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Abstract8

Multiple known algorithmic paradigms (backtracking, local search and the polynomial method) only yield9

a 2n(1−1/O(k)) time algorithm for k-SAT in the worst case. For this reason, it has been hypothesized that the10

worst-case k-SAT problem cannot be solved in 2n(1−f(k)/k) time for any unbounded function f . This hypothesis11

has been called the “Super-Strong ETH”, modeled after the ETH and the Strong ETH. We give two results on the12

Super-Strong ETH:13

1. It has also been hypothesized that k-SAT is hard to solve for randomly chosen instances near the “critical14

threshold”, where the clause-to-variable ratio is 2k ln 2 − Θ(1). We give a randomized algorithm which15

refutes the Super-Strong ETH for the case of random k-SAT and planted k-SAT for any clause-to-variable16

ratio. For example, given any random k-SAT instance F with n variables and m clauses, our algorithm17

decides satisfiability for F in 2n(1−Ω(log k)/k) time, with high probability (over the choice of the formula18

and the randomness of the algorithm). It turns out that a well-known algorithm from the literature on SAT19

algorithms does the job: the PPZ algorithm of Paturi, Pudlak, and Zane (1998).20

2. The Unique k-SAT problem is the special case where there is at most one satisfying assignment. Improving21

prior reductions, we show that the Super-Strong ETHs for Unique k-SAT and k-SAT are equivalent. More22

precisely, we show the time complexities of Unique k-SAT and k-SAT are very tightly correlated: if Unique23

k-SAT is in 2n(1−f(k)/k) time for an unbounded f , then k-SAT is in 2n(1−f(k)(1−ε)/k) time for every24

ε > 0.25
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1 Introduction31

The k-SAT problem is the canonical NP-complete problem for k ≥ 3. Tremendous effort has been32

devoted to finding faster worst-case algorithms for k-SAT. Because it is widely believed that P 6= NP,33

the search has been confined to super-polynomial-time algorithms. Despite much effort, there are no34

known algorithms for k-SAT which run in (2− ε)n time for a universal constant ε > 0, independent35

of k. The inability to find algorithms led researchers to the following two popular hypotheses which36

strengthen P 6= NP:37

Exponential Time Hypothesis (ETH) [13] There is an α > 0 such that no 3-SAT algorithm38

runs in 2αn time.39

Strong Exponential Time Hypothesis (SETH) [4] There does not exist a constant ε > 0 such40

that for all k, k-SAT can be solved in (2− ε)n time.41

In fact, the situation for k-SAT algorithms is even worse. The current best known algorithms for42

k-SAT all have running time 2n(1−Ω( 1
k )), i.e., time 2n(1− c

k ) for some constant c > 0. This bound is43
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23:2 On Super Strong ETH

achieved by multiple paradigms, such as randomized backtracking [16, 15], local search [18], and the44

polynomial method [5]. Even for simpler variants such as unique-k-SAT, no faster algorithms are45

known. Hence it is possible that this runtime of 2n(1−Ω( 1
k )) is actually optimal. This was termed the46

Super-Strong ETH in a 2015 talk by the second author [23].47

Super-SETH: Super Strong Exponential Time Hypothesis. For every unbounded function48

f : N→ N, there is no (randomized) 2n
(

1− f(k)
k

)
-time algorithm for k-SAT.49

In this paper, we study Super-SETH in two natural restricted scenarios:50

Random/Planted k-SAT. There are two cases generally studied: (a) finding a solution of a51

random k-SAT instance where each clause is drawn uniformly and independently from the set52

of all possible k-width clauses, and (b) finding solutions of a planted k-SAT instance, where a53

random (hidden) solution σ is sampled, then each clause is drawn uniformly and independently54

from the set of all possible clauses of width k that satisfy σ.55

Random k-SAT has a well-known threshold behaviour in which, for αsat = 2k ln 2 − Θ(1)56

and for all constant ε > 0, random k-SAT instances are SAT w.h.p. (with high probability) for57

m < (αsat − ε)n and UNSAT w.h.p. for m > (αsat + ε)n. Note that, as far as decidability is58

concerned, for instances below (respectively, above) the threshold we may simply output “SAT”59

(respectively, “UNSAT”) and we will be correct whp. It has been conjectured [9, 19] that random60

instances at the threshold m = αsatn are the hardest random instances, and it is difficult to61

determine their satisfiability. We are motivated by the following strengthening of this conjecture:62

Are random instances near the threshold as hard as the worst-case instances of k-SAT?63

Unique k-SAT. This is the special case of finding a SAT assignment to a k-CNF, when one is64

promised that there is at most one satisfying assignment. It is well-known to be NP-complete65

under randomized reductions [21]. As mentioned earlier, the best known algorithms for Unique-66

k-SAT have the same running time behaviour of 2n(1−O( 1
k )) as k-SAT. In fact some of the67

best-known k-SAT algorithms [16, 15] have an easier analysis when restricted to the case of68

Unique-k-SAT. PPSZ [15], the current best known algorithm for k-SAT (when k ≥ 5) has only69

been derandomized for Unique-k-SAT. Could worst-case algorithms for Unique k-SAT be70

marginally faster than those for k-SAT?71

In principle, in this “ultra fine-grained” setting we are studying (where the exponential dependence on72

k matters), both above special cases could potentially be just as hard as k-SAT, or both of them could73

be easier. In this paper, we prove that Super-SETH is false for Random k-SAT, and the Super-SETH74

for Unique k-SAT is equivalent to the general Super-SETH: the dependence on k in the exponent is75

the same for the two problems.76

1.1 Prior Work77

As mentioned earlier, many algorithmic paradigms have been introduced for solving k-SAT in the78

worst case, but none are known to run in 2n(1−ωk(1/k)) time. There also has been substantial work79

on polynomial-time algorithms for random k-SAT that return solutions for m below the threshold.80

Note that even though we know that these instances are satisfiable whp, that does not immediately81

give a way to find a solution. Chao and Franco [6] first proved that the unit clause heuristic (the82

same key component of the PPZ algorithm) finds solutions with high probability for random k-83

SAT when m ≤ c2kn/k for some constant c > 0. The current best known polynomial-time84

algorithm in this regime is by Coja-Oghlan [7] and it can find a solution whp for random k-SAT85

when m ≤ c2kn log k/k for some constant c > 0. Interestingly, we also know of polynomial time86

algorithms for largem. Specifically, it is known that for a certain constant C0 = C(k) andm > C0 ·n87
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there are polynomial-time algorithms finding solutions to planted k-SAT instances by Krivelevich and88

Vilenchik [14] and random k-SAT (conditioned on satisfiability) by Coja-Oghlan, Krivelevich and89

