
Complexity Lower Bounds from Algorithm Design
(Invited Paper)

R. Ryan Williams
Computer Science & Artificial Intelligence Laboratory

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Email: rrw@mit.edu

Abstract—Since the beginning of the theory of computation,
researchers have been fascinated by the prospect of proving
impossibility results on computing. When and how can we argue
that a task cannot be efficiently solved, no matter what algorithm
we try to use?

In this short article, I will briefly introduce some of the ideas
behind a research program in computational complexity that I
and others have studied, for the last decade. (The accompanying
talk will contain more details.) The program begins with the
observations that:

(a) Computer scientists know a great deal about how to design
efficient algorithms.

(b) However, we do not know how to prove many weak-looking
complexity lower bounds.

It turns out that certain knowledge we have from (a) can be
leveraged to prove complexity lower bounds in a systematic way,
making progress on (b). For example, progress on faster circuit
satisfiability algorithms (even those that barely improve upon
exhaustive search) automatically imply circuit complexity lower
bounds for interesting functions.1

I. INTRODUCTION

The area of computational complexity lower bounds is
chock full of bad news. Not only is “bad news” the goal of
complexity lower bounds (we want to prove that interesting
tasks cannot be solved efficiently) but the desired bad news
has its own bad news: there are substantial collections of
barrier results (such as relativization [1], natural proofs [2],
algebrization [3], and locality [4]) demonstrating broadly how
various methods in complexity theory are not simultaneously
subtle enough and powerful enough to prove theorems along
the lines of P 6= NP (and significantly weaker results). In
short, we cannot prove lower bounds, and we can prove that
we can’t prove lower bounds without significantly new ideas.2

In recent years, some progress in complexity lower bounds
has been made by taking a particular algorithm design view-
point to the lower bound problem. Let A be a “weak” class
of algorithms; we want to prove there are interesting tasks not
solvable by any algorithm in A. The idea is this: if we can
design procedures that can take an arbitrary algorithm A from
A as input, and say something interesting about the behavior

1Supported by NSF grants CCF-1741615 and CCF-1909429.
2There is also a research program (called Geometric Complexity Theory)

which endeavors to show lower bounds for arithmetic computation, pioneered
by Mulmuley and Sohoni [5], [6]. It has had some successes (for example, [7])
but it has also recently been hampered by its own barrier results [8]–[10].

of A, then this procedure can be applied to prove limitations
on the computational ability of algorithms from A.

To get an idea of how this may be possible, let us look
closely at what happens in worst-case algorithm design. Let
D be some domain of inputs and outputs (in computational
complexity these days, it is typical to simply assume that D
is a set of bit strings: either D = {0, 1}n for a fixed n, or
D = {0, 1}?). When we design a worst-case algorithm A for
computing a task T : D → D, we are asserting that a sentence
of the following type is true:

(∀x ∈ D)[A(x) = T (x)]. (1)

If we want to prove that no algorithm A from a set of
algorithms A solves task T , we want to prove a sentence of
the following type:

(∀A ∈ A)(∃xA ∈ D)[A(xA) 6= T (xA)]. (2)

That is, for all algorithms A of type A, there is a “bad
input” xA on which A fails to compute T .

For the moment, let us suppose the existential quantifier
of sentence (2) can be somehow eliminated and/or ignored
(basically, we assume that bad inputs xA are not a problem to
construct). Then, there is a superficial similarity between the
two above sentences:
• (1) universally quantifies over all x in the domain D, and

checks that A computes T on x.
• (2) universally quantifies over all algorithms A from A,

and checks that A does not compute T .
For a closer similarity, suppose the x’s in our domain D are

algorithms from A. Then, these two sentences would have the
same quantifier domains as well. In particular, imagine our task
T is meta-computational, meaning that its domain D consists
of descriptions of algorithms from A, and the task to be solved
analyzes the function computed by the given algorithm from
A. For a trivial example, suppose we fix a function f to lower-
bound, and consider the task Tf which accepts the description
of an algorithm A from A if and only if A does not compute
f . Then, if we managed to prove that

(∀A ∈ A)[Tf (A) accepts] (3)

we would prove that no algorithm in A can compute the
function f . Note that if (3) is true, then there is a trivial algo-
rithm for computing Tf : simply accept every input! However,978-1-6654-4895-6/21/$31.00 ©2021 IEEE

“meta-computational” task Tf is not very useful, in that we
have merely rephrased the lower bound problem: the trivial
algorithm accepting every input “solves” Tf if and only if f
can’t be computed by any algorithm in A. We want to study
other meta-computational tasks, interesting in their own right,
where non-trivial algorithms will provide insight into lower
bounds against A.

