Non-UniformACC Circuit Lower Bounds

Ryan Williams
Stanford University

July 31, 2012

Abstract

The classACC consists of circuit families with constant depth over unhaed fan-in AND, OR,
NOT, and MOD,, gates, wheren > 1 is an arbitrary constant. We prove:

e NEXP, the class of languages accepted in nondeterministic ex@htime, does not have non-
uniform ACC circuits of polynomial size. The size lower bound can belgligstrengthened to
quasi-polynomials and other less natural functions.

e ENP the class of languages recognize@™ time with anNP oracle, doesn’t have non-uniform
ACC circuits of2""" size. The lower bound gives an exponential size-depthafder everyd,
m there is & > 0 such thaENP doesn’t have deptd-ACC circuits of size2”” with MOD,, gates.

Previously, it was not known wheth&XP"F had depth-3 polynomial size circuits made out of only
MODg gates. The high-level strategy is to design faster algmstFor the circuit satisfiability problem
overACC circuits, then prove that such algorithms entail the abowest bounds. The algorithms com-
bine known properties cACC with fast rectangular matrix multiplication and dynamiogramming,
while the second step requires a strengthening of the dsiftraor work.

*This work was supported by the Josef Raviv Memorial Felloprsit IBM Almaden Research Center, and NSF Grant CCF
1212372 at Stanford.

1 Introduction

Non-uniform computation allows the sizes of programs tavgnoth the sizes of inputs. A non-uniform
computation can be naturally represented as an infinitelfashiBoolean circuits one for each possible
input length. A long-term goal of complexity theory is to @nstand how non-uniform computations com-
pare with the usual uniform models, which have fixed-sizegams. Non-uniform circuit families can
recognizearbitrary (even undecidable) languages, by having a large enoughitdior each input length.
Non-uniformity becomes much more interesting when we iistre sizesof computations: are there inter-
esting uniform computations that cannot be simulated byllsma-uniform circuit families? For instance,
could everyexponential-timauniform computation be simulated using circuit familiesoofly polynomial
size? Amazingly, this question is still open. For anothemagle,P £ NP follows if one could provide an
NP problem that cannot be solved by any circuit family wheredize of thenth circuit is at most polyno-
mial in n. Lower bounds against non-uniform computation estabhsbossibility results for computation
in the physical world: it could be thd& # NP, yet NP-complete problems can still be efficiently solved
using “bloated” programs with sufficiently many lines of eofibr large inputs. Non-uniform circuit size
lower bounds foNP would rule out this possibility. (However, the best knowrcuit size lower bound for
any NP problem is onlysn — o(n) [LROZ1, IM02].)

In the early 1980’s, researchers began to carefully studyptwer of non-uniformow depthcircuits.
Intuitively, such circuits correspond to extremely fastgb@l computations. The initial hope was that if
some functions ilNP were proved to require large, restricted circuit familigmn by gradually lifting the
restrictions over time, superpolynomial size unrestddmver bounds foNP could be attained, proving
P # NP. Furst, Saxe, and Sipséf$S8] and independently Ajtai4jt83] showed that functions such as
the parity ofn bits cannot be computed by polynomial si¥€® circuits, i.e., polynomial size circuit families
of constant depth over the usual basis of AND, OR, and NOTsgatbere each AND and OR may have
arbitrarily many inputs. YaoYao89 improved the lower bounds to exponential size, and Hagt#:86
proved essentially optimadC lower bounds for parity. Around the same time, RazboRa489 proved
superpolynomial lower bounds for solving clique wittonotonecircuits (i.e., general circuits without NOT
gates), and the bound was improved to exponential size by Atal BoppanaAB87]. However, it was
later shown Raz89 that the monotone techniques probably would not extenekteeral circuits.

Encouraged by the progress Af", attention turned to lower bounds for what seemed to be ngjeoer-
alizations. The most natural generalization was to ghaiitthe parity function for free. RazboroRpz87
proved an exponential lower bound for computing the majaft. bits with constant-depth circuits made up
of AND, OR, NOT, and MOD gates. (A MOD, gate outputd iff m divides the sum of its inputs.) Then
Smolensky $mo87 proved exponential lower bounds for computing MPWith constant-depth circuits
made up of AND, OR, NOT, and MOPgates, for distinct primes andq. Barrington Bar89 suggested
the next step would be to prove lower bounds for the chS§, which consists of constant-depth circuit
families over the basis AND, OR, NOT, and MQ[for arbitrary constantn > 1. It is here that progress
on strong lower bounds began to falter (although there has peogress on further restricted cases, cf. the
Preliminaries). Although it was conjectured that the migjaf » bits cannot have polynomi&CC circuits,
strongACC lower bounds remained elusive.

After some years of failing to prove a superpolynomial lolweund, the primary questions were weak-

ened. Rather than trying to find simple functions that carmetomputed with weak circuits, perhaps
we could rule out weak circuits for complicated functionsoul@l one prove that nondeterminiséxpo-

The class is also callediCCP in the literature. However, a8CC' is hardly studied at all, for aniy> 0, at the present time it
makes sense to drop the superscript.

nential time (NEXP) doesn’t have polynomial size circuits? A series of papéaging with Nisan and
Wigderson NW94, BFNW93 KvM99, IKW02] showed that even this sort of lower bound would imply
derandomization results: in the caseNEXP lower bounds, it would imply that Merlin-Arthur games can
be non-trivially simulated with nondeterministic algarits. This indicated that proving good circuit lower
bounds folNEXP would already require significantly new ideas.

In this paper, we address two frontier questions concemamguniform circuit complexity:

1. Does nondeterministiz®™ time have non-uniform polynomial si2€C circuits?
(Is NTIME[2°(™] in non-uniformACC?)

2. Does exponential time with a4P oracle have non-uniform polynomial size circuits?
(Is EXPNP C P/poly?)

Over the years, these questions have turned into notoritdis@mewhat embarrassing open problems,
because it seems so obvious that the answers should be ras tipen iEXPNP could be recognized with
depth-3 polynomial size circuits made out of only M@Bates> We make headway on these frontiers,
giving a strongno answer to the first question.

Theorem 1.1 NTIME[2"] does not have non-unifordCC circuits of polynomial size.

Stronger size lower bounds hold (e.g. quasi-polynomiat)siut the results are not very clean; see
Section5.1 for details. FOIEXPNP, we can prove exponential lower bounds.

Theorem 1.2 (Exponential Size-Depth Tradeoff)For everyd andm, there is aj > 0 and a language in
ENP that fails to have non-uniformPACC circuits of depthd and size2™ with MOD,, gates.

Recall that the smallest complexity class for which we knapomential-size (unrestricted) circuit lower
bounds isEXPNP' | the third level of the exponential hierarchylyW99].

Extending the approach of this paper to settle the secomdiéroquestion may be difficult, but this
prospect does not look as implausible as it did before. Fpainial unrestricted circuits could be simulated
by subexponentiahCC circuits, or if one could improve just a little on the runnitigne of algorithms for
the circuit satisfiability problem, the second question lddae settled.

1.1 An Overview of the Proofs

Let us sketch how these new lower bounds are proved, givirmadmap for the rest of the paper. In
recent work Wil10], the author suggested a research program for proving ndgarm circuit lower bounds
for NEXP. It was shown that for many circuit class@ssufficiently faster satisfiability algorithms far-
circuits would entail non-uniform lower bounds fG+circuits. The objective of this paper is to carry out the
proposed research program in the casA®©g circuits.

The proof of the lower bound foENP (Theorem1.2) is a combination of complexity-theoretic ideas
(time hierarchies, compression by circuits, the local &hbdity of computation) and algorithmic ideas
(fast matrix multiplication, dynamic programming, tabé®kup).

1. First, we show that satisfiability algorithms for subexgntial sizen-input ACC circuits with running
time O(2" /n*) imply exponential size\CC lower bounds folEN" (Theorem3.2), wherek is sufficiently

2Note that slightly larger classes suchMAEXP andNEXPNF are known to not have polynomial size circuits; see the Preli
inaries.

large. (The model of computation for the satisfiability altjon is flexible; we may assume the multitape
Turing machine or a random access machine. See the PrdliesnaThis step considerably strengthens
earlier work, which could only show that am"/?’) time algorithm forACC circuit satisfiability implies
lower bounds Wil10]. The idea is to prove that, if there is a faster algorithm AGrC Circuit SAT, and
there are subexponenti@{"") size ACC circuits for ENP, then everyL € NTIME[2"] can be accepted by
a nondeterministic algorithm i@(2"n'°/n*) time. (Here,10 is a substitute for a small universal constant.)
Whenk > 10 this contradicts the nondeterministic time hierarchy thao[SFM78 Zak83, so one of the
assumptions must be false.

Two known facts are applied in the proof. First, there is aypoinial-time reduction from any. €
NTIME[2"] to the NEXP-complete problem ScciNCT 3SAT such that every instaneeof lengthn (for
sufficiently largen) is reduced to a (unrestricted, €C) circuit C,, of sizeO(n°) with at mostn +5log n
inputs (Fact3.1). That is, the string obtained by evaluating on its O(2"n”) possible assignments (in
lex order) encodes a 3CNF formule, that is satisfiable iffic € L. Informally, this says that languages
L € NTIME[2"] have “succinct” reductions to exponentially long 3SAT arstes.

