) operations;

for each vector v in t′(A) append to the end of the list Lt′ the vector Miv. Hence, t(A) can be evaluated in
sparse form with

∑d
i=1 2i = O∗(2k) operations. To compute P (A), we note that it will be a weighted sum

of the 2m vectors of Zm2 . So its computation amounts to the computation of these 2m coefficients. To do
this we will keep an array with 2m positions, storing the partial sum of the terms t(A) we have computed
so far. Every time a new term t(A) is computed, we read its list Lt and we update accordingly the array,
by adding σP in the 2k positions corresponding to the vectors in Lt. The computation of Q(A) is similar,
with the only difference being that the vectors in the list L of a term will also have sign. Hence, P (A) and
Q(A) can be computed with O(2k/2

(
n
k/2

)
) operations, as there are at most

(
n
k/2

)
monomials in P and Q.

Finally, we want P (A)Q(Ā). Since P (A) and Q(Ā) are both elements of R[Zm2], their multiplication can be
performed via a Fast Fourier Transform method with O∗(2m) operations [23]. �

5.3 The (k, k)-MLC problem

In this Section we consider a special case of the counting problem.

Theorem 5.4. Let C be a circuit describing a polynomial P (x1, . . . , xk) over a ring R. The coefficient σ of
the multilinear monomial x1 . . . xk of degree k can be computed in time O∗(2k) and space O(|C|).

Proof. We first introduce an extra variable z and multiply each terminal/variable in C. It is clear that
for the new polynomial P (X, z) we have

P (X, z) =
∑
i

ziQi(X),

where Qi(X) is the sum of monomials of degree i in P (X) (so P (X) =
∑
iQi(X)). We will find an assign-

ment X̄ : X 7→ Z2[Zm2] and evaluate P (X, z) at X̄. The output P (X̄, z) will be an element of the group
algebra Z2[z][Zm2]. The assignment will be such that P (X̄, z) encodes the desired value.

The assignment is xi → ei. It is easy to verify that, since ei
2 = v0, any degree k non-multilinear mono-

mial of Qk(X) to a vector v with strictly less than k ones, hence different from j. Therefore the only
monomial that evaluates to j is the multilinear monomial, and so its coefficient is equal to the desired
quantity σ.

The algorithm needs only to compute the coefficient Q(z) of j in P (X̄). As discussed in the Appendix,
Q(z) appears in copies along the anti-diagonal of ρ(P (X̄)). Let bi denote the vector containing the k-bit
binary form of i, and Λi(P (X̄)) denote the ith eigenvalue of P (X̄). Using Equality 5 and the properties of
the eigenvalue decompositions given in the Appendix, we have the identity

2kQ(z) =

2k−1∑
i=0

(−1)b
T
i ·jΛi(P (X̄)) =

2k−1∑
i=0

(−1)b
T
i ·jP (Λi(X̄)) =

2k−1∑
i=0

(−1)b
T
i ·jP (z(−1)e1

T bi , . . . , z(−1)en
T bi).

(1)

Equality 1 reduces the problem to 2k evaluations ofC with univariate real polynomials and provides an
O(|C|) space algorithm to evaluate Q(z), from which the target coefficient can be read off. �

9

5.4 Application to permanents

Let A = [aij] be a k × n matrix with real coefficients. The permanent of A is defined as

perm(A) =
∑

σ:[k]→n,σ is 1−1

(
k∏
i=1

ai,σ(i)

)
(2)

Theorem 5.5. Let A be a k × n matrix with entries from a commutative semi-ring S. The permanent of
A can be computed in time and space O∗(2k), assuming a unit cost for the addition and multiplication
operations over S. If S is a ring R, the space complexity can be reduced to poly(n).

Proof. Viewing perm(A) as a function of the entries of A, it is clear that it is a polynomial consisting
only of degree k monomials. To form one term in perm(A), we first pick -among

(
n
k

)
possibilities- a set

I of k columns in A to form a k × k submatrix AI , and then picking -among k! possibilities- k elements
from AI one from each different row and column of A.

We claim that perm(A) is the degree k multilinear term of the k-variate polynomial

P (X) =

n∏
i=1

1 +

k∑
j=1

ai,jxj

 . (3)

To see why, note that every term of degree k in P (X) appears as a term in a product of the form

∏
i∈I

k∑
j=1

ai,jxj , (4)

where I is a set of k distinct numbers from [1, n]. This corresponds to picking k columns from A. Con-
sidering now the polynomial in expression 4, we can see that the coefficient of each of its kk monomials
is the product of k elements that belong to distinct columns of AI . However, if a monomial contains two
elements from the same row j of AI , then it is a product of x2

j . Hence, all multilinear monomials of poly-
nomial 4 correspond to sets of k elements, one from each different row and column of A. This proves the
claim.