Vilenchik [8]. However, both of these results require that m is at least 4kn/k [22]. To our knowledge,90

no improvements over worst-case k-SAT algorithms have yet been reported for random k-SAT very91

close to the threshold.92

Valiant and Vazirani [21] gave poly-time randomized reductions from SAT instances F on n93

variables to Unique-SAT instances F ′ on n variables such that, if F is SAT then F ′ a unique94

satisfying assignment with probability at least Ω(1/n), and if F is UNSAT then F ′ is UNSAT.95

This reduction is not applicable to convert k-SAT instances to Unique-k-SAT instances, as they96

do not preserve the clause width. To address this, Calabro, Impagliazzo, Kabanets and Paturi [3]97

gave a randomized polynomial-time reduction with one-sided error from k-SAT to Unique-k-SAT98

which works with probability 2−O(n log2(k)/k). The probability bound was further improved by99

Traxler [20] to 2−O(n log(k)/k). Both of these reductions imply that k-SAT and either both have100

2δn time algorithms for some universal δ > 0, or neither of them do (i.e., SETH and the SETH101

for Unique-k-SAT are equivalen). However these results are not sufficient for an equivalence w.r.t.102

Super-SETH: for example, it is still possible that k-SAT has no 2n(1−ω(1/k)) time algorithms, while103

Unique-k-SAT has a 2n(1−Ω(log k/k)) time algorithm.104

1.2 Our Results105

1.2.1 Average-Case k-SAT Algorithms106

First we present an algorithm which breaks Super-Strong ETH for random k-SAT. In particular, we107

give a 2n(1−Ω( log k
k ))-time algorithm which finds a solution whp for random-k-SAT (conditioned108

on satisfiability) for all values of m. In fact, our algorithm is an old one from the SAT algorithms109

literature: the PPZ algorithm of Paturi, Pudlak and Zane [16].110

In order to show that PPZ breaks Super-Strong ETH in the random case, we first show that PPZ111

yields a faster algorithm for random planted k-SAT for large enough m.112

I Theorem 1. There is a randomized algorithm that, given a planted k-SAT instance F sampled113

from P (n, k,m)1 with m > 2k−1 ln(2), outputs a satisfying assignment to F in 2n(1−Ω( log k
k )) time114

with 1− 2−Ω(n( log k
k )) probability (over the planted k-SAT distribution and the randomness of the115

algorithm).116

Next, we give a reduction from random k-SAT (conditioned on satisfiability, we denote this117

distribution by R+) to planted k-SAT. Similar reductions/equivalences have been observed before118

in [2, 1].119

I Theorem 2. Suppose there is an algorithm A for planted k-SAT P (n, k,m), for all m ≥120

2k ln 2(1 − f(k)/2)n, which finds a solution in time 2n(1−f(k)) and with probability 1 − 2−nf(k),121

where 1/k < f(k) = ok(1). Then for any m′, given a random k-SAT instance sampled from122

R+(n, k,m′), a satisfying assignment can be found in 2n(1−Ω(f(k))) time with 1 − 2−nΩ(f(k))
123

probability.124

Combining Theorems 1 and 2 yields:125

I Theorem 3. Given a random k-SAT instance F sampled fromR+(n, k,m), we can find a solution126

in 2n(1−Ω( log k
k )) time whp.127

1 See “Three k-SAT Distributions" in Section 2 for formal definitions of different k-SAT distributions.
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I Remark 4. We obtain a randomized algorithm for random k-SAT which always reports UNSAT on128

unsatisfiable instances, and finds a SAT assignment whp on satisfiable instances. Feige’s Hypothesis129

for k-SAT [11] conjectures that there are no efficient refutations for random k-SAT near the threshold,130

i.e., there are no efficient algorithms which always report SAT on satisfiable instances, and report131

UNSAT on unsatisfiable instances with probability at least 1/2. Refuting Feige’s hypothesis in our132

setting is an intriguing open problem.133

Our running time of 2n(1−Ω( log k
k )) implies that at least one of the following are true:134

either the random instances of k-SAT at the threshold are not the hardest instances of k-SAT, or135

Super-Strong ETH is also false for worst-case k-SAT.136

For the PPZ algorithm, time lower bounds of the form 2n(1−O( 1
k )) are known [17]. Thus we can137

say that, with respect to the PPZ algorithm, random k-SAT instances are provably more tractable138

than worst-case k-SAT instances. On the other hand, for the PPSZ algorithm which gives the current139

best known running time for k-SAT (when k ≥ 4) we only know 2n(1−O( log k
k )) lower bounds [17],140

matching our upper bounds for the random case. Hence it is possible that PPSZ actually runs in141

2n(1−Ω( log k
k )) time for worst-case k-SAT.142

In Appendix A, we observe that our techniques can be used to get algorithms running faster than143

2n(1−Ω( log k
k )) for planted k-SAT and random k-SAT (conditioned on satisfiability), when m is large.144

1.2.2 Unique k-SAT Equivalence145

In Section 5 we give a “low exponential” time reduction from k-SAT to Unique-k-SAT, which146

proves that the two problems are equivalent w.r.t. Strong-SETH: i.e., there is a 2n(1−ωk(1/k) time147

algorithm for Unique-k-SAT if and only if there is a 2n(1−ωk(1/k) time algorithm for k-SAT. In fact,148

our reduction has the following stronger property:149

I Theorem 5. A 2(1−f(k)/k)n time algorithm for Unique k-SAT where f(k) = ωk(1) implies a150

2(1−f(k)/k+O((log f(k))/k))n algorithm for k-SAT.151

As mentioned earlier, the current best algorithm for k-SAT PPSZ [15] has a much easier analysis152

for Unique k-SAT, and in fact it was an open question to show that its running time on general153

instances of k-SAT matches the running time for Unique k-SAT; this was eventually resolved by154

Hertli [12]. Theorem 5 implies that, in order to obtain faster algorithms for k-SAT which break155

Super-Strong ETH, it is sufficient to restrict ourselves to Unique k-SAT, which might simplify the156

analysis as in the case of PPSZ.157

2 Preliminaries158

Notation. In this paper, we generally assume k ≥ 3 is a large enough constant. We will compare time159

bounds that have the form 2n(1−Ω(log k)/k) with 2n(1−O(1/k)) time, where the big-Ω and the big-O160

hide multiplicative constants; such notation only makes sense for k that can grow unboundedly.161

We often use the terms “solution”, “SAT assignment”, and “satisfying assignment” interchange-162

ably. For an n-variable assignment s ∈ {0, 1}n and an index set I ⊆ [n], we use s|I to denote the163

length-|I| substring of s projected on the index set I . We use the notation x ∈r χ to denote that164

x is randomly sampled from the distribution χ. By poly(n), we mean some function f(n) which165

satisfies f(n) = O(nc) for a universal constant c ≥ 1. Letting n be the number of variables in a166

k-CNF, a random event about k-CNF holds whp (with high probability) if it holds with probability167