Second, ifENP is in subexponential-sizACC, then (given amx) there is some satisfying assignment to
the formula encoded by, that can be described by &CC circuit W of subexponential size (Fagt2).
That is, the string obtained by evaluatifig on all possible assignments encodes a satisfying assignmen
to the exponentially longc,. Informally, this means that, NP has subexponentigddCC circuits, then
every “succinct” satisfiable 3SAT instance has at least anecinct” satisfying assignment: compressible
satisfiable formulas have compressible satisfying assagisn

We can try to combine these two facts, as followsC}fwere anACC circuit, then anyL. € NTIME[2"]
could be accepted i@(2"n° /n*) nondeterministic time, by guessing a subexponed&t circuit 1 and
constructing amACC circuit satisfiability instance built of C', andW, whereD is satisfiable if and only
if W does not encode a satisfying assignmenkQ (as shown in the author’s prior pap&#ij10]). The
circuit D has at most + 5logn inputs and2""” size, so the assumekCC satisfiability algorithm can
handleD in O(2"n®/n*) time.

The above argument doesn't quite work, because we do not kioewto produce &', that is anACC
circuit (indeed, it may not be possible). ACC SAT algorithm will not work onD, because) contains a
copy of an unrestricted circuit,,. However, assuming has subexponenti@CC circuits, we show how to
guess and verifgn equivalenACC circuit C”, in nondeterministic(2"n'% /n*) time using a slightly faster
ACC SAT algorithm (Lemma.1). This makes it possible to proveCC lower bounds even with weakCC
satisfiability algorithms. Furthermore, this part of thegrdoes notuse specific properties &CC, so it
may be useful for proving stronger lower bounds in the future

2. Next, we show how satisfiability of subexponent®lC circuits of depthd andn inputs can be
determined ir2"~%") time, for as > 0 that depends od (Theorem4.1). Given any such circuit’,
replace it withC’ which is an OR opn’ copies ofC, where the firs:’ inputs of each copy are substituted
with a variable assignment. THCC circuit C* hasn — n® inputs,2°0"°) size, andC' is satisfiable if and
only if C"is. Applying a powerful result of Yao, Beigel-Tarui, and Atider-Gore (Lemma.1), C’ can be
replaced by an equivalent depth-2 circGit of 2"62O(d) size, which consists of an efficiently computable
symmetric function at the output gate and AND gates belovbé#ttingd < 1/2O(d), and exploiting the
structure of the depth-2 circuif}” can be evaluated on all of its possible assignmenﬁmépoly(n) time
(Lemma4.2). This concludes the sketch of tB&" lower bound.

The only use of the full assumptiorEN? has ACC circuits” is in Fact3.2. The lower bound for
NEXP (Theoreml.l) applies the result (which follows from work of Impagliaza¢abanets, and Wigder-

son [KWO02]) that if NEXP has polynomial size (unrestricted) circuits then satiiahstances of 8c-
CINCT 3SAT already have polynomial size (unrestricted) circliitencoding satisfying assignments (The-
oremb5.1). But if P hasACC circuits, it is easy to see that these unrestricted cireuiist have equivalent
ACC circuits as well (Lemm&.1). This helps extend theN” lower bound ta\EXP. However, the resulting
size lower bound is not exponential: fro$fin)-size circuits foNEXP one only obtainss (S(.S(n)¢)¢)¢-size
ACC circuits encoding satisfying assignments. This allowsstame “half-exponential” type improvements
in the size lower bounds agaif$EXP.

Perhaps the most interesting aspect of the proofs is thatlalsatisfiability algorithm foACC circuits
relies on specific properties &CC. Improved exponential-time algorithms for satisfiabilitse dhe only
barrier to further progress on circuit lower bounds fNEXP. In general, this paper weakens the algorithmic
assumptions necessary to prove lower bounds, and stresgtie lower bounds obtained. L&be a class
of circuit families that is closed under composition (thenpmsition of two circuit families frond’ is also a
family in C) and containAC’. Possible include constant-depth threshold circuits, Boolean fdasyuand
unrestricted Boolean circuits. The arguments of Se@iand Sectiorb imply the following metatheorem.

Theorem 1.3 There is ak > 0 such that, if satisfiability of-circuits withn variables andn® size can be
solved inO (2" /n*) time for every, thenNTIME[2"] doesn’t have non-uniform polysiZecircuits.

2 Preliminaries

We presume the reader has background in circuit complexity complexity theory in general. The
textbook of Arora and BarakAB09] covers all the necessary material; in particular, Chaptegives an
excellent summary oACC and the frontiers in circuit complexity.

On the machine model. An important point about this paper is that the choice ofamif machine model
is not crucial to the arguments. We show that if large clagsege small non-unifornrACC circuits, then
NTIME[2"] € NTIME[o(2")] (in fact, NTIME[2"] C NTIME[o(2"/n*)] for sufficiently largek), which

is a contradiction in all computational models we are awdrehMoreover, Gurevich and Shelah proved
that the nondeterministic machine models are tightly eelah their time complexities. For example, let
NTIMEgra[t(n)] be the languages recognized by nondeterminigtig time random-access Turing ma-
chines, and leNTIMEr,,[t(n)] be the class for multitape Turing machines.

Theorem 2.1 (Gurevich and ShelahS89)
Uc>0 NTlMERTM [TL logc ’I’L] = Uc>0 NTlMET]\/[[TL logc ’I’L]

As a consequence, even if we showe@IMEr,;[2"] € NTIMEgz)/[2"/n*] for sufficiently largek,
we would still obtain the desired contradiction. (Note thath a result isiot known for the deterministic
setting.) A random access Turing machine can also simulateralard random access machine with only
constant factor overheadPR8]. Hence in our proof by contradiction, we may assume thatstnace
algorithm we’re simulating is only a multitape TM, while tterget algorithm has all the power we need to
perform typical computations from the literature.

Notation. Inside of an algorithm description, the integerefers to the length of the input to the algorithm.
For a functionf : N — N, we use polyf(n)) to denote a growth rate of the foraf (n)© for a constant.
The size of a circuit refers to the number of wires in it. Hoem\since attention shall be restricted

to circuits with at least polynomially many gates, the distion between the number of wires and gates
does not matter. In this paper, anrestricted circuithas gate types AND/OR/NOT, unrestricted depth, and

each gate has fan-in two. (That is, an unrestricted cirsuihé generic variety used in the definition of
P/poly.) All circuit size functionsS considered in this paper are assumed to be monotone noadege
i.e.,,S(n+1) > S(n) forall n.

We say that aircuit classC is a collection of circuit families that (ajontainsAC® (for every circuit
family in AC®, there is an equivalent circuit family &) and (b)is closed under compositioif {C,,} and
{D,,} are families inC, then for every, the circuit family consisting of circuits which takebits of input,
feed them to© + ¢ copies of circuits fronT,,, and feed the outputs to the inputsiof- . ., is also a circuit
family in C. Essentially all classes studied extensively in the liteea(AC®, ACC, TC?, NC!, NC?, P/poly,
etc.) are circuit classes in this sense. For classes tloat fdf superpolynomial size circuits, the polynomial
“n® + ¢” in the above may be relaxed appropriately.

For a complexity clasg, the class i.0G consists of languages C >* such that there is a language
L' € C whereL N X" = L' N X" holds for infinitely manyn.

When the expression(J(1)” appears inside of the time bound for a complexity classs thishort-
hand for the union of all classes where thél) is substituted by a fixed constant. For example, the class

TIME[2"*"] is shorthand folJ ., TIME[2"].

Other Prior Work. Kannan Kan87 showed in 1982 that for any superpolynomial constructiblection

S : N — N, the classNTIME[S(n)]NP does not have polynomial size circuits. Another somewhatllsm
class known to not have unrestricted polynomial size disasiMAEXP [BFT9§. Later it was shown that
the MAEXP lower bound can be improved twlf-exponentialize functionsf which satisfy f(f(n)) >
2" [MVW99]. Kabanets and Impagliazz&[04] proved thatNEXPR® eitherdoesn’t have polynomial size
Boolean circuits (over AND, OR, NOT)r it doesn’'t have polynomial size arithmetic circuits (ovie t
integers, with addition and multiplication gates). NotattiEXPR” € MAEXP.

A line of work stemming from Toda’s Theorermdd91] has studied ways of representing low-depthC
circuits by certain depth-two circuits which will play atical role in this paper. Define &YM™ circuit to
be a depth-two circuit which computes some symmetric fonctit the output gate, and computes ANDs
of input variables on the second layeExtending work omAC by Allender JAlI89], Yao [Yao9(showed
that everyACC circuit of s size can be represented by a probabiliSM™* circuit of s©(1°8° %) size, where
¢ depends on the depth, and the ANDs have folys) fan-in. Beigel and TaruiBT94] showed how to
remove the probabilistic condition. Allender and Gof&P4] showed that every subexponentiatiform
ACC circuit family can be simulated by subexponentiaiform SYM™ circuits. This was applied to show
that the Permanent does not hawgform ACC circuits of subexponential size. Later, AllendélP9]
improved the Permanent lower bound to polynomial size umifd C° circuits. However, these proofs
require uniformity, and the difference between uniformatyd non-uniformity may well be vast (e.g., it is
clear thatP # NEXP, but open whetheNEXP C P/poly). Greenet al. [GKRST95 showed that the
symmetric function can be assumed to be the specific funatiooh returns theniddle bitof the sum of its
inputs. This representation may also be used in the lowand®af this paper.

There has also been substantial work on represe®{n@ in other interesting waysBT88, AADQO,
Han06 KH09] as well as many lower bounds in restricted ca&s319Q Thé&94 YP94, KP97, BS95 Cau96
Gro98 GT00, CGPT06 CWO09. Significant work has gone into understanding toastant degree hypoth-
esis[BST9(Q that a certain type of low-deptACC circuit requires exponential size to compute the AND
function. The hypothesis is still open.