II. CIRCUIT LOWER BOUNDS FROM ALGORITHMS

Analyzing non-trivial properties of functions computed by
general Turing machines is generally undecidable, by Rice’s
Theorem [11]. So we have to be careful about what kinds
of meta-computational tasks we will study, in order to hope
for designing a “non-trivial” algorithm. Instead of Turing
machines which can take arbitrarily long inputs, we consider
computational models which can only take a fixed finite
number of inputs. With this switch, many interesting analysis
tasks become decidable (generally falling in the range of NP,
coNP, and other complexity classes).

A canonical example is the Boolean circuit satisfiability
problem. Determining whether a given Turing machine accepts
at least one input string is well-known to be undecidable (in
fact, it is many-one complete for the recursively enumerable
languages). But determining whether a given Boolean circuit
accepts at least one input is NP-complete. For a general
collection of circuits C (think CNFs, or 3CNFs, or formulas,
or fan-in two circuits), we consider the C-SAT problem.

C-SAT: Given a Boolean circuit C of type C, determine
if there is an input x such that C(x) = 1.

We also consider a weaker promise form of the C-SAT
problem.

C-GAP-SAT: Given a circuit C of type C for which
it is promised that either Prx[C(x) = 1] ≥ 1/2 or
Prx[C(x) = 1] = 0, determine which of the two is the
case.

We say that an algorithm “solves” C-GAP-SAT if it always
concludes the correct case for those C that satisfy the promise
(it could have arbitrary behavior on C that do not satisfy it).

The C-GAP-SAT problem is, as far as we know, signifi-
cantly easier than C-SAT. While C-SAT is NP-complete for
essentially all interesting C (including 3CNFs), C-GAP-SAT
can be solved with high probability using randomness, by
simply sampling random inputs x and trying them. Indeed,
assuming lower bounds that we expect to be true, C-GAP-
SAT can be solved in deterministic polynomial time! (This
follows from work of Impagliazzo and Wigderson [12].)

Clearly C-GAP-SAT can be solved by exhaustive search
over all inputs. A host of theorems show that, if we can
design algorithms that barely improve over exhaustive search,
then interesting complexity lower bounds against families of
C circuits follow.

Such implications are interesting, as there are many fas-
cinating open questions about circuit complexity which look
as if they should be easy to resolve, yet they have remain
unanswered for decades. To give one example, it is open
whether every problem in NP can be computed with an infinite
family of linear-size circuits. More precisely, it is possible that
for every problem L in NP (including those with n100-length
witnesses verifiable in n100 time) there is an infinite family of
Boolean circuits {Cn} such that for all n, Cn agrees with L on
all n-bit inputs (Cn(x) = 1 ⇐⇒ x ∈ L for all x ∈ {0, 1}n)
and the number of gates in Cn is at most 100n. This looks
like a ludicrous possibility: how could linear-size circuits be
so powerful? However, we do not know yet how to prove such
non-uniform lower bound results (“non-uniform” referring to
the fact that there can be a completely different circuit for
each input length n). For some intuition about how powerful
non-uniform models can be, note that for every unary (a.k.a.
tally) language L (including undecidable languages!) there is
a circuit family {Cn} computing L in the above sense.

The following theorem is representative of the current state
of the art.

Theorem 2.1 (Informal): For all “typical” circuit classes C,3

If there is an ε > 0 such that C-GAP-SAT on circuits of n
inputs and 2n

ε

size can be decided in O(2n−n
ε

) time, then:
• [13] There are functions in nondeterministic npoly(logn)

time which cannot be computed with poly(n)-size C-
circuit families.

• [14] There is a δ > 0 and there are functions computable
in 2O(n) time with a SAT oracle that cannot be computed
with 2n

δ

-size C-circuit families, not even on infinitely
many input lengths.