1− f(n), where f(n)→ 0 as n→∞. We use log and ln to denote the logarithm base-2 and base-e168



N. Vyas and R. Williams 23:5

respectively, and H(p) = −p log(p)− (1− p) log(1− p) denotes the binary entropy function, and169

Õ(f(n)) denotes O(f(n) log(f(n))).170

Three k-SAT Distributions. We consider the following three distributions for k-SAT:171

R(n, k,m) is the distribution over formulas F of m clauses, where each clause is drawn i.i.d.172

from the set of all k-width clauses. This is the standard k-SAT distribution.173

R+(n, k,m) is the distribution over formulas F of m clauses where each clause is drawn i.i.d.174

from the set of all k-width clauses and we condition F on being satisfiable i.e. R(n, k,m)175

conditioned on satisfiability.176

P (n, k,m, σ) is the distribution over formulas F of m clauses where each clause is drawn i.i.d.177

from the set of all k-width clauses which satisfy σ. P (n, k,m) is the distribution over formulas178

F formed by sampling σ ∈ {0, 1}n uniformly and then sampling F from P (n, k,m, σ).179

Note that an algorithm solving the search problem (finding SAT assignments) for instances180

sampled from R+ is stronger than deciding satisfiability for instances sampled from R: given an181

algorithm for the search problem on R+, we can run it on a random instance from R and return SAT182

if and only if the algorithm returns a valid satisfying assignment.183

2.1 Structural properties of planted and random k-SAT184

A few structural results about planted and random k-SAT will be useful in analyzing our algorithms.185

In particular, we consider bounds on the expected number of solutions of planted k-SAT instances186

and random k-SAT instances (conditioned on satisfiability).187

A well-known conjecture is that the satisfiability of random k-SAT displays a threshold behaviour188

for all k. The following lemma which states that the conjecture holds for all k (larger than a fixed189

constant) was proven by Ding, Sly and Sun [10].190

I Lemma 6 ([10]). There is a constant k0 such that for all k > k0, for αsat = 2k ln 2−Θ(1) and191

for all constant ε > 0, we have that:192

For m < (1− ε)αsatn, lim
n→∞

Pr
F∈rR(n,k,m)

[F is satisfiable] =1193

For m > (1 + ε)αsatn, lim
n→∞

Pr
F∈rR(n,k,m)

[F is satisfiable] =0194

195

We will also need the fact that, whp, the ratio of the number of solutions and its expected value is196

not too small, as long as m is not too large. This was proven by Achlioptas [1].197

I Lemma 7 (Lemma 22 of [1]). For F ∈r R(n, k,m), let S be the set of solutions of F . Then
E[|S|] = 2n(1− 1

2k )m. Furthermore, for αd = 2k ln 2− k and m < αdn we have

lim
n→∞

Pr[|S| < E[|S|]/2O(nk/2k)] = 0.

Together, the above two results have the following useful consequence:198

I Lemma 8. For F ∈r R+(n, k,m) let Z denote the number of solutions of F . Then for every
constant δ > 0, if m < (1 − ε)αsat for some constant ε > 0, then 2n(1 − 1

2k )m ≤ E[Z] ≤
(1 + δ)2n(1− 1

2k )m. Furthermore, for αd = 2k ln 2− k, and m < αdn we have

lim
n→∞

Pr[Z < E[Z]/2O(nk/2k)] = 0.

Proof. Let F ′ ∈r R(n, k,m) and let Z ′ denote the number of solutions of F ′. Letting pn denote199

the probability that F ′ is unsatisfiable, then E[Z ′] = (1− pn)E[Z]. By Lemma 6 limn→∞ pn → 0,200

hence 2n(1− 1
2k )m ≤ E[Z] ≤ (1 + δ)2n(1− 1

2k )m.201
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23:6 On Super Strong ETH

Observe that Pr[Z < E[Z]/2O(nk/2k)] ≤ Pr[Z ′ < E[Z]/2O(nk/2k)], as Z is just Z ′ conditioned202

on being positive. Furthermore Pr[Z ′ < E[Z]/2O(nk/2k)] ≤ Pr[Z ′ < E[Z ′]/2O(nk/2k)] as E[Z] ≤203

2E[Z ′]. By Lemma 7, Pr[Z ′ < E[Z ′]/2O(nk/2k)] tends to 0. J204

We will use our planted k-SAT algorithm to solve random k-SAT instances conditioned on their205

satisfiability. The idea of this approach was introduced in an unpublished manuscript by Ben-Sasson,206

Bilu, and Gutfreund [2]. We will use the following lemma therein.207

I Lemma 9 (Lemma 3.3 of [2]). For a given F in R+(n, k,m) with Z solutions, it is sampled208

from P (n, k,m) with probability Zp, where p only depends on n, k, and m.209

I Corollary 10. For F ∈r R+(n, k,m) and F ′ ∈r P (n, k,m) let Z and Z ′ denote their num-210

ber of solutions respectively. Then for αd = 2k ln 2 − k and for m < αdn, limn→∞ Pr[Z ′ <211

E[Z]/2O(nk/2k)] = 0.212

Proof. We have limn→∞ Pr[Z < E[Z]/2O(nk/2k)] = 0 by Lemma 8. Lemma 9 shows that the213

planted k-SAT distribution P (n, k,m) is biased toward satisfiable formulas with more solutions.214

The distribution R+(n, k,m) instead chooses all satisfiable formulas with equal probability. Hence215

limn→∞ Pr[Z ′ < E[Z]/2O(nk/2k)] = 0. J216

Note that so far, our lemmas regarding the number of solutions do not apply when m > αsatn.217

Next we prove a lemma bounding the number of expected solutions when m > αsatn; this may be of218

independent interest.219

I Lemma 11. The expected number of solutions of F ∈r R+(n, k,m) and F ′ ∈r P (n, k,m) for220

m ≥ (αsat − 1)n is at most 2O(n/2k).221

Proof. Lemma 9 shows that the planted k-SAT distribution P (n, k,m) is biased toward satisfiable222

formulas with more solutions. Hence the expected number of solutions of F ′ ∈r P (n, k,m) upper223

bounds the expected number of solutions of F ∈r R+(n, k,m). So it suffices for us to upper bound224

the expected number of solutions of F ′.225

Let Z denote the number of solutions of F ′. Let σ denote the planted solution in F , and let226

x be some assignment which has hamming distance i from σ. For a clause C satisfied by σ but227

not by x, all of C’s satisfied literals must come from the i bits where σ and x differ, and all its228

unsatisfying literals must come from the remaining n − i bits. Letting j denote the number of229

satisfying literals in C, the probability that a randomly sampled clause C is satisfied by σ but not by230

x is
∑k
j=1

(k
j)