3Some have definegslYM™ circuits differently, allowing the ANDs to take negatediadles as input. In Appendig we sketch
why there is no essential difference between the two dedimst{for our purposes, at least).

All prior works on non-uniformACC lower bounds attack the problem in a “bottom-up” way. (The
exceptions are the uniform results mentioned abé&ved4, All99].) Lower bounds have been proved for
highly restricted circuits and these restrictions havenbesry gradually relaxed over time. In this paper,
the strategy is “top-down”: the goal is to find the smalleshptexity classes for which it is still possible to
prove superpolynomiadCC lower bounds. This is in line with the overall goal of evenlgi@roving large
circuit lower bounds folNP.

As mentioned before, this paper builds on the author’s pyvimnk which showed that mild improvements
over exhaustive search can sometimes imply lower boundsud_briefly review the prior state-of-the-art
for Circuit SAT algorithms. It is known that CNF satisfiabjlican be solved ire" ="/ In(m/m)) poly(m)
time, wherem is the number of clauses amdis the number of variablesSgh05 CIPOG DHOS|. Recent
work of Calabro-Impagliazzo-PaturC|P09 and Impagliazzo-Matthews-PatutMP12] has culminated in
a randomized algorithm for depthAC® circuit satisfiability that runs i2"=2(/1°g9)*™") time on circuits
with s gates. Recently, Santhana®an1(has applied ideas inspired by formula size lower bounds to
show that for a fixed constait satisfiability of formulas over AND, OR, and NOT can be detiered in
o2/ Ck) time onn-variable formulas of sizen. Very recently, Seto and Tamak$T173 have extended
Santhanam'’s results to formulas over arbitrary two-bitIBan-valued functions. Unfortunately, these upper
bounds are not yet strong enough to prove new circuit lowantds forNEXP.

How do we avoid the barriers? There are several well-known formal barriers to provingdowounds.
Let us say a little about their relation to this work. Intuéfy, we circumvent the natural proofs bar-
rier [RR97 because of the use of diagonalization. More precisely, ebeheavily on strong completeness
properties of a specifiNEXP language, namely B CINCT 3SAT, to prove that it cannot have smalCC
circuits. So it looks unlikely that one may extract anatural orNP-natural properties from the proof.
(Furthermore, there is little evidence the€C contains pseudorandom functions, so natural proofs may not
be a barrier folACC after all.) It is hard to formally rule out that a proof canmpatssibly be made natural,
without showing either an algorithmic lower bound (theradasefficient algorithm with certain properties)
or a circuit upper bound (the circuit class under discussiasn pseudorandom functions). Nevertheless,
statements like “Satisfiability af circuits is inO (2" /n'%) time” do appear to be far weaker than statements
like “There are no strong pseudorandom functions impleatgatwithC circuits”.

More conclusively, the approach of this work definitely @srelativization BGS79 and algebriza-
tion [AWO09] because there are oracldsrelative to whichNEXP4 ACC#, and everNEXP4 ¢ ACC#
(Scott Aaronson, personal communication). Here the lowends rely on a more efficie®CC SAT algo-
rithm which uses non-relativizing propertiesAEC circuits. In general, the approach of using slightly-faste
SAT algorithms to prove lower bounds appears fruitful facemventing oracle-based barriers, because all
known improved SAT algorithms break down when oracles @elalaic extensions thereof) are added to the
instance. That is, significant improvements over exhaeisi@arch necessarily exploit structure in instances
that black-box methods cannot see.

3 A Strengthened Connection Between SAT Algorithms and LoweBounds

In this section, we prove that if one can achieve a very minggrovement over exhaustive search in
satisfyingACC circuits, then one can prove lower bounds A&iC. The required improvement is SO minor
that we are able to achieve it, in the next section. Howeeend stress upfront that all the results in this
section hold equally well for other circuit classes as welk only require basic properties 8CC that
practically all robust circuit classes satisfy.

Define the ACC @QrcuUIT SAT problem to be:given anACC circuit C, is there an assignment of its
inputs that makeg’' evaluate tol? In recent prior work Wil10], the author proved a relation between
algorithms for ACC GrcuIT SAT and lower bounds foACC circuits?

Theorem 3.1 (Will0]) Lets(n) = w(n¥) for everyk. If ACC CIRCUIT SAT instances witm variables
and n” size can be solved i®(2"/3/s(n)) time for everyk, thenENP does not have non-uniforiACC
circuits of polynomial size.

We shall sharpen this theorem considerably. Throughoufolt@ving, letS : N — Nandd : N — N
be monotone nondecreasing functions such $ta) > n andd(n) > 1. LetC be a circuit class as defined
in the Preliminaries. @ can beACC, TCY NC!, P/poly, etc.) Define th&-CIRCUIT SAT problem to be:
given a circuitC from classC, is there an assignment of its inputs that makesvaluate tol ?

Theorem 3.2 Let S(n) < 2/%. There is ac > 0 andb > 0 such that, ifC-CIRCUIT SAT instances with
at mostn + clogn variables, depth at mo&t- d(3n) + b, andO(n S(2n) + S(3n)) size can be solved in
O(2"/n®) time, thenENP does not have non-uniforcircuits of depthi(n) and S(n) size.

The constank depends on the model of computation in which the SAT algorighimplemented, but for
all typical models¢ is not large (less thaih0). For us, the important corollary is this: ACC satisfiability
has a slightly faster algorithm on circuits that are mildlyger thanS(n), thenENP does not haveé\CC
circuits of S(n) size. In what follows, we prove Theoref?2 only for ACC circuits, but the proof also
works for any other circuit class. (The reader can verifyt tha only two properties oACC used are that
the class contain&C, and the class is closed under composition of circuit fasi)i

To understand the difficulty behind proving Theor&m, let us recall the proof of Theoref1to see
why it needed such a strong assumption. The generic proafiid@Vil10] for results such as Theore@l
is to derive a contradiction from assuming small circuitsB8” and a faster algorithm for @cuiT SAT.
In particular, it is shown that under the two assumptionerelanguagd. € NTIME[2"] can be recognized
in NTIME[o(2™)], which is false by the nondeterministic time hierarchy teeo [SFM78 Zak83. The
contradiction is derived from stitching together seveaat$ about circuits and satisfiability.

Define SuccINCT 3SAT as the problemgiven a circuitC' onn inputs, letF be the2™-bit instance of
3-SAT obtained by evaluating on all of its possible inputs in lexicographical order. #%; satisfiable?

That is, given ecompressed encodingf a 3-CNF formula, the task is to determine if the underlying
decompressed formula is satisfiable. For natural reasalist€ the decompressionf C, and callC the
compressiomnf F. The SUccINCT 3SAT problem is a canoniclEXP-complete problemRY86.

Fact 3.1 There is a constant > 0 such that for every, € NTIME[2"], there is a reduction fronL to
SuccINCcT 3SAT which on inputz of lengthn runs inpoly(n) time and produces a circui’, with at most
n + clogn inputs andc - n¢ + ¢ size, such that € L if and only if the decompressed formuta:, of
2" - poly(n) size is satisfiable.

Fact 3.1 follows from several prior works concerned with the comfiexf the Cook-Levin theo-
rem [Tou0l, FLVMVO05]:

Theorem 3.3 (Tourlakis [Tou01], Fortnow et al. [FLvMVO05]) There is ac > 0 such that for allL €
NTIME[n], L reduces to 3SAT in - n(logn)¢ time. Moreover there is an algorithm, (with random
access to its input) that, given an instancelokvith lengthn and an integeri € [cn(logn)¢ + ¢| in binary,
Ay, outputs theth clause of the resulting 3SAT formuladfiog n)¢ + ¢ time.

“In fact a more general result for any circuit class was prowétch implies Theorens.1

8

In fact, the proofs in the above references build on evenmegavbrk of Schnorr, Cook, Gurevich-Shelah,
and Robson$ch78 Coo88 GS89 Rob91]. In a nutshell, all of these proofs exploit theeality of computa-
tion: every nondeterministic computation running in lineardiocan be represented with a nondeterministic
circuit of sizeO(n-poly(log n)) which has a highly regular and efficiently computable strrest This circuit
can be easily modeled as a 3-CNF formula using the Tseitisfioamation Tse68 that assigns a variable
to each circuit wire and uses 3-CNF clauses to model the-opijut relationships for each gate.

The value ofc in Theorem3.3 depends on the underlying computational model; typicatlg oan take
c to be at mostl. A standard padding argument (substituti2igin place ofn) yields Fact3.1 In more
detail, givenL € NTIME[2"], we apply Theoren3.3to the languagd.’ = {mOlz"”‘ | z € L}, which is in
NTIME[n]. On an inputz, this generates an equivalent 3SAT instance of leaytdi®!|z|). As it is easy
to simulate random accesses to an input of the foert?”" with a uniform poly|z|) size circuit, one can
simulate theD((log n)°) time algorithm of Theorem3.3on L’, with a uniform poly |z|°) size circuit.