Let us emphasize the weakness of the algorithmic hypoth-
esis of Theorem 2.1. It is widely believed that C-GAP-SAT
should be in deterministic poly(S) time, where S is the
circuit size. We are only asking for an algorithm that runs
in O(2n−n

ε

) time on 2n
ε

size circuits, where ε > 0 can
be as tiny as one likes. Moreover, Theorem 2.1 is a special
case of more general theorems: if the running times of the C-
GAP-SAT algorithm can be reduced, then the resulting lower
bounds against C circuits can be improved. One can even
obtain nontrivial results from an algorithm that barely beats
the 2n cost of exhaustive search. Here is one example result:

Theorem 2.2 (cf. [15]): If GAP-SAT can be solved in
O(2n/n10) time on poly(n)-size Boolean circuits of fan-in
two, then there are functions in nondeterministic exponential
time that do not have polynomial-size circuits.

While the algorithmic hypothesis looks extremely plausible
given that a polynomial-time algorithm is believed to exist,
the resulting lower bound consequence of Theorem 2.2 is
a longstanding open problem (see, for example, [16]). As
above, Theorem 2.2 is a special case of a more general set
of connections between C-GAP-SAT algorithms and C circuit
lower bounds [17], [18].

3Here we leave the notion of “typical” undefined, but it is a very minimalist
set of conditions.

We can get stronger lower bounds from algorithms for
the #SAT problem, which count the number of satisfying
assignments to a given circuit.

#C-SAT: Given a Boolean circuit C of type C, output
the number of x such that C(x) = 1.

(In fact, for the results below we do not need an algo-
rithm solving #SAT in its full generality: we only have to
approximate the fraction of satisfying assignments to a circuit
within an additive constant, something which can be done
in randomized polynomial time, and is also believed to be
solvable in deterministic polynomial time.) Stronger lower
bound consequences can be derived from such algorithms,
such as:

Theorem 2.3 (Informal): For a wide variety of circuit classes
C, If there is an ε > 0 such that #C-SAT on circuits of n inputs
and 2n

ε

size can be decided in O(2n−n
ε

) time, then:
• [19], [20] There are decision problems computable in

nondeterministic npoly(logn) time which cannot be com-
puted in the average case with poly(n)-size C-circuit
families.

• [14] There is a δ > 0 and there are decision problems
computable in 2O(n) time with a SAT oracle that cannot
be computed in the average case with 2n

δ

-size C-circuit
families, not even on infinitely many input lengths.

The average-case lower bounds obtainable from #SAT
algorithms in Theorem 2.3 are rather strong. Note that for any
Boolean function f : {0, 1}n → {0, 1} there is always a circuit
C (of O(1) size) such that Prx[f(x) = C(x)] ≥ 1/2: simply
have C output the majority value of f(x) over all inputs x. The
lower bounds implications of Theorem 2.3 say that for certain
decision problems f and large enough input lengths n, there
are no C circuits C achieving Prx∈{0,1}n [f(x) = C(x)] ≥
1/2 + ε(n) for tiny ε(n) � 1/poly(n). In other words, a C
circuit cannot do much better at guessing the value of f(x)
than a trivial circuit.

The best part about such theorems is that their hypotheses
actually hold for some interesting circuit classes C! Presently,
the only way we know how to prove strong lower bounds
against some infamously annoying circuit classes such ACC0,
is to start from an appropriate #SAT algorithm for ACC0

circuits, and apply theorems such as the above.

III. CONCLUSION

This article is only intended to stir the curiosity of the
reader. The talk at LICS will provide more details. If you
cannot wait until then, the survey article [21] touches upon
some of the major points, but is out of date with respect to
the state of the art.

REFERENCES

[1] T. Baker, J. Gill, and R. Solovay, “Relativizations of the P =?NP
question,” SIAM J. Comput., vol. 4, no. 4, pp. 431–442, 1975.

[2] A. A. Razborov and S. Rudich, “Natural proofs,” J. Comput. Syst. Sci.,
vol. 55, no. 1, pp. 24–35, 1997.

[3] S. Aaronson and A. Wigderson, “Algebrization: A new barrier in
complexity theory,” ACM Trans. Comput. Theory, vol. 1, no. 1, Feb.
2009.