The proof for the case S = R follows now from Theorem 5.4. Let us now consider the general semiring
case. Let P be the polynomial in Equality 3. LetR(Q) denote the operation that restricts the polynomial
Q to its multilinear terms (i.e. deletes all terms containing squares) Let Pj be the polynomial consisting
of the multilinear terms in the product of the first j factors of P . It is clear that we are interested inR(Pn).
We can compute this by using n times the simple property R(Pj+1) = R(R(Pj)P). Since Pj is k-variate,
R(Pj) has at most 2k terms. In addition, each factor of P has n terms. Hence, the multiplication and
deletion of the non-multilinear terms required to computeR(R(Pj)P) can be done in O(n2k) time. �

We note that the application of Equality 1 in the original polynomial P (X) of Equality 3 recovers Ryser’s
formula. However, note that for the case k = n, the polynomial can be simplified to

P (X) =

n∏
i=1

n∑
j=1

ai,jxj

In this case all terms of P (x) have degree exactly n, and thus we can set z = 1 in Equality 1 to get the
following Theorem.

10

Theorem 5.6. Let ni denote the number of ones in the n-bit binary form b(i) of i. Let Pi denote the set of
the positions of ones in b(i). We have

2nperm(A) =

2n−1∑
i=0

(−1)ni

n∏
i=1

∑
j 6∈Pi

aij −
∑
j∈Pi

aij

 .

6 Final Remarks

A number of interesting questions remain open:

• Theorem 5.1 can be used to get a weak derandomization of our earlier results, and solve more so-
phisticated problems. To what extent can we improve on the construction of M in this result?

• Is there an algorithm for multilinear k-monomial counting that improves over the naive upper
bounds for general circuits?

• Can the algebraic method be applied to improve the time complexity for approximate counting? For
this question, color coding is still the best known approach.

7 Appendix A

7.1 Group algebras of Zk
2

Let Zk2 be the group consisting of k-dimensional 0-1 vectors with the group multiplication being entry-
wise addition modulo 2. The group algebra R[Zk2], where R is a ring, is the set of all linear combinations
of the form

∑
v∈Zk

2
avv where av ∈ K. The addition operator of R[Zk2] is defined by∑

v∈Zk
2

avv +
∑
v∈Zk

2

bvv =
∑
v∈Zk

2

(av + bv)v.

Multiplication by a scalar α ∈ R is defined by

α
∑
v∈Zk

2

avv =
∑
v∈Zk

2

(αav)v.

The multiplication operator of R[Zk2] is defined by∑
v∈Zk

2

avv

 ·
∑
u∈Zk

2

buu

 =
∑

v,u∈Zk
2

(avbu)(uv).

It can be verified that R[Zk2] is commutative, provided that R is commutative.

Matrices of dimension dwith real entries form a groupMd×d with matrix multiplication and an algebra
Md×d with matrix addition, multiplication by a scalar, and matrix multiplication. It is well known ([21],
p. 172), that there is a one-to-one map ρ : Zk2 → M2k×2k

such that ρ(uv) = ρ(u)ρ(v). The map ρ is an
isomorphism. For Z2, the map ρ : Z2 →M2×2 is defined by the representations of the Z2 elements:

ρ(0) =

(
1 0
0 1

)
and ρ(1) =

(
0 1
1 0

)
.

11

If ρ(Zk2) denotes the set of matrix representations of the Zk2 elements, it is easy to prove that

ρ(Zk2) =
⋃

X∈ρ(Zk−1
2)

{
(
X 0
0 X

)
,

(
0 X
X 0

)
}.

Among the elements of Zk2 , the representation of the identity v0 is the identity matrix, and the repre-
sentation of the all ones vector j is the matrix who has ones in the anti-diagonal and zeros everywhere
else.

Let R[z] denote the ring of univariate polynomials with real coefficients. The map ρ can be extended to
a one-to-one map of R[z][Zk2] toM2k×2k

, as follows:

ρ(
∑
v∈Zk

2

avv) =
∑
v∈Zk

2

avρ(v).

It can be verified that if w1, w2 are elements of R[Zk2] and α ∈ R, we have ρ(w1 + w2) = ρ(w1) + ρ(w2),
ρ(w1w2) = ρ(w1)ρ(w2) and ρ(αw1) = αρ(w1). Hence, the map ρ defines an isomorphic matrix algebra
which we will denote by ρ[R[z][Zk2]]. An easy consequence of the above considerations is that for any
element µ of R[z][Zk2], the anti-diagonal of ρ(µ) contains copies of the coefficient of j in µ.

The matrices ρ(Zk2) are simultaneously diagonalizable, i.e. there is a unitary matrix U such that for all
v ∈ Zk2 , we have ρ(v) = U−1ΛvU , where Λv are the eigenvalues of ρ(v), also known as the characters of v. If
b(i) is the vector containing the k-bit binary form of i, the ith eigenvalue of ρ(v) is given by (−1)v

T b(i) [21].
The matrix 2kU contains only 1 and−1 entries. Let P (X) be any polynomial with real coefficients, and X̄
be an assignment X → R[z][Zk2]. If Λi denotes the ith eigenvalue, it is not hard to verify that

Λi(P (X̄)) = P (Λi(X̄)).