Using Fact3.1, one can then prove that if the lower bound B fails to hold, then every succinctly
compressible satisfiable formula that is output by tie SINCT 3SAT reduction has some succinctly com-
pressiblesatisfying assignment

Fact 3.2 If ENP hasACC circuits of sizeS(n), then there is a fixed constansuch that for every language
L € NTIME[2"] and everyz € L of length n, there is a\CC circuit TV, of size at most5(3n) with

k < n + clogn inputs such that the variable assignmepnt= T (i) for all i = 1,...,2" is a satisfying
assignment for the formuld,, whereC,, is the circuit obtained by the reduction in FetL

Proof of Fact 3.2 Consider theENP machine:

N(x,i): Compute theSuccINCT 3SAT reduction fromz to C,, in polynomial time. Decom-
pressC,, obtaining a formulal” of O(2/*!|z|°) size. Let be the number of inputs t@,. Binary
search for the lexicographically smallest satisfying gesientA to F', by repeatedly querying:
given (F, A) where|A| < 2, is there an assignmer < A that satisfies"? Then output the
ith bit of A.

Note the queries can be answered\ip, and N needsO(2*) queries to the oracle. By assumptid¥,has
ACC circuits of sizeS(n). It follows that for everyr € L there is some satisfying assignmentfavhich
is encoded by a circuit of siz€(|(z,)|) < S(3|z|), where(-,-) is a polynomial-time computable pairing
function. O

With these two facts, we may try to recognize abye NTIME[2"] with a o(2") nondeterministic
algorithm (a contradiction), as follows. Given a strin@f lengthn, compute the 8ccINCT 3SAT circuit
C,, in polynomial time and nondeterministicaljuessa S(3n)-size circuitl. Now the goal is to check that
W succinctly encodes a satisfying assignment for the unideyfiprmulaF, . To verify this condition, the
algorithm constructs a IBCuIT SAT instanceD. The circuitD hasn + clog n inputs fed toO(n) copies
of C,, so that when is input to D, the copies altogether print thth clause of the 3CNF formulag, .
These copies output three variable indices of length at mastclog n, along with sign bits (whether or
not the variables are negated in the clause). Theeeds each index to a copy o, which prints a bit.
Finally D compares the sign bits with the three bits printed by thee=opfl1/, and output$) iff the variable
assignment encoded By satisfies thath clause. Observ® has polyn) + O(S(3n)) size. Running a
fast enough @GrcuiT SAT algorithm lets us determine the satisfiability Bfin o(2™) time. Finally, this
algorithm for L. acceptse iff D is unsatisfiable. To see that this algorithm is correct, oleséhere is a

sizeS(3n) circuit W such thatD is an unsatisfiable circuit, if and only if there is sucllaencoding a
satisfying assignment farc,, if and only ifz € L.

The above argument cannot be carried out directly to pAdv€ circuit lower bounds from ACC ®&-
CUIT SAT algorithms, because of FaBtl. Given an instance of L, the resulting circuiCC,, produced in
the reduction froml, to SUCCINCT 3SAT can be constructed in polynomial time, however it lobksd
(perhaps impossible) to show that thig can be assumed to be AQC circuit. AsC,. is a component of the
circuit D, it follows that D itself would not be arACC circuit, so an ACC @RcuIT SAT algorithm would
not seem to be useful for determining the satisfiability of

In the proof of Theoren3.1in the author’s prior work\{Vil10], this problem was fixed by settling for a
weaker reduction fronf, to SuccINCT SAT, which generates alC® circuit C”, with 3n + O(logn) inputs
rather tham + O(log n). Unfortunately this constant factor makes a huge diffezeta quickly determine
satisfiability of the resulting circuiD’ in o(2") time, a2"/3 /n*(!) time algorithm for ACC GRCUIT SAT
is needed, instead of 2 /n“(") algorithm. Algorithms of the former type are not known even 3SAT;
algorithms of the latter type are much more plentiful.

While it is unlikely that these”', circuits can be implemented IRCC, note that we alreadgssume
that ACC is powerful in some sense: in a proof by contradiction, we msgume many functions have
small ACC circuits! Since the function computed 6y, is computable in polynomial time, then even if we
assume that onlf? hasACC circuits, there stillexistsa circuit C, which isACC and equivalent t@’,, but
it is from a non-uniform family, and therefore may be arbityadifficult to construct. However, we can
use nondeterminism in the algorithm recognizingh NTIME[o(2")], so at the very least we cgiuesghis
elusiveC”.. We also have a good algorithm for ACQRZUIT SAT at our disposal. By guessing two more
ACC circuits to help us, it turns out that we can always generat@r@ectACC circuit C., that is equivalent
to C, in o(2™) time. We arrive at our main lemma:

Lemma 3.1 There is a fixed: > 0 andb > 0 with the following property. AssuniehasACC circuits of
depthd(n) and size at mos$(n) < 2"/, Further assume there is somke> 2¢ such thatACC CIRCUIT
SAT on circuits withn + klog n inputs, deptt2 - d(3n) + b, and at mosO(S(3n) + S(2n)n) size can be
solved inO (2" /n*) time.

Then for everyl. € NTIME[2"], there is a nondeterministic algorithpd and constant such that:

e ArunsinO(2"/n* + S(3n) - n°) time,

e for everyz of lengthn, A(z) either printsrejector it prints an ACC circuit C!, with n + clogn
inputs, depthi(3n), and S(n + clogn) size, such that € L if and only ifC, is the compression of
a satisfiable 3-CNF formula &f* - n® size, and

e there is always at least one computation path4df:) that prints a valid circuitC?..

That is, given an instance, the algorithm.A nondeterministically generates an equivalenC8INCT
3SAT instance”’, which is anACC circuit. Let us first give a high-level overview of the proafiformally,
A will guess and verifyC”, in three stages.

1. A guesses aACC circuit D of depthd(2n) andO(S(2n) log n) size which encodes all the gate and
wire information of the circuit”, which hasen® + ¢ size. Given a gate index=1,...,cn° + ¢,
D produces the gate type ¢f as well as the indices of gates whose outputs are the inpuggfe;.
The correctness dP can be verified irO(nS(2n) - poly(log S(2n))) time by simply producing the
entire circuit ofen® 4 ¢ size that is described b, and checking that it is identical 1G,.

10

2. Next, A guesses aACC circuit E of depthd(3n) andO(S(3n)) size which encodes the outputs of
all gates ofC,. on all inputsi: given inputi and a gate inde¥ = 1,...,cn¢ + ¢, E produces the
output of gatej in C, evaluated ori. A verifies thatF is correct, using the fact thdP is correct.
By constructing an appropriate ACCIRZUIT SAT instance that checks faill inputs andall gates
that the claimed inputs to that gate are consistent with thipub of the gate, this verification takes
O(2"/n*) time (for k chosen to be greater than).

3. Then using the fact thdf is correct, it is easy to verify that a guess®dC circuit C’, is correct via
a call to ACC GRCUIT SAT that runs inO(2"/n*) time. A only needs to check if there is @rsuch
thatC’. (i) # E(i,5*), wherej* is the index of the output gate 6f,. (Alternatively, we could just
print the circuitE(-, j*) as a valid ACC circuit that is equivalent €, (-).) If £ is correct and no such
i exists, therC”, is also correct.

Proof of Lemma 3.1 We describe4 in detail. On input: of lengthn, A guesses aACC circuit C’, of size
S(n + clogn), and constructs thed®CINCT 3SAT circuitC, with n 4 clog n inputs and at mostn© + ¢
size (of FacB3.1) in polynomial time, for a fixed that is independent df. By Fact3.1, = € L if and only
if C, is the compression of a satisfiable formdla, of O(2"n) length. We must verify thaf”, andC,,
compute exactly the same function, using only the algorithmACC CIRCUIT SAT.

Without loss of generality, the unrestricted cirotiif above has gate types AND, OR, NOT, and INPUT,
where every AND and OR has fan-in two. By definition, an INPUiteghas no inputs, and the output value
of an INPUT gate is the appropriate input bit itself. The gadee indexed by the numbets.. ., cn© + ¢,
where the firsk 4 clog n indices correspond to the+ clog n INPUT gates, and thén® + c)th gate is the
output gate.

Since the mapx — C, is polynomial time computable, the following functighis polynomial-time
computable:

Givenz, and a gate indey = 1,...,cn¢ + ¢, f(z,7) outputs the gate type (AND, OR, NOT,
INPUT) of thejth gate in the circuitC,.. Furthermore, if the gate type is NOT, thg¢routputs
the gate indey, in C, whose output is the input tg if the gate type is an AND or OR, theh
outputs the two gate indicgs and j, in C,. whose outputs are the two inputs;of

Consider the decision problem:
Givenz, j,andi = 1,...,2clogn + O(1), decide if theth bit of f(x, j) is 1.

The problemDy is solvable in polynomial time and hence h@sS(n + clogn + O(loglogn)))-size,
d(n + clogn + O(log log n))-depthACC circuits, by assumption.

Let D(x, j) be anACC circuit implementing the functionality of. Note we may assume the size of
is

O(S(n+ O(logn))logn) < O(S(2n)log S(n)), (1)

by simply taking2clog n + O(1) copies of theS(n + O(log n))-size circuit solving the decision problem
Dy. (By convention, let us assume that whiens printing the gate information for an INPUT gate, it prints
all-zeroes strings in place gf andj., and whenD is printing the information for a NOT gate, it prints
all-zeroes in place of,.) Similarly, the depth of> can be assumed to be at mdéin).

The nondeterministic algorithmd guessed), and verifies thaD is correct on the given input in time

O(n°S(n + O(logn)) - poly(log S(n + O(logn)))) < n- S(2n) - poly(log S(2n)) < O(22"/3),

11

by evaluatingD(z, -) on all possiblej = 1,. .., cn®+ ¢, and checking that all outputs &f correspond with
the relevant gates i@v,.. If D does not output all the gates ©f. correctly, thenA rejects

Next, consider the problem:

Givenz, an inputi of n + clog n bits, and a gate index = 1, ..., en© + ¢, output the bit value
on the output wire of thgth gate wherC', is evaluated on.