2k−1 ( in )j(1− i
n )k−j = 1−(1− i

n )k

2k−1 . We will now upper bound E[Z].231

E[Z] =
∑

y∈{0,1}n

Pr[y satisfies F ′]232

=
n∑
i=1

(
n

i

)
Pr[Assignment x that differs from σ in i bits satisfies F ′]233

=
n∑
i=1

(
n

i

)
Pr[A random clause satisfying σ satisfies x]m234

=
n∑
i=1

(
n

i

)
(1− Pr[A random clause satisfying σ does not satisfy x])m235

=
n∑
i=1

(
n

i

)(
1− 1− (1− i/n)k

2k − 1

)m
[As shown above]236



N. Vyas and R. Williams 23:7

≤
n∑
i=1

(
n

i

)
e
−m
(

1−(1−i/n)k

2k−1

)
[As 1− x ≤ e−x]237

≤
n∑
i=1

(
n

i

)
e
−(αsat−1)n

(
1−(1−i/n)k

2k−1

)
238

≤ 2O(n/2k)
n∑
i=1

(
n

i

)
e
−((2k−1) ln 2)n

(
1−(1−i/n)k

2k−1

)
[As m ≥ (2k ln 2−O(1))n]239

≤ 2O(n/2k)
n∑
i=1

(
n

i

)
2−n(1−(1−i/n)k)

240

≤ 2O(n/2k)
n∑
i=1

2n(H(i/n)−1+(1−i/n)k) ≤ 2O(n/2k) max
0≤p≤1

2n(H(p)−1+(1−p)k).241

242

Let f(p) = H(p) − 1 + (1− p)k. Then f ′(p) = − log
(

p
1−p

)
− k(1 − p)k−1 and f ′′(p) =243

−1
p(1−p) + k(k − 1)(1 − p)k−2. Observe that f ′′(p) = 0 ⇐⇒ p(1 − p)k−1 = 1

k(k−1) . Note that244

f ′′(p) has only two roots in [0, 1], hence f ′(p) has at most 3 roots in [0, 1]. It can be verified that for245

sufficiently large k, f ′(p) indeed has three roots at p = Θ(1/2k), Θ(log k/k), and 1/2−Θ(k/2k).246

At all these three values of p, f(p) = O(1/2k). Hence E[Z] ≤ 2O(n/2k). J247

3 Planted k-SAT and the PPZ Algorithm248

In this section, we establish that the PPZ algorithm solves random planted k-SAT instances faster249

than 2n−n/O(k) time.250

B Reminder of Theorem 1. There is a randomized algorithm that given a planted k-SAT251

instance F sampled from P (n, k,m) with m > 2k−1 ln(2), outputs a satisfying assignment to F in252

2n(1−Ω( log k
k )) time with 1− 2−Ω(n( log k

k )) probability (over the planted k-SAT distribution and the253

randomness of the algorithm).254

We will actually prove the following stronger claim: For any σ, if F was sampled from P (n, k,m, σ),255

then we can find a set of 2n(1−Ω( log k
k )) assignments in 2n(1−Ω( log k

k )) time, and with probability256

1− 2−Ω(n( log k
k )) one of them will be σ (the probability is over the planted k-SAT distribution and257

the randomness of the algorithm). Theorem 1 implies an algorithm that (always) finds a solution for258

k-SAT instance F sampled from P (n, k,m), and runs in expected time 2n(1−Ω( log k
k )).259

In fact, the algorithm of Theorem 1 is a slightly modified version of the PPZ algorithm [16],260

a well-known worst case algorithm for k-SAT. PPZ runs in polynomial time, and outputs a SAT261

assignment (on any satisfiable k-CNF) with probability p ≥ 2−n+n/O(k). It can be repeatedly run for262

O(n/p) times to obtain a worst-case algorithm that is correct whp. We consider a simplified version263

which is sufficient for analyzing planted k-SAT:264

CVIT 2016



23:8 On Super Strong ETH

Algorithm 1 Algorithm for planted k-SAT

1: procedure SIMPLE-PPZ(F )
2: while i ≤ n do
3: if there exists a unit clause then
4: set the variable in it to make it true
5: else if xi is unassigned then
6: Set xi randomly.
7: i← i+ 1
8: else
9: i← i+ 1

10: Output the assignment if it satisfies F .

Our Simple-PPZ algorithm (Algorithm 1) only differs from PPZ, in that PPZ also performs an265

initial random permutation of variables. For us, a random permutation is unnecessary: a random266

permutation of the variables in the planted k-SAT distribution yields the same distribution of instances.267

That is, the original PPZ algorithm would have the same behavior as Simple-PPZ.268

We will start with a few useful definitions.269

I Definition 12 ([16]). A clause C is critical with respect to variable x and a satisfying assignment270

σ if x is the only variable in C whose corresponding literal is satisfied by σ.271

I Definition 13. A variable xi in F is good for an assignment σ if there exists a clause C in F272

which is critical with respect to x and σ, and i is the largest index among all variables in C. We say273

that xi is good with respect to C in such a case. A variable which is not good is called bad.274

Observe that for every good variable xi, if all variables xj for j < i are assigned correctly with275

respect to σ, then Simple-PPZ sets xi correctly, due to the unit clause rule. As such, given a formula276

F with z good variables for σ, the probability that Simple-PPZ finds σ is at least 2−(n−z): if all n− z277

bad variables are correctly assigned, the algorithm is forced to set all good variables correctly as well.278

Next, we prove a high-probability lower bound on the number of good variables in a random planted279

k-SAT instance.280

I Lemma 14. A planted k-SAT instance sampled from P (n, k,m, σ) with m > n2k−1 ln 2 has at281

least Ω(n log k/k) good variables with probability 1− 2−Ω( n log k
k ) with respect to the assignment σ.282

Proof. Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index) n ln k/(2k) variables.283

Let Lg, Lb be the good and bad variables respectively, with respect to σ, among the variables in L.284

Let E be the event that |Lg| ≤ n ln k/(500k). Our goal is to prove a strong upper bound on the285

probability that E occurs. For all xi ∈ L, we have that i ≥ n(1− ln k/(2k)). Observe that if a clause286

C is such that xi ∈ Lb is good with respect to C, then C does not occur in F . We will lower bound287

the probability of such a clause occurring in F , with respect to a fixed variable xi ∈ L. Recall that288

in planted k-SAT, each clause is drawn uniformly at random from the set of clauses satisfied by σ.289

Fixing σ and a variable xi and sampling one clause C, we get that290

Pr
C which satisfies σ

[xi ∈ L is good with respect to C]291

= number of clauses for which xi ∈ L is good
total number of clauses satisfying σ

=
(
i−1
k−1
)(

n
k

)
(2k − 1)

292

≥ 1
2

(
i

n

)k−1
k

2kn [As i ≥ n(1− ln k/(2k))]293
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≥ 1
2