[4] L. Chen, S. Hirahara, I. C. Oliveira, J. Pich, N. Rajgopal, and R. San-
thanam, “Beyond natural proofs: Hardness magnification and locality,”
in 11th Innovations in Theoretical Computer Science Conference, ser.
LIPIcs, vol. 151. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2020, pp. 70:1–70:48.

[5] K. Mulmuley and M. A. Sohoni, “Geometric complexity theory I: an
approach to the P vs. NP and related problems,” SIAM J. Comput.,
vol. 31, no. 2, pp. 496–526, 2001.

[6] K. Mulmuley, “On P vs. NP and geometric complexity theory: Dedicated
to sri ramakrishna,” J. ACM, vol. 58, no. 2, pp. 5:1–5:26, 2011.

[7] P. Bürgisser and C. Ikenmeyer, “Explicit lower bounds via geometric
complexity theory,” in Proceedings of the ACM Symposium on Theory
of Computing. ACM, 2013, pp. 141–150.

[8] P. Bürgisser, C. Ikenmeyer, and G. Panova, “No occurrence obstructions
in geometric complexity theory,” in IEEE 57th Annual Symposium on
Foundations of Computer Science. IEEE Computer Society, 2016, pp.
386–395.

[9] C. Ikenmeyer, K. D. Mulmuley, and M. Walter, “On vanishing of
kronecker coefficients,” Comput. Complex., vol. 26, no. 4, pp. 949–992,
2017.

[10] A. Garg, C. Ikenmeyer, V. Makam, R. M. de Oliveira, M. Walter,
and A. Wigderson, “Search problems in algebraic complexity, gct,
and hardness of generators for invariant rings,” in 35th Computational
Complexity Conference, ser. LIPIcs, vol. 169. Schloss Dagstuhl -
Leibniz-Zentrum für Informatik, 2020, pp. 12:1–12:17.

[11] H. G. Rice, “Classes of recursively enumerable sets and their decision
problems,” Transactions of the American Mathematical Society, vol. 74,
no. 2, pp. 358–366, 1953.

[12] R. Impagliazzo and A. Wigderson, “P = BPP if E requires exponential
circuits: Derandomizing the XOR lemma,” in Proceedings of the Twenty-
Ninth Annual ACM Symposium on the Theory of Computing. ACM,
1997, pp. 220–229.

[13] C. D. Murray and R. R. Williams, “Circuit lower bounds for nonde-
terministic quasi-polytime from a new easy witness lemma,” SIAM J.
Comput., vol. 49, no. 5, 2020.

[14] L. Chen, X. Lyu, and R. R. Williams, “Almost-everywhere circuit
lower bounds from non-trivial derandomization,” in 61st IEEE Annual
Symposium on Foundations of Computer Science. IEEE, 2020, pp.
1–12.

[15] R. Williams, “Improving exhaustive search implies superpolynomial
lower bounds,” SIAM J. Comput., vol. 42, no. 3, pp. 1218–1244, 2013.

[16] R. Impagliazzo, V. Kabanets, and A. Wigderson, “In search of an easy
witness: exponential time vs. probabilistic polynomial time,” J. Comput.
Syst. Sci., vol. 65, no. 4, pp. 672–694, 2002.

[17] R. Santhanam and R. Williams, “On medium-uniformity and circuit
lower bounds,” in Proceedings of the 28th Conference on Computational
Complexity, 2013, pp. 15–23.

[18] E. Ben-Sasson and E. Viola, “Short PCPs with projection queries,” in Au-
tomata, Languages, and Programming - 41st International Colloquium,
Proceedings, Part I, ser. Lecture Notes in Computer Science, vol. 8572.
Springer, 2014, pp. 163–173.

[19] L. Chen, “Non-deterministic quasi-polynomial time is average-case hard
for ACC circuits,” in 60th IEEE Annual Symposium on Foundations of
Computer Science. IEEE Computer Society, 2019, pp. 1281–1304.

[20] L. Chen and H. Ren, “Strong average-case lower bounds from non-trivial
derandomization,” in Proceedings of the 52nd Annual ACM Symposium
on Theory of Computing. ACM, 2020, pp. 1327–1334.

[21] R. R. Williams, “Some ways of thinking algorithmically about impos-
sibility,” ACM SIGLOG News, vol. 4, no. 3, pp. 28–40, 2017.