By assumption, this problem also h&€C circuits, sinceC,. can be constructed and evaluated on any input
i in polynomial time. LetF(z, 7, j) be anACC circuit with this functionality, of size

S(n+ (n+ clogn) + clogn + 0O(1)) < S(3n), (2)

and depth at mosi(3n) as well.

Now, algorithm .4 guessesF and wishes to verify its correctness an To do this, A constructs a
circuit VALUE (i, j) built out of D and E, wherei hasn + clogn bits andj = 1,...,cn® + c. Intuitively,
VALUE (i, 7) will output 0 if and only if £ produces a sensible output for tfih gate ofC, evaluated on
inputi.

First, VALUE(4, j) feeds;j to the circuitD(z, -), producing gate indicef, j», and a gate typg. VALUE
then computes, = E(x,1,71), vo = E(z,1,j2) andv = E(z,1,j). (Depending ory, thesej; andj> may
be all-zeroes, but this does not matter to us.)

If ¢ = INPUT, then VALUE outputd) if and only if j € {1,...,n + clogn} (j is among the first
n+clog n inputs) and theth bit of i equalsv. This behavior can be easily implemented with®! circuit
of size

O(nlogn). 3

If ¢ = NOT, then VALUE outputd) if and only if v; = —w.
If ¢ = AND, then VALUE outputs) if and only if v; A vy = v.
If ¢ = OR, then VALUE output®) if and only if v; V v = v.

Note that each of the above three conditions can be implexdenith a constant number of gates, given
the valueg, vy, v2, andw. It follows that VALUE can be implemented as A C circuit.

SinceA has not rejected]) is correct, so we know that for all j, the gate typeg and input connections
j1 andj» are correct. Therefore VALUE, j) = 1 if and only if E asserts that the output of ggtén C,(7)
equalsv, and £’ asserts the inputs tphave valuesi, vo, but the gate typeg dictates that the output gf
should be-wv. It follows that VALUE is an unsatisfiable circuit if and onifiy £/ prints correct values for all
gates inC (i), over alli.

Therefore, by calling\CC circuit satisfiability on VALUE, -), A determines whethef is correct. The
algorithm A rejectsif E is deemed incorrect. The circuit VALUE j) hasn + 2clog n+ O(1) inputs, depth
at mostd(2n) + d(3n) + b for a fixed constanb, and it follows from (), (2), and @) that the circuit for
VALUE hasO(S(3n) + S(2n)log S(2n) + nlog S(n)) < O(S(3n) + S(2n)n) size. By assumption, the
assumed\CC satisfiability algorithm runs i (2" /n*) time for somek > 2c.

After checking thatF is a correct guess, the question of whetbéris equivalent toC,, can now be
verified. (Alternatively, at this point we may simply pririet circuit E(-, cn® + ¢) as a valid circuit that
is equivalent taC,.(+).) First note that ifF is correct, then for ali, C.(i) = E(x,i,cn? + ¢). Therefore
it suffices to set up aACC circuit EQUIV(i) which outputsl if and only if C. (i) # E(x,i,cn® + ¢),
and determine if EQUIV is satisfiable using the algorithm A&C CIRcuIT SAT. Since EQUI\(i) has

12

n + clogn inputs, depthi(3n) + O(1), and sizeD(S(n + O(logn))), the circuit satisfiability call runs in
O(2" /n¥) time, by assumption. If EQUIV is satisfiable, thetrejects
Finally, A prints its guessed circuit’, if the algorithm did not reject on any of the above steps. O

Remark 1 The proof of the lemma does not require specific propertieA@f. We only need that the
underlying circuit clasgC containsAC? and is closed under composition of two circuit families. Shene
goes for the proof of Theoref2 below.

Remark 2 In fact the lemma shows that, given any ciratiitand aC-circuit D, we can efficiently check
if C is equivalent toD using nondeterminism (under the assumptions EhatisC-circuits and there are

efficientC-SAT algorithms). IP hasC-circuits, then Circuit Evaluation haS-circuits. Therefore any circuit
family {C,, } will have an equivalent-circuit family, as well ag’-circuits encoding the “gate information”

and “gate values” of{C'}.

With Lemma3.1 in hand, the proof of Theorer.2 closely follows the author’s prior work (Theo-
rem 3.1), except the circuitC’, is substituted in place of',. Let us give the details. We use the specific
example ofACC in place of a generic circuit clags modification for other classe&sis straightforward.

Reminder of Theorem 3.2 Let S(n) < 2n/4 There is ac > 0 andb > 0 such that, ifC-CIRCUIT SAT
instances with at most + clog n variables, depth at mo&t- d(3n) + b, andO(n S(2n) + S(3n)) size can
be solved ir0 (2" /n¢) time, therENP does not have non-unifortcircuits of depthd(n) and S(n) size.

Proof of Theorem 3.2 Suppose ACC @RcuUIT SAT instances withn + clogn variables, deptf? -
d(3n) + O(1), andO(n S(2n) + S(3n)) size can be solved i®(2"/n°) time for a sufficiently large-.
Further suppose th&\" has non-uniformACC circuits of depthd and.S(n) size. The goal is to show that
NTIME[2"] € NTIME[o(2™)], contradicting the nondeterministic time hierarc®FM78 Zak83.

Let L € NTIME[2"]. We describe a fast nondeterministic algoritishaecidingL. As discussed earlier
(Theorem2.1), we may assumé has a multitape Turing machine implementatiorOR™) time, and we
only need to simulaté& on a RAM inO(2" /n°¢) time for large enough to obtain the contradiction.

On inputz of lengthn, B first runs the nondeterministic algoriths of Lemma3.1 Using the ACC
CIRCUIT SAT algorithm and the fact th& hasACC circuits, A runs inO(2" /n® + S(3n) - poly(n)) <
O(2™/n°) time, and for some computation path, produces arACC circuit C., of S(n + clogn) size,
d(n + clogn) depth, andn + clogn inputs such that € L if and only if C, is the compression of a
satisfiable formuld: .

ThenB nondeterministically guessesS&3n)-sized(3n)-depth circuitiV. By Fact3.2, there exists such
alV that encodes a satisfying assignmentfgy if and only ifz € L.

Next, B constructs an ACC RculIT SAT instanceD to verify thatWW is correct (just as in the proof of
Theorenm3.1). The circuitD hasn+clog n inputs fed toO(n) copies ofC”, so that wheri is input to D, the
ith clause of the 3CNF formul&: is printed onO(n) bits of output. TheD(n) bits encode three variable
indices along with sign bits for each variable. For the thragables, an assignment is computed for them
by evaluating the indices on three copied®f Finally, D compares the sign bits with the bits output by the
copies ofl/, and output9) iff the variable assignment encoded By satisfies théth clause. Now observe
that our guesset” encodes a satisfying assignment 1o , if and only if every clause of ¢, is satisfied
by the assignment encoded 1y, if and only if D(:) = 0 for all 4, if and only if D is unsatisfiable.

Observe thatD hasO(n S(2n) + S(3n)) size, depth at mostd(3n) + O(1), andn + clogn inputs.
By assumption, the satisfiability dP can be determined i®(2" /n¢) time, henceB3 decides ifxr € L in
O(2"/nc) time. O

13

4 A Satisfiability Algorithm for ACC Circuits

Now we present an algorithm that determines the satisfigtafi ACC circuits slightly faster than the
2™ runtime of exhaustive search. There are two componentialtorithm: a nice representation AEC
circuits, and a method for evaluating this representatioickdy on all of its inputs. This method can be
implemented using either fast rectangular matrix multggion, a dynamic programming approach, or a
divide-and-conquer recursive approach.

It follows from the work of Yao fao9d, Beigel and Tarui BT94], and Allender and GoredG94] that,
given anyACC circuit of sizes, one can produce & (°¢") sizeSYM™ circuit in poly(s©(°e”#)) time that
has equivalent functionality. (For more background, sedriteliminaries.)

Lemma 4.1 There is an algorithm and functiofi: N x N — N such that given aACC circuit with MOD,,,
gates of depthl and sizes, the algorithm outputs an equivaleBYM™ circuit of sO(e’ "™ s) size, with
ANDs ofO(log/ (™) s) fan-in. The algorithm takes at mos?(°s’“™) time.

Furthermore, given the number of ANDs in the circuit thatleate to1, the symmetric function itself
can be evaluated ig°(e’“™ s) time.

The functionf(d, m) is estimated to be no more thai’(9). Technically speaking, the above lemma is
not explicitly proved in prior work, but Allender and Gordesgtively show it: they prove that givenui-
form ACC circuit (with an efficiently computable connection langejghere is a similarlyniformSYM™
circuit of the appropriate size. Their proof correspondarncefficient, deterministic algorithm computing
the transformation, and this algorithm works equally wigll is simply given anyACC circuit as input (not
necessarily uniform). Since the proof of the lemma is esslynidentical to previous proofs already in the
literature, it has been placed in Appendix

We stress that the transformation fréx@C to SYM™ results in a circuit witho negated variablegust
a symmetric function of ANDs of variables. (This propertyuiged in the dynamic programming algorithm
below.) It is a simple exercise to transform a SYM of ANDs ofybog fan-in (with negations on some
of the wires coming out of input variables) to a SYM of ANDs @friables, while preserving the relevant
parameters of Lemmé 1. A proof sketch of this transformation is in Appendix

4.1 Rapid evaluation of an ACC circuit on all of its inputs

The other component of theCC satisfiability algorithm is a method for rapidly evaluatiagivenSYM™
circuit on all of its possible satisfying assignments:

Lemma 4.2 (Evaluation Lemma) There is an algorithm that, given ®YM™ circuit of sizes < 21" and
n inputs with a symmetric function that can be evaluategdalty(s) time, runs in(2™ + poly(s)) - poly(n)
time and prints &"-bit vector V' which is the truth table of the function represented by thegicircuit.
That is,V[i] = 1 iff the SYM™ circuit outputsl on theith variable assignment.