(
i

n

)k
k

2kn294

≥ 1
2

(
1− ln k

2k

)k
k

2kn [As i ≥ n(1− ln k/(2k))]295

≥ 1
2

(
e− ln k/k

)k k

2kn [As k is large enough, and e−w ≤ 1− w/2 for small enough w > 0]296

≥ 1
2k+1n

297
298

If the event E is true, then |Lb| > n ln k/(4k). Therefore, every time we sample a clause C, the299

probability that C makes some variable xi ∈ Lb good is at least ln k
k2k+3 , as the sets of clauses which300

make different variables good are disjoint sets. Now we upper bound the probability of E occurring:301

Pr[E] ≤
n ln k/(500k)∑

i=1
Pr[exactly i variables among the last n ln k/(2k) variables are good]302

≤
n ln k/(500k)∑

i=1

(
n ln k/(2k)

i

)(
1− ln k

k2k+3

)m
303

≤ n
(
n ln k/(2k)
n ln k/(500k)

)(
1− ln k

k2k+3

)n2k−1 ln 2
[As m > n2k−1 ln 2]304

≤ n
(
n ln k/(2k)
n ln k/(500k)

)(
e−

ln k

k2k+3
)n2k−1 ln 2

[As 1− x ≤ e−x for x > 0]305

≤ n
(
n ln k/(2k)
n ln k/(500k)

)(
2−n ln k

16k

)
306

≤ 2−δ n ln k
k307

308

for appropriately small but constant δ > 0, which proves the lemma statement. J309

We are now ready to prove Theorem 1.310

Proof of Theorem 1. By Lemma 14, we know that with probability≥ (1−p) for p = 2−Ω(n( log k
k )),311

the number of good variables with respect to a hidden planted solution σ in F is at least γn log k/k312

for a constant γ > 0. For such instances, a single run of PPZ outputs σ with probability at least313

2−n(1−γ log k/k). Repeating PPZ for poly(n)2n(1−γ log k/k) times implies a success probability at314

least 1− 1/2n. Hence the overall error probability is at most p+ 1/2n ≤ 2−Ω(n( log k
k )). J315

We proved that PPZ runs in time 2n(1−Ω( log k
k )) when m is “large enough”, i.e., m > n2k−1 ln 2.316

For m ≤ n2k−1 ln 2, we observe that the much simpler approach of randomly sampling assignments317

works, whp! This is because by Corollary 10 (in the Preliminaries), the number of solutions of318

F ∈r P (n, k,m) for m ≤ n2k−1 ln 2 is at least 2n/22−O(nk/2k) whp. When this event happens,319

randomly sampling poly(n)2n/22O(nk/2k) assignments will uncover a solution whp. As m decreases320

further, this sampling approach gives even faster algorithms for finding a solution.321

4 Reductions from Random k-SAT to Planted Random k-SAT322

In this section we observe a reduction from random k-SAT to planted k-SAT, which yields the323

desired algorithm for random k-SAT (see Theorem 3). The following lemma is similar to results in324

Achlioptas [1], and we present it here for completeness.325
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I Lemma 15 ([1]). Suppose there exists an algorithm A for planted k-SAT P (n, k,m), for some326

m ≥ 2k ln 2(1−f(k)/2)n, which finds a solution in time 2n(1−f(k)) and with probability 1−2−nf(k),327

where 1/k < f(k) = ok(1)2. Then given a random k-SAT instance sampled from R+(n, k,m), we328

can find a satisfiable solution in 2n(1−Ω(f(k))) time with 1− 2−nΩ(f(k)) probability.329

Proof. Let F be sampled from R+(n, k,m), and let Z denote its number of solutions with s its330

expected value. As f(k) > 1/k and m ≥ 2k ln 2(1 − f(k)/2)n, Lemma 8 and 11 together imply331

that s ≤ 2 · 2nf(k)/2.332

We will now run Algorithm A. Note that if Algorithm A gives a solution it is correct hence we333

can only have error when the formula is satisfiable but algorithm A does not return a solution. We334

will now upper bound the probability of A making an error.335

Pr
F∈R+(n,k,m),A

[A does not return a solution]336

≤
∑

σ∈{0,1}n

Pr
F∈R+(n,k,m),A

[σ satisfies F but A does not return a solution]337

≤
∑

σ∈{0,1}n

Pr
F∈R+(n,k,m),A

[A does not return a solution | σ satisfies F] Pr
F∈R+(n,k,m)

[σ satisfies F]338

≤
∑

σ∈{0,1}n

Pr
F∈P (n,k,m,σ),A

[A does not return a solution] Pr
F∈R+(n,k,m)

[σ satisfies F]339

340

where the last inequality used the fact that R+(n, k,m) conditioned on having σ as a solution is the341

distribution P (n, k,m, σ). Now note that PrF∈R+(n,k,m)[σ satisfies F] = s/2n and P (n, k,m) is342

just P (n, k,m, σ) where σ is sampled uniformly from {0, 1}n. Hence the expression simplifies to343

= s

2n (2n Pr
F∈P (n,k,m),A

[A does not return a solution]) = s Pr
F∈P (n,k,m),A

[A does not return a solution]

As s ≤ 2 · 2nf(k)/2 the error probability is ≤ 2 · 2nf(k)/22−nf(k) ≤ 2 · 2−nf(k)/2 = 2−Ω(nf(k)). J344

Next, we give another reduction from random k-SAT to planted k-SAT. This theorem is different345

from the previous one, in that, given a planted k-SAT algorithm that works in a certain regime of m,346

it implies a random k-SAT algorithm for all values of m.347

B Reminder of Theorem 2. Suppose there is an algorithm A for planted k-SAT P (n, k,m),348

for all m ≥ 2k ln 2(1 − f(k)/2)n, which finds a solution in time 2n(1−f(k)) and with probability349

1− 2−nf(k), where 1/k < f(k) = ok(1). Then for any m′, given a random k-SAT instance sampled350

from R+(n, k,m′), a satisfying assignment can be found in 2n(1−Ω(f(k))) time with 1− 2−nΩ(f(k))
351

probability.352

Proof. Let F be sampled from R+(n, k,m), and let Z denote its number of solutions with s its353

expected value. The expected number of solutions for F ′ sampled from R(n, k,m′) serves as a lower354

bound for s. Hence if m′ ≤ 2k ln 2(1 − f(k)/2)n ≤ αdn, then s > 2nf(k)/2 and furthermore, as355

we have f(k) > 1/k, Lemma 8 implies that, limn→∞ Pr[Z < s/2O(nk/2k)] = 0. Hence, if we356

randomly sample O(2n2O(nk/2k)/s) = 2n(1−Ω(f(k))) assignments, one of them will satisfy F whp.357

Otherwise if m′ ≥ 2k ln 2(1− f(k)/2)n then we can use Lemma 15 to solve it in required time. J358