This implies that for any element µ we can write ρ(µ) = U−1ΛµU . From this it can be seen that each
element of the anti-diagonal of ρ(µ) is an identical linear combination of the eigenvalues of ρ(µ). In fact,
if aj is the coefficient of j in µ, it can be shown that

2kaj =

2k−1∑
i=0

(−1)j
T b(i)Λi(µ). (5)

This is an analog of the trace identity, where j is substituted by v0.

References

[1] Noga Alon, László Babai, and Alon Itai. A fast and simple randomized parallel algorithm for the
maximal independent set problem. J. Algorithms, 7:567–583, December 1986.

[2] Noga Alon, Phuong Dao, Iman Hajirasouliha, Fereydoun Hormozdiari, and S. Cenk Sahinalp.
Biomolecular network motif counting and discovery by color coding. Bioinformatics, 24(13):241–
249, 2008.

[3] Noga Alon and Shai Gutner. Parameterized and exact computation. chapter Balanced Hashing,
Color Coding and Approximate Counting, pages 1–16. Springer-Verlag, Berlin, Heidelberg, 2009.

[4] Noga Alon, Raphael Yuster, and Uri Zwick. Color coding. Journal of the ACM, 42(4):844–856, 1995.

[5] Vikraman Arvind and Venkatesh Raman. Approximation algorithms for some parameterized count-
ing problems. In ISAAC, pages 453–464, 2002.

12

[6] Andreas Björklund. Determinant sums for undirected Hamiltonicity. In Proc. 51st IEEE Symposium
on Foundations of Computer Science (FOCS ’10), pages 173–182, 2010.

[7] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. The fast intersection trans-
form with applications to counting paths. CoRR, abs/0809.2489, 2008.

[8] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Counting paths and packings
in halves. In ESA 2009, 17th Annual European Symposium on Algorithms, pages 578–586, 2009.

[9] Andreas Björklund, Thore Husfeldt, Petteri Kaski, and Mikko Koivisto. Evaluation of permanents in
rings and semirings. Inf. Process. Lett., 110(20):867–870, 2010.

[10] Jianer Chen, Songjian Lu, Sing-Hoi Sze, and Fenghui Zhang. Improved algorithms for path, match-
ing, and packing problems. In Proc. 18th ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 298–307, 2007.

[11] Rod G. Downey and Mike R. Fellows. Parameterized Complexity. Springer, 1999.

[12] Jörg Flum and Martin Grohe. The parameterized complexity of counting problems. In FOCS ’02:
Proceedings of the 43rd Symposium on Foundations of Computer Science, page 538, Washington, DC,
USA, 2002. IEEE Computer Society.

[13] Tsutomu Kawabata and Jun Tarui. On complexity of computing the permanent of a rectangular
matrix. IEICE TRANSACTIONS on Fundamentals of Electronics, Communications and Computer Sci-
ences, E82-A5:741–744, 1999.

[14] Joachim Kneis, Daniel Mölle, Stefan Richter, and Peter Rossmanith. Divide-and-color. In Fedor
Fomin, editor, Graph-Theoretic Concepts in Computer Science, volume 4271 of Lecture Notes in Com-
puter Science, pages 58–67. Springer Berlin / Heidelberg, 2006.

[15] Joachim Kneis, Daniel Mölle, and Peter Rossmanith. Partial vs. complete domination: t-dominating
set. In Proceedings of the 33rd conference on Current Trends in Theory and Practice of Computer
Science, SOFSEM ’07, pages 367–376, Berlin, Heidelberg, 2007. Springer-Verlag.

[16] Ioannis Koutis. Faster algebraic algorithms for path and packing problems. In Proceedings of the 35th
international colloquium on Automata, Languages and Programming, Part I, pages 575–586, Berlin,
Heidelberg, 2008. Springer-Verlag.

[17] Ioannis Koutis and Ryan Williams. Limits and applications of group algebras for parameterized prob-
lems. In Proceedings of the 36th International Colloquium on Automata, Languages and Program-
ming: Part I, ICALP ’09, pages 653–664, Berlin, Heidelberg, 2009. Springer-Verlag.

[18] Eyal Kushilevitz and Noam Nissan. Communication Complexity. Cambdridge University Press, 1996.

[19] Yunlong Liu, Jianer Chen, and Jianxin Wang. A randomized approximation algorithm for parameter-
ized 3-d matching counting problem. In Guohui Lin, editor, Computing and Combinatorics, volume
4598 of Lecture Notes in Computer Science, pages 349–359. Springer Berlin / Heidelberg, 2007.

[20] F.J. MacWilliams and N. J. A. Sloane. The theory of error correcting codes. North-Holland, 2nd edition,
1977.

[21] A. Terras. Fourier Analysis on Finite Groups and Applications. Cambridge University, 1999.

[22] Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting weighted subgraphs. In
Proceedings of the 41st annual ACM symposium on Theory of computing, STOC ’09, pages 455–464,
New York, NY, USA, 2009. ACM.

[23] Ryan Williams. Finding paths of length k in O∗(2k) time. Inf. Process. Lett., 109:315–318, February
2009.

13