That is, anySYM™ circuit can be evaluated on all* assignments ipolynomial amortized time per
assignment Brute force search would tak¥ - poly(s) time, but the algorithm manages to use roughly
2" + poly(s) time instead.

Lemma4.2 can be proved in three different ways; each are appealingifi@rent reasons. The first
proof, using dynamic programming, has the benefit that itmeompletely described with few technical
details. For pedagogical purposes it is preferred. Thergkpooof uses a powerful primitive (fast matrix
multiplication) that is common in theoretical computeresaie, and it is plausible that the matrix multipli-
cation approach could be extended further. The third preetwa simple divide-and-conquer approach: we

14

can reduce th6 YM™ circuit evaluation problem to that of evaluating a multarn-variable polynomial
on all 2" assignments ovef0, 1}", and solve that problem i®(2" - poly(n)) time. (This algorithm is
discussed in the author’s survey articWi[L1], and is omitted here.)

Proof 1: Dynamic Programming. The evaluation lemma can be proved using simple dynamiaanog
ming, following a conversation with Andreas Bjorklund.

Proof of Lemma 4.2, Assume we are given &YM™ circuit C” with a collection ofs” AND gates over
some variable§z,...,z,}. LetG; C [n] be the set of variable indices that are input to ttieAND gate.

Define a functionf : 2"l — N, wheref(S) equals the number gf = 1,...,s” such thatS = G;. The

function f can be prepared as a lookup tabledi2™ + s” - poly(n)) < O(2"™) time, by building a table
of 2" entries which are initially zero, and for each of tfle AND gates corresponding to a subsgtwe

increment theS-th entry in the table.

Now consider the function(T') = > ¢, f(S) defined on alll’ C [n]. (Typically, g is called thezeta
transform of f.) Observe thay(7T") equals the number of AND gates setlt@n the variable assignment
obtained by setting;; = 1 fori € T, andz; = 0 for ¢ ¢ T. Therefore the table df” integers of size
O(log ") representing the functiogis equivalent to the matri®v in the previous proof. Hence if we can
computeg then we can evaluaté” on all of its possible inputs.

It remains to show how to compugeefficiently. Givenf, the functiong can be computed D (2" -
poly(n)) time by a dynamic programming algorithm of Yates from 1937 [BHKO09], Section 2.2). For
i=0,...,n,defineg; : 2" — N by go(T) = f(T), and

(T) = Gi—1(T) + gi—1 (T \ {i}) ifieT,
S 9i—1(T) otherwise

It follows that eachy;;1 can be obtained fromg; in O(2™ - poly(n)) time. Induction shows thay;(7") =
> g f(S) where the sum is over afl C T subject to the conditionthdtj € S| j > i} ={j € T'| j > i}.
Wheni = n, both of these sets are always empty, so it follows ghat g. O

The above description is suitable for random access magHinéthe algorithm can also be implemented
on a multitape Turing machine using standard ideas. (Btsgieaking, a multitape implementation is not
necessary to prov&CC lower bounds, because Lemrfd shows it suffices to have a fast random-access
implementation of any. € NTIMEr),[2"]. However, the extension to multitape may be useful for fitur
work.)

Proof 2: Matrix multiplication. An alternative way to prove Lemn#a2is to use a fast rectangular matrix
multiplication algorithm of Coppersmith, building on priavork of Schonhagegch81. This algorithm
works in the case where the “middle” dimension of the masrisgpolynomially smaller than the other two.
In this case, matrix multiplication can be done nearly optlyr

Lemma 4.3 (Coppersmith [Cop82)) For all sufficiently largeN, multiplication of anNV x N-! matrix with
an N'! x N matrix can be done i®(N?log? N) arithmetic operations.

More precisely, Coppersmith shows that there is a congtesuch that one can multiply a¥ x N matrix
with an N x N-! matrix in K - N2?log? N operations with a bilinear algorithm, i.e., a depth-3 ami¢tic

SCuriously, later work on rectangular matrix multiplicatirom the 90's Cop97 HP99 does not provide tight enough bounds:
only N2+ for all > 0, rather thanV? log2 N. Note that a bound a2 - 2092 " ajready suffices for our application.

15

circuit with additions at the top level, multiplicationstime middle, and additions at the bottom level, where
each input wire to an addition gate may also multiply the trippa scalar. From the duality of bilinear
matrix multiplication algorithmsHIM73], a bilinear algorithm for multiplyingV x N andN x M directly
implies a bilinear algorithm for multiplyingv x M andM x N. Furthermore, Coppersmith’s algorithm is
explicit, in that it can be executed on typical machine mdee¢n a multitape TM) it (N2 - poly(log N))
time, on matrices over any field of pdlgg V) elements. A discussion of implementation details for his
construction can be found in Appendix For us, the relevant corollary is the following.

Corollary 4.1 For all sufficiently largeN, two 0-1 matrices of dimensiod$ x N-! and N'! x N can be
multiplied over the integers i®(N? - poly(log N)) time.

We arrive at our second proof of Lemmi&.

Proof of Lemma 4.2 Suppose we are giveng¥M™ circuit C” of sizes” < 2:'. Partition the inputs
of C" into two setsA and B of size at most’ = (n + 1)/2 each. Set up two matrice®/4 and Mp of
dimension®” x s” ands” x 2" (respectively). The rows af/4 are indexed by all possible assignments
to the variables in setl, while the columns of\/4 are indexed by the AND gates 6f’. Similarly, the
columns ofMp are indexed by variable assignmentgdnwhile the rows ofA/5 are indexed by the ANDs
of C”. Define:

Ma(i,) 1 if the ith assignment of variables from does not force thgth AND to be0,
Z? - .
Al 0 otherwise,
and
Myl k) = 1 if the kth assignment of variables frof does not force thgth AND to be0,
B0 0 otherwise.

Note the preparation o/, and M takes at most™? - s” - poly(n) < O(2"/?+2") time.

Multiply M4 andMp, yielding a matrix/V. Note thath/ 4 (7, j) - Mp(j, k) = 1 iff the ith assignment in
A and thekth assignment irB together set thgth AND of C” to 1. (Given an assignment to all variables
in A and B, the AND is forced to eithet or 0.) HenceN (i, k) equals the number of ANDs set tdoy the
1th assignment iM and thekth assignment irB. Therefore,C” is satisfiable if and only if some entry of
N makes the symmetric function 6 output1.

Sinces” < 21 the fast rectangular matrix multiplication of Corollatyl applies, and the multiplica-
tion of M4 and Mg can be done 2" poly(n) time.

To decide whether some entry &f makes the symmetric function outpiit initialize a bit vectorT’
of lengths” + 1, settingT'[i] to be the value of the symmetric function 6 on eachi = 0,1,...,s".
The construction of" takes polys”) time, since the symmetric function can be evaluated in @8lytime.
Then for every pait, k € {1,...2"}, if v[N(i, k)] = 1 then stop and reposatisfiable If every pair has
been examined without stopping, repartsatisfiable The for-loop over all pairs can be implemented in
227" poly(n) < 2"poly(n) time by standard table lookup or by sorting the distinct eleta of N'(i, k). O

As the above algorithm uses fast matrix multiplicationsiguite possibly a “galactic algorithm” (in the
sense of Liptonl[ip10]) that could never be run on a physical computer, due to maddamstants.

16

4.2 The final algorithm

Given the evaluation lemma, t#eCC satisfiability algorithm is relatively straightforward.

Theorem 4.1 For everyd > 1 andm > 1 there is anc € (0,1) such that satisfiability of deptii-ACC

circuits with MOD,, gates,n inputs, anc®™ size can be determined 1 —2") time for somey > ¢ that
depends only od andm.

Proof. Let/,c be parameters to set later. Suppose we are given a ded@€ circuit C of s = 2" size
andn inputs. Make a circuiC”’ with s - 2¢ size andh — ¢ inputs which is obtained by producirj copies of
C, plugging in a different possible assignment to the firstputs ofC' in each copy, and taking the OR of
these copies. Obseré is a depthtd + 1) ACC circuit, andC' is satisfiable if and only i€®’ is satisfiable.

Applying the translation frorACC to SYM™ (Lemma4.1), a circuitC” can be produced which is equiv-
alent toC’, whereC"” consists of a symmetric gate connected’to< s¢(““1°2°s) ANDs of variables, for
some constant that depends on the depftand modulusn. ProducingC” from C” takes onlys© (¢ 10g° s)
steps. Whens = 27°, s < 2en°(°n°°) Set¢ = n1/(2¢) and observe that’ < 27 for all sufficiently
largen and sufficiently smalt.

By the evaluation lemma (Lemn#a2) and the fact that the symmetric function@f can be evaluated in
poly(s”) time, C” can be evaluated on all of its possible assignmen (2~ - poly(n)) < 2n—2(n'/?)
time, hence the satisfiability ¢f can be determined within this time. O

Two remarks. It is worth pointing out a couple more things about the aktponi. First, the algorithm can
be generalized in multiple ways which may be useful in therkit Instead of taking an OR of all partial
assignments to a small number of variables’inone could instead take any constant number of ANDs
and ORs of partial assignments, convert this Y™ circuit, then apply the evaluation lemma. This
observation shows that any quantified Boolean formula wittorstant number of quantifier blocks and
a predicate described by &CC circuit of subexponential size can also be solved fastar thdaustive
search. Second, note that the algorithm does not give a faateto solve satisfiability for the classyM™
itself, because in the algorithm we need that the OB @frcuits from the class is still a circuit in the class.
Hence we cannot give lower bounds ®YM™ at the present time.