2 Note we can assume wlog that f(k) > 1/k, as we already have a 2n(1−1/k) algorithm for worst-case k-SAT.
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Now we combine Algorithm 1 for planted k-SAT and the reduction in Theorem 2, to get an359

algorithm for finding solutions of random k-SAT (conditioned on satisfiability). This disproves360

Super-SETH for random k-SAT.361

B Reminder of Theorem 3. Given a random k-SAT instance F sampled from R+(n, k,m) we362

can find a solution in 2n(1−Ω( log k
k )) time whp.363

Proof. By Theorem 1 we have an algorithm for planted k-SAT running in 2n(1−Ω( log k
k )) time364

with 1 − 2−Ω(n( log k
k )) probability for all m > (2k−1 ln 2)n. This algorithm satisfies the required365

conditions in Theorem 2 with f(k) = Ω(log k/k) for large enough k. The implication in Theorem 2366

proves the required statement. J367

Just as in the case of planted k-SAT, when m < n(2k ln 2− k) we can find solutions of R+(n, k,m)368

whp, by merely random sampling assignments. The correctness of random sampling follows from369

Lemma 8.370

5 k-SAT and Unique k-SAT371

In this section we give a randomized reduction from k-SAT to Unique k-SAT which implies their372

equivalence for Super Strong ETH:373

B Reminder of Theorem 5. A 2(1−f(k)/k)n time algorithm for Unique k-SAT where f(k) = ωk(1)374

implies a 2(1−f(k)/k+O((log f(k))/k))n time randomized algorithm for finding a solution of k-SAT.375

We start with a slight modification of the Valiant-Vazirani lemma.376

I Lemma 16 (Weighted-Valiant-Vazirani). Let S ⊆ {0, 1}k = R be a set of assignments on
variables x1, x2, . . . xk, with 2j−1 ≤ |S| < 2j . Suppose for each s ∈ S we are also given a weight
ws ∈ Z+, and let w̄ denote the average weight over all s ∈ S. Then there is a randomized polytime
algorithm to guess a matrix A ∈ Fj×n2 and a vector b ∈ Fj2 such that

Pr
A,b

[|{x | Ax = b ∧ x ∈ S}| = 1, ws ≤ 2w̄] > 1
16 .

If the condition in the probability expression is satisfied, we say Weighted-Valiant-Vazirani on (R, j)377

has succeeded.378

Proof. The original Valiant-Vazirani Lemma [21] gives a randomized polytime algorithm to guess379

A, b such that for all s ∈ S, PrA,b[{s} = {x | Ax = b ∧ x ∈ S}] > 1
8|S| . Moreover, by Markov’s380

inequality, we have Prs∈S [ws ≤ 2w̄] ≥ 1/2. Hence the set of s ∈ S with ws ≤ 2w̄ has size at least381

|S|/2. This implies PrA,b[∃s, {s} = {x | Ax = b ∧ x ∈ S}, ws ≤ 2w̄] >
(

1
8|S|

)(
|S|
2

)
= 1

16 . J382

Proof of Theorem 5. Let A be an algorithm for Unique k-SAT which runs in time 2(1−f(k)/k)n.383
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Algorithm 2 Algorithm for k-SAT.
Input: k-SAT formula F

We assume that there is an algorithm A for Unique k-SAT running in time 2n(1−f(k)/k).
1: for i = 0 to 2n(1−f(k)/k) do
2: sample random solution s
3: if s satisfies F then
4: Return s
5: Divide n variables into n/k equal parts R1, R2 . . . Rn/k
6: Define p = p1 = p2 . . . = pf(k) = 1/2f(k) and pj = pj/f(k) for f(k) ≤ j ≤ k
7: for u = 1 to 2cn log(f(k))/k do
8: for i = 1 to n/k do
9: Sample zi from [k] choosing zi = j with probability pj

10: F ′ = Weighted-Valiant-Vazirani(Ri, z)
11: s = A(F ′)
12: Return s if it satisfies F
13: Return unsatisfiable

Let S be the set of solutions of the k-SAT instance F . Suppose F has at least 2nf(k)/kn solutions,384

i.e., |S| ≥ 2nf(k)/kn. Then the probability that the random search in lines 1 to 4 never finds a solution385

is (1 − n2nf(k)/k/2n)2n(1−f(k)/k) ≤ e−n. Thus if |S| ≥ 2nf(k)/kn the algorithm finds a solution386

whp; from now on, we assume |S| < 2nf(k)/kn.387

In line 6 we define a sequence of probabilities p1, p2, . . . , pk. Note that
∑k
i=1 pi =

∑f(k)
i=1 pi +388 ∑k

i=f(k)+1 pi ≤ 1/2 + (1/2f(k))
∑∞
j=1(1/2f(k))j/f(k) ≤ 1

2 + 1
f(k)(1−(1/2f(k))1/f(k)) ≤ 1, as389

f(k) = ωk(1) and limx→∞ x(1− (1/2x)1/x) =∞.390

We will now analyze one run of the loop from line 8 to line 12. Let Si be the set of solutions after391

applying constraints on R1 to Ri, where S0 = S is the initial set of solutions. Let Ei be the event that392

1. 2zi−1 ≤ |{s|Ri
| s ∈ Si−1}| < 2zi . [As defined in line 9]393

2. for all s ∈ Si, the restriction on Ri is the same, i.e., |{s|Ri
| s ∈ Si}| = 1.394

3. |Si−1|/|Si| ≥ 2zi−2, |Si| 6= 0.395

Let E =
⋂
iEi. If event E occurs, then the restrictions of all solutions on all Ri’s are the same, and396

there is a solution as |Sn/k| 6= 0, hence there is a unique satisfying assignment. We wish to lower397

bound the probability of E occurring.398

Let yi satisfy 2yi−1 ≤ |{s|Ri
| s ∈ Si−1}| < 2yi . Then for condition 1 to be satisfied we399

need that the sample zi be equal to yi. For conditions 2 and 3 to be satisfied we only need that400

Weighted-Valiant-Vazirani (WVV) on Line 10 to succeed on (Ri, zi) as described in Lemma 16.401

Pr[E] =
∏
i

Pr[Ei |
∧
j<i

Ej ]

≥
∏
i

Pr[zi = yi |
∧
j<i

Ej ] ∗
∏
i

Pr[WV V (Ri, zi) | ∀j < i,Ej ]

≥
∏
i

pyi

∏
i

(
1
16

)
[By Lemma 16]

≥ 16−n/k
∏
i

pyi (1)402

When E holds, we have |S| = |S0| =
∏
i|Si−1|/|Si|, as |Sn/k| = 1. Furthermore

∏
|Si−1|/|Si| ≥403 ∏

i 2yi−2, by condition 3. By the initial random sampling, we have |S| ≤ 2nf(k)/kn. Hence404
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∏
i 2yi−2 ≤ 2nf(k)/kn which implies that