5 ACC Lower Bounds
Combining the results of the previous two sections, norfieami lower bounds foACC can be proved.

Reminder of Theorem 1.2 For everyd andm, there is a5 > 0 and a language irfEN" that fails to have
non-uniformACC circuits of depthd and size2™” with MOD,, gates.

Proof. Theoremd4.l states that for every andm there is are > 0 so that satisfiability of depth-ACC
circuits with MOD,, gates,n inputs, and2°(™*) size can be solved i2"~2") time, for somes > «.
Theorem3.2 says there is @ > 0 such that, if ACC QRCUIT SAT instances withm + clogn variables,
depth2d + O(1), and at most = n 2°("") size can be solved i®(2"/n°) time, thenENP does not have
non-uniformACC circuits of depthi and2"™" size. The lower bound follows, @§*+¢10sn)—Q((n+clogn)?)
O(2™/n°) for everyc. O

It follows that complete problems such ag8 LEST SuccINCT 3SAT (given a circuitC' and integer,
output theith bit of the smallest satisfying assignment to the forniidaencoded by’) require exponential

17

ACC circuits. TheENP lower bound can be “padded down” in a standard way to proverpapynomial
lower bounds for a class that is very closePfyf’.

Corollary 5.1 For everyd andm, QuasiPNP = TIME[n!°2°""' "]NP does not have non-uniforicC cir-
cuits of depthi, MOD,,, gates, and polynomial size.

Proof. If there wered andm such thaﬂ'll\/IE[2(log ”)C]NP had such circuits for every, then by a padding

argument (replacing with 2"°) it would follow that ENP has depth# size20™'/“) circuits for everye,
contradicting Theorer.2. O

Note it is known thaNTIME[r!°s°""” "]NP does not have polynomial size (unrestricted) circuiisrsd.

SuperpolynomiaACC lower bounds foNEXP are also provable. First we need a theorem established
in prior work: if NEXP has (unrestricted) polynomial size circuits, then evetisBable formula output by
the SuccINCT 3SAT reduction in FacB.1 has somesatisfying assignmernhat can be represented with a
polynomial size unrestricted circuit.

More precisely, say thatl& cINCT 3SAT has succinct satisfying assignmeifithere is a fixed constant
¢ such that for every language € NTIME[2"] and everyz € L of lengthn, there is a circuitV, of
poly(n) size withk < n + clogn inputs such that the variable assignment W (i) forall i = 1,...,2"
is a satisfying assignment for the formuta,, , whereC,, is the circuit obtained by thedcINCT 3SAT
reduction in FacB.1 Say thafi¥, is a succinct satisfying assignment {Gy.

Theorem 5.1 (Wil10]) SupposeNEXP has polynomial size circuits. Thé&@uccINCT 3SAT has succinct
satisfying assignments.

Theoremb. 1is not explicitly proved in the paper, however it follows iredhately from another theorem.
Say thatNEXP hasuniversal witness circuits of polynomial sifdor every L € NEXP and every correct
exponential time verifier for, there is ac > 0 such that for everyx € L, there is a circuit of size at
most|z|¢ + ¢ which encodes a witness farthat is accepted by the verifier. (For more formal definitjons
see Wil10].) The following directly implies Theorer.1:

Theorem 5.2 (JKWO02, Wil10]) If NEXP C P/poly then every language INEXP has universal witness
circuits of polynomial size.

The proof of Theorend.2follows an argument by Impagliazzo, Kabanets, and Wigdefgo/N02].
The second ingredient in the lower bound REXP is a simple folklore lemma:

Lemma 5.1 (Folklore) LetC be any circuit class. P has non-unifornC circuits ofS(n)O(l) size, then
there is ac > 0 such that everyl'(n)-size circuit family (uniform or not) has an equivalef{n +
O(T'(n)log T'(n)))c-size circuit family irC.

Proof. If P has non-uniforrrS(n)O(l)-sizeC circuits, then for some > 0, the QrRcuIT EVAL problem
has S(n)¢-size circuits. (Recall the ®culT EVAL problem is: given an arbitrary Boolean circuiC”
and inputz, evaluateC on z and output the answer Let {D,,(-,-)} be aS(n)°-size circuit family for
this problem. Now let{C,,} be an arbitraryl’(n)-size circuit family. To obtain an equivalegtcircuit
family {C/} of S(n + O(T'(n)logT(n)))° size, defineC(x|(m) = Dy, (C|y),) for an appropriate length

ny <n+ O(T(n)logT(n)). O

18

Note if S(n) andT'(n) are polynomials, the§'(n + O(T'(n)log T'(n)))¢ is also polynomial. Also note
Lemmab5.1implies that, ifP C ACC, then there ardéixed constantg andm such that every polynomial
size circuit family has equivalent polynomial size degtbicuits with AND, OR, NOT, and MOD, gates.
(Here,d andm are the constants arising in the resultde@C circuit family for CIRCUIT EVAL.)

Reminder of Theorem1.1 NTIME[2"] does not have non-unifortCC circuits of polynomial size.

Proof. First, we claim that ifNTIME[2"] has polysizeACC circuits, then every language MEXP has
polysize ACC circuits. Let us sketch this implication, for completeneBsNTIME[2"] has polysizeACC
circuits, then theNEXP-complete problem ScCINCT BOUNDED HALTING has polysizeACC circuits:
given a nondeterministic machimé, string z, and¢ written in binary, doesV(z) have an accepting com-
putation path of length at mos? The reduction from any. € NEXP to SucCINCT BOUNDED HALTING
can be expressed with &C° circuit of size polyn,logt). (Take any nondeterministic machiié with
running time2"" that acceptd. Given an inputz, the AC? circuit outputs the code d¥ as the first input of
the SucCcINCT BOUNDED HALTING instancey as the second input, antr” as the third input, written in
binary. This only needs ahC" circuit that outputs followed by|z|* — 1 zeroes.) Hence everly ¢ NEXP
can be recognized by aCC circuit family of sizen’, for some¢ depending orL.

By Lemmab.1 and Theorend.], it follows that SuccINCT 3SAT has succinct satisfying assignments
that are polynomial sizACC circuits. We claim that a contradiction can be obtained lygfcély examining
the proof of Theoreni..2 (the lower bound foENP). There, the only place requiring the full assumption
“ENP has non-uniformACC circuits of sizeS(n)” is inside the proof of TheorerB.2. In particular, the
assumption is needed in F&®, where it is shown that for every satisfiable instance @ESINCT 3SAT,
at least one of its satisfying assignments can be encodedire&(3n) ACC circuit. (The only other part
of Theorem3.2where the assumption is applied is Lemfa but there it is only required th& has non-
uniform ACC circuits.) But from the above, we already have that8INCT 3SAT has succinct satisfying
assignments which a&CC circuits.

Hence the ACC GrculT SAT instanceD constructed in Theorer®.2 with the witness circuitd has
size polynomial in itsn + clogn inputs. Finally, the Circuit SAT algorithm of Theorel can deter-
mine satisfiability of any: + c¢log n input, n¢ size ACC circuit in 0(2"—1°g2") time, for everyconstantc.
Therefore unsatisfiability oD can be determined i® (2" /n®) time for every constant, and the desired
contradiction follows from the nondeterministic time tszhy. O

It follows that problems complete und@c’ reductions foNEXP such as 8cciNcT 3SAT (given a
circuit C, does it encode a satisfiable 3-CNF formiila?) require superpolynomial siz&CC circuits.

5.1 An Extension to “Half-Exponential” Type Lower Bounds

The NEXP lower bounds can be extended a little by studying the prodfteforem5.2. However, the
results are a bit ugly, so let us only sketch the argumentsungtion f : N — N is said to besub-half-
exponentialif for every k, f(f(n¥)¥)k < 2n°. The following was conjectured by Russell Impagliazzo
(private communication), and can be proved by augmentirepidm5.2 with other known results.

Theorem 5.3 Let S(n) be any sub-half-exponential function such t§&t.) > n» for all n. If NTIME[2"]
hasS(n) size circuits, then all languages MEXP have universal witness circuits of sizk.S(S(n°)¢)¢),
for somec depending on the language.

The proof goes along the lines of Theorém, but with S(n) substituted in place of polynomials: we
assume (aNEXP does not have universal witness circuits$fS(n°)¢)¢ size for anyc, (b) NTIME[2"]

19

does haveS(n) circuits, and derive a contradiction from the two. Assumipt{a) implies that in time
O(2™), one can nondeterministically guess and verify the truifietaf a Boolean function on bits that
requiresS(S(n°)°)¢ size circuits for every:, for infinitely many inputs. This is enough to partially dera
domize MATIME[S(S (n®1))O(M)OM)] for infinitely many input lengths, putting the class insidei.o.-
NTIME[2"]/n [IKWO2] (recall thatS(S(nOM)0M)0W) < 9n”™y Assumption (b) implies thaMEXP has
S(n®MW)OM circuits, hencelIME[25)] ¢ MATIME[S(S(nO1)0)0M)] [BENWO3 MVWII].
It also follows from assumption (b) that i.&lTIME[2"]/n hasO(S(n)) size circuits on infinitely many in-
put lengths. Putting these containments together, itvﬁdlmatTlME[2s(")O“)] hasO(S(n)) size circuits
on infinitely many input lengths. This is false by direct diaglization: for all large enough there is a
function f on n variables with circuit complexity greater that{n)?, and the lexicographically first can
be found in2°(5(™?) time and simulated on a given input.