∑
i yi ≤ O(n/k) + nf(k)/k ≤ O(nf(k)/k). Therefore405

Pr[E] ≥ 16−n/k
∏
i

pyi
[Restating equation (1)]

≥ 16−n/k
∏

yi≤f(k)

pyi

∏
yi>f(k)

pyi

≥ 16−n/k · (1/2f(k))n/k ·
∏

yi>f(k)

(1/2f(k))(yi/f(k))

≥ 16−n/k · (1/2f(k))n/k · (1/2f(k))
∑

yi>f(k)
(yi/f(k))

≥ 16−n/k · (1/2f(k))n/k · (1/2f(k))O(n/k)

≥ 16−n/k · 2−O(n log f(k)/k) ≥ 2−O(n log f(k)/k). (2)406

As mentioned earlier, if E occurs, then there is a unique SAT assignment, which will be found by407

the Unique k-SAT algorithmA. The probability thatE does not happen over all 2cn(log f(k))/k runs of408

the loop on line 7 is at most (1−2−O(n(log f(k))/k))2cn(log f(k))/k � 2−n, for a large enough constant c.409

The total running time is 2n(1−f(k)/k) + 2cn(log f(k))/k2(1−f(k)/k)n = 2(1−f(k)/k+O((log f(k))/k))n.410

J411

The reduction above immediately implies that Super-SETH is equivalent for k-SAT and Unique-412

k-SAT.413

I Corollary 17. A 2(1−ωk(1/k))n time algorithm for Unique k-SAT implies a 2(1−ωk(1/k))n al-414

gorithm for k-SAT.415

Say that a (Unique)k-SAT algorithm has advantage δ if it runs in 2n(1−δ) time. Let g(k) be the416

advantage of the best k-SAT algorithm, and let gu(k) be the advantage of the best Unique-k-SAT417

algorithm. As mentioned earlier, current algorithms lower bound both g(k) and gu(k) by Ω(1/k).418

Our reduction shows that these advantages are asympotically identical if Super-Strong ETH is false:419

I Corollary 18. If gu(k) = ωk(1/k), then limk→∞
gu(k)
g(k) = 1.420
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least 4k

k n. To our knowledge, no improved algorithms were known for 2kn < m < 4k

k n other than489

the worst case k-SAT algorithms.490

I Lemma 19. Let z = (ln(m/n) − k ln 2)/k. A planted k-SAT F instance sampled from491

P (n, k,m, σ) with 2k+o(k)n ≥ m ≥ 2kn has at least Ω(nz) good variables, with probability492

at least 1− 2−Ω(nz) with respect to the assignment σ.493

Proof. In this proof, by “good/bad variables” we mean “good/bad variables with respect to σ” (see494

Section 3 to recall the definition of good/bad).495

Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index) nz/2 variables. Let Lg, Lb496

be the good and bad variables respectively, with respect to σ, among L. Let E denote the event that497

|Lg| ≤ nz/500.498

Our goal is to prove a strong upper bound on the probability that E occurs. For any xi ∈ L, we499

have that i ≥ n(1− z/2). If a clause C is good with respect to xi ∈ Lb, then we know that C does500

not occur in F . Next, we will lower bound the probability of such a clause occurring with respect to a501

fixed variable xi ∈ L. Recall that in planted k-SAT, each clause is drawn uniformly at random from502

the set of all clauses satisfying σ. We derive:503

Pr[C is good w.r.t. xi ∈ L]504

= Number of clauses which will make xi ∈ L good
Total number of clauses which satisfy σ

505

=
(
i−1
k−1
)(

n
k

)
(2k − 1)

506

≥ 1
2

(
i

n

)k
k

2kn [As i ≥ n(1− z/2), z = o(1)]507

≥ 1
2

(
1− z

2

)k k

2kn [As i ≥ n(1− z/2)]508

≥ 1
2
(
e−z
)k k

2kn [As z = o(1) and e−w ≤ 1− w/2 for small enough w > 0]509

≥ e−zk

2k+1n
510
511

If E is true, then |Lb| > nz/4. Therefore, the probability of sampling a clause that makes some512

variable xi ∈ Lb good is at least ze
−zk

2k+3 , as the set of clauses which make different variables good are513

disjoint. Now we upper bound the probability that E occurs.514

Pr[E] ≤
nz/500∑
i=1

Pr[Exactly i good variables among the last nz/2 variables]515

≤
nz/500∑
i=1

(
nz/2
i

)(
1− ze−zk

2k+3

)m
516

≤ n
(
nz/2
nz/500

)(
1− ze−zk

2k+3

)nezk2k

[As m = ezk2kn]517

≤ n
(
nz/2
nz/500

)(
e−

ze−zk

2k+3

)nezk2k

[As 1− x ≤ e−x for x > 0]518

≤ n
(
nz/2
nz/500

)(
e−

nz
8
)

519
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≤ 2−δnz,520
521

for appropriately small but constant δ > 0. This proves the lemma statement. J522

I Theorem 20. Given a planted k-SAT instance F sampled from P (n, k,m) with 2k+o(k)n >523

m > 2kn define z = (ln(m/n) − k ln 2)/k and z′ = z + ln k/k, we can find a solution of F in524

2n(1−Ω(z′)) time with at least 1− 2−Ω(nz′) probability (over the planted k-SAT distribution and the525

randomness of the algorithm).526

Proof. By Lemma 19, we know that with probability at least 1 − p for p = 2−Ω(nz), the number527

of good variables in F (wrt the hidden planted solution σ) is at least γnz for some γ > 0. For such528

instances, one run of the PPZ algorithm will output σ with probability at least 2−n(1−γz). Repeating529

the PPZ algorithm for poly(n)2n(1−γz) times implies a success probability of at least 1 − p for530

p′ = 2−n. The overall error probability is at most p+ p′ ≤ 2−Ω(nz).531

Also by Theorem 1, there exists a random k-SAT algorithm running in 2n(1−Ω( log k
k )) time532

with 1− 2−Ω(n( log k
k )) success probability. Together, these algorithms imply an algorithm running533

in 2n(1−Ω(z′)) time with 1 − 2−Ω(nz′) probability (over the planted k-SAT distribution and the534

randomness of the algorithm). J535

I Theorem 21. Given a random k-SAT instance F sampled from R+(n, k,m) with 2k+o(k)n >536

m > 2kn define z = (ln(m/n) − k ln 2)/k and z′ = z + ln k/k, we can find a solution of F in537

2n(1−Ω(z′)) time with 1 − 2−Ω(nz′) probability (over the random k-SAT distribution R+ and the538

randomness of the algorithm).539

Proof. This follows directly from composing the algorithm in Theorem 20 and the reduction in540

Lemma 15. J541

As an example, the above theorem implies: For F ∈r R+(n, k,m) and m = 2k+
√
kn we have a542