Combining Theorem.3and Lemma. 1, we immediately obtain the following implication betwe&GC
circuits forNTIME[2"] and ACC circuits which encode witnesses f9EXP.

Corollary 5.2 If NTIME[2"] hasS(n)-sizeACC circuits, then every language MEXP has universal wit-
nessACC circuits of S(S(S(n°)¢)¢)¢ for somec depending on the language.

One extra application of comes from Theorens.3 which produces universal witness circuits; the
other comes from Lemm@a.1 which converts those circuits #®CC. Definef : N — N to be sub-third-
exponentialif for every k, f(f(f(nF)¥)k)k < 27" Examples of sub-third-exponential functions are
F(n) = nPoWosn) and £ (n) = 22

Theorem 5.4 NTIME[2"] does not have sub-third-exponential sf@C circuits.

The argument is the same as Theorgr, except we apply Corollarg.2 if NTIME[2"] has such
circuits, then Corollanb.2 says thalNEXP has universal witness circuits which a€C and have subex-
ponential size. This implies thatu€ cINCT 3SAT instances have subexponential sieC circuits that
encode their satisfying assignments, which is enough &bkslh the contradiction in Theoreinl

Theorem 5.5 Letg : N — N have the property that there is a sub-third-exponentiacfiom f satisfying
g(f(n)) > 2™ ThenNTIME[g(n)] does not have polynomial si2€C circuits.

If such circuits did exist, then by paddindy,TIME[2"] C NTIME[g(f(n))] would haveACC circuits
of size f(n)°®™) for some sub-third-exponentigl, contradicting Theorens.4. (Raising f to a constant
power is still a sub-third-exponential function.) It fols that the polynomial size lower bound can be ex-

VIoglogn can
222 o] - NTlME[Qn], Sincef(n) - 2(10gn)1 glogn _
VIoglogn

tended down to grotesque classes sudN BBVE|

(o] ogn 2 -
921818 i syb-third-exponential, ang(f (n)) > 2" for functions likeg(n) = 2%°

Finally, it is also straightforward to extend the lower bdarto polysizeACC circuits of slightly non-
constant depth, as theCC SAT algorithm still beats exhaustive search on polynonizg sircuits of depth
o(loglog n) with constant moduli. The details can be found by studyingdfem4.1 or by reading the

paper Wanl].

6 Conclusion

This paper demonstrates that the research program of graiouit lower bounds via satisfiability
algorithms is a viable one. Further work will surely improwee results. Three natural next steps are:

20

replaceACC with TC circuits in the lower bounds, or repla8EEXP with EXP, or extend the exponential
lower bounds fronENP to NEXP.

The results of Sectio and Lemmab.1 show that one only has to find a very minor improvement in
algorithms forT C° satisfiability in order to establish non-uniforirC® lower bounds foNEXP. The author
sees no serious impediment to the existence of such anthlgorhe can only report that the algorithms
tried so far do not work. The evaluation lemma §¥M™ circuits is key to theACC SAT algorithm, and
it would be very interesting to find similar lemmas f6€° or NC'. It is plausible that the characterization
of NC! as bounded-width branching progranBaf89 could be applied to prove an analogous evaluation
lemma for Boolean formulas, which would lead to nontrivigpth lower bounds foNEXP. (Note that
permutation branching programs of widtltan be simulated iACC [BT88], while width 5 captureNC!.)
Along the lines of the author’s prior work\[il10], Oded Goldreich and Or Meir (personal communication)
have observed that the consequence of Thedéhiolds even when we replace CIRcUIT SAT with
the problem:given ann-input S(n)-sizeC-circuit, approximate its probability of acceptance on afarm
random input to within al /6 additive factor It is widely believed that this problem can be solved in
polynomial timefor any reasonablé, so the hypothesis appears easier to satisfy.

It should be possible to extend the superpolynomial loweniddor ACC down to the clasQuasiNP =
NTIME[nlOgO(l) "]. This paper comes fairly close to proving this result. Thiy @tep missing is a proof of
the implication: “if QuasiNP has polynomial-siz&CC circuits, then there are polynomial-sia€C circuits
that encode witnesses @uasiNP languages.” A couple of lemmas rely only &having non-uniform
ACC circuits, so they could be potentially applied in proofs wém stronger lower bounds. At any rate, the
prospects for future circuit lower bounds look very promggi

Acknowledgments. | am grateful to Virginia Vassilevska Williams for readingjtial drafts of this work
and reassuring me that they made sense, along with helpinqdezstand Coppersmith’s algorithm. | also
thank Miki Ajtai, Andreas Bjorklund, Ron Fagin, and Russ$eipagliazzo for helpful discussions, and Eric
Allender, Sanjeev Arora, Luke Friedman, Or Meir, Rahul 8anam, Fengming Wang, and the anonymous
referees for helpful comments on earlier drafts. | esplydiabnk Andreas for suggesting the zeta transform
as an alternative proof for Lemnda2.

References

[AWQ9] S. Aaronson, A. Wigderson. Algebrization: A New Biarrin Complexity TheoryACM Transac-
tions on Theory of Computinty1), 2009.

[AlIB9] E. Allender. A Note on the Power of Threshold Ciraalitn Proc. IEEE Symposium on Foundations
of Computer Scien¢&80-584, 1989.

[AADOO] M. Agrawal, E. Allender, and S. Datta. On PCAC’, and arithmetic circuits). Computer and
System Sciencé&®(2):395-421, 2000.

[Ajt83] M. Ajtai. ¥1-formulae on finite structureginnals of Pure and Applied Log4:1-148, 1983.

[AlI99] E. Allender. The permanent requires large uniformneishold circuitsChicago J. Theor. Comput.
Sci, 1999.

[AB87] N.Alonand R. B. Boppana. The monotone circuit comxileof boolean functionsCombinatorica
7(1):1-22, 1987.

21

[ABO9] S. Arora and B. BarakComputational Complexity — a modern approa€tambridge University
Press, 20009.

[AG94] E. Allender and V. Gore. A uniform circuit lower bouridr the permanentSIAM J. Computing
23(5):1026—-1049, 1994.

[BFNW93] L. Babai, L. Fortnow, N. Nisan, and A. Wigderson. BRas subexponential simulations unless
EXPTIME has publishable proof€omputational Complexit$:307-318, 1993.

[BGS75] T. P. Baker, J. Gill, and R. Solovay. Relativizagaf the P =? NP QuestioSIAM J. Computing
4(4):431-442, 1975.

[Bar89] D. A. Barrington. Bounded-width polynomial-sizeabching programs recognize exactly those
languages in NE J. Computer and System Scien88s150-164, 1989. See also STOC'86.

[BT88] D.A.Mix Barrington and D. Thérien. Finite monoidadthe fine structure of NCJACM35:941—
952, 1988.

[BS95] D. A. Mix Barrington and H. Straubing. Superlineawkr bounds for bounded-width branching
programsJ. Computer and System Scienb8s374—-381, 1995.

[BST90] D. A. Mix Barrington, H. Straubing, and D. Thériddon-uniform automata over groupfor-
mation and Computatiof9:109-132, 1990.

[BT94] R. Beigel and J. Tarui. On AC@omputational Complexit$:350-366, 1994. See also FOCS'91.

[BHKO9] A. Bjorklund, T. Husfeldt, and M. Koivisto. Set p@ifoning via inclusion-exclusionSIAM J.
Computing39(2):546-563, 2009.

[BFT98] H. Buhrman, L. Fortnow, and T. Thierauf. Nonrel@ing separations. IRroc. IEEE Conference
on Computational Complexit$—12, 1998.

[CIPO6] C. Calabro, R. Impagliazzo, and R. Paturi. A dudligtween clause width and clause density for
SAT. In Proc. IEEE Conf. on Computational Complexis2—-260, 2006.

[CIP0O9] C. Calabro, R. Impagliazzo, and R. Paturi. The caxip} of satisfiability of small depth circuits.
In Proc. International Workshop on Parameterized and Exaan@atation 2009.

[CKY89] J. F. Canny, E. Kaltofen, and L. Yagati. Solving ®sis of non-linear equations fastéroc.
ACM-SIGSAM International Symposium on Symbolic and Aijelmomputation121-128, 1989.

[Cau96] H. Caussinus. A note on a theorem of Barrington,ubtray, and Thérierinformation Processing
Letters58(1):31-33, 1996.

[CGPTO6] A. Chattopadhyay, N. Goyal, P. Pudlak, and D.rimé Lower bounds for circuits with MODm
gates. InProceedings of IEEE Symposium on Foundations of Compuien&@r709-718, 2006.

[CWO09] A. Chattopadhyay and A. Wigderson. Linear systemsr @omposite moduli. IfProceedings of
IEEE Symposium on Foundations of Computer Scief8e52, 2009.

[Co088] S. A. Cook. Short propositional formulas represemdeterministic computationmf. Process.
Lett. 26(5):269-270, 1988.

22

[Cop82] D. Coppersmith. Rapid multiplication of rectargumatricesSIAM J. Computing 1(3):467-471,
1982.

[Cop97] D. Coppersmith. Rectangular matrix multiplicatieevisited.J. Complexityl3(1):42—49, 1997.

[DHO8] E. Dantsin and E. A. Hirsch. Worst-case upper bouhtsiandbook