2n(1−Ω(1/
√
k)) algorithm which works with 1− 2−Ω(n/√k) probability.543

Next we will increase m even further, and prove there are more good variables for the PPZ544

algorithm in this case.545

I Lemma 22. Let t > 2 be a constant. Given a planted k-SAT instance F sampled from546

P (n, k,m, σ) with m ≥ tkn, F has at least n(1 − 2/t)(1 − 2/k) good variables with probab-547

ility 1− 2−Ω(n(1−2/t)) with respect to the assignment σ.548

Proof. The proof is similar to that of Lemma 19. As before, by “good/bad variables” we mean549

“good/bad variables with respect to the assignment σ”.550

Let F ∈r P (n, k,m, σ) and let L be the last (when sorted by index) nz variables where z =551

1− 2/t. Let Lg, Lb be the good and bad variables respectively, with respect to σ, among L. Let E be552

the event that |Lb| > γnz, where γ = 2/k.553

As in previous cases, we want to give a strong upper bound on the probability that event E occurs.554

For any xi ∈ L, we have that, i ≥ n(1 − z). If clause C is good with respect to xi ∈ Lb, then we555

know C does not occur in F . As before, our next step is to lower bound the probability of such a556

clause occurring with respect to a fixed variable xi ∈ L. Recall that in planted k-SAT, each clause is557

drawn uniformly at random from the set of all clauses which satisfy σ. Therefore558

Pr[C is good with respect to xi ∈ L]559

= Number of clauses which will make xi ∈ L good
Total number of clauses which satisfy σ

560
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=
(
i−1
k−1
)(

n
k

)
(2k − 1)

561

≥ 1
2

(
i

n

)k
k

2kn [As i ≥ n(1− z) = Ω(n)]562

≥ 1
2 (1− z)k k

2kn [As i ≥ n(1− z)]563

= k (1− z)k

2k+1n
564
565

If E is true, then |Lb| > γnz. So the probability of sampling a clause that makes a variable566

xi ∈ Lb good is at least γkz(1−z)
k

2k+1 , as the sets of clauses which make different variables good are567

disjoint sets. Our upper bound on the event E is then calculated as follows:568

Pr[E] ≤
nz(1−γ)∑
i=1

Pr[Exactly i good variables among the last nz variables]569

≤
nz(1−γ)∑
i=1

(
nz

i

)(
1− γkz (1− z)k

2k+1

)m
570

≤ 2nz
(

1− γkz (1− z)k

2k+1

)tkn
[As m > tkn]571

≤ 2nz
(

1− z (1− z)k

2k

)tkn
[γ = 2/k]572

≤ 2n(1−2/t)
(

1− (1− 2/t)2k

tk2k

)tkn
[Substituting value of z]573

≤ 2n(1−2/t)
(

1− (1− 2/t)
tk

)tkn
574

≤ 2n(1−2/t)e−n(1−2/t) [As 1− x ≤ e−x for x > 0]575

≤ 2−δn(1−2/t),576
577

for appropriately small but constant δ > 0. This proves the lemma statement. J578

I Theorem 23. Given a planted k-SAT instance F sampled from P (n, k,m) with m ≥ tkn579

where t > 2 is a constant, we can find a solution of F in 2n(1−(1−2/t)(1−2/k))poly(n) time with580

1 − 2−Ω(n(1−2/t)) probability (over the planted k-SAT distribution and the randomness of the581

algorithm).582

Proof. By Lemma 22, there is probability at least 1− p for p = 2−Ω(n(1−2/t)) that the number of583

good variables in F is at least n(1− 2/t)(1− 2/k) with respect to the hidden planted solution σ. For584

such instances, one run of the PPZ algorithm outputs σ with probability at least 2−n(1−(1−2/t)(1−2/k)).585

Repeating PPZ for poly(n)2n(1−(1−2/t)(1−2/k)) times implies success probability at least 1− p′ for586

p′ = 2−n. The overall error probability is at most p+ p′ ≤ 2−Ω(n(1−2/t)). J587

In order to use Theorem 23 to obtain algorithms for R+, we need a more refined version of588

Lemma 15.589
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I Lemma 24. Suppose there is an algorithm A for planted k-SAT P (n, k,m) for some m ≥ αsatn590

which finds a solution in time 2n(1−f(k)) and with probability p. Then, given a random k-SAT591

instance F sampled from R+(n, k,m), we can find a solution to F in 2n(1−f(k)) time with at least592

1− (1− p)2O(n/2k) probability.593

Proof. Let F be sampled from R+(n, k,m), let Z denote the number of solutions, and let s be its594

expected value. As m ≥ αsatn, Lemma 11 implies s ≤ 2O(n/2k).595

Suppose we simply run Algorithm A. If Algorithm A gives a solution, it is correct, hence our596

only source of error is when the formula is satisfiable but algorithm A does not return a solution. We597

can upper bound the probability of A making an error in this way as follows:598

Pr
F∈R+(n,k,m),A

[A does not return a solution]599

≤
∑

σ∈{0,1}n

Pr
F∈R+(n,k,m),A

[σ satisfies F but A does not return a solution]600

≤
∑

σ∈{0,1}n

Pr
F∈R+(n,k,m),A

[A does not return a solution | σ satisfies F] Pr
F∈R+(n,k,m)

[σ satisfies F]601

≤
∑

σ∈{0,1}n

Pr
F∈P (n,k,m,σ),A

[A does not return a solution] Pr
F∈R+(n,k,m)

[σ satisfies F],602

603

where the last inequality used the fact that (by definition) R+(n, k,m) conditioned on having σ as a604

solution is exactly P (n, k,m, σ).605

Note that PrF∈R+(n,k,m)[σ satisfies F] = s/2n and P (n, k,m) is just P (n, k,m, σ) where σ is606

sampled uniformly from {0, 1}n. Hence the above expression simplifies to607

= s

2n (2n Pr
F∈P (n,k,m),A

[A does not return a solution]) = s Pr
F∈P (n,k,m),A

[A does not return a solution].608

As s ≤ 2O(n/2k), the error probability is at most 2O(n/2k)(1− p). J609

I Theorem 25. Let t > 2 be a constant. Given a random k-SAT instance F sampled from610

R+(n, k,m) with m ≥ tkn, we can find a solution of F in 2n(1−(1−2/t)(1−2/k))poly(n) time with611

1 − 2−Ω(n(1−2/t)) probability (over the planted k-SAT distribution and the randomness of the612

algorithm).613

Proof. The algorithm in Theorem 23 and the reduction in Lemma 24 imply that we can find a solution614

of F in 2n(1−(1−2/t)(1−2/k))poly(n) time with 1 − 2O(n/2k)2−Ω(n(1−2/t)) = 1 − 2−Ω(n(1−2/t))
615

probability. J616
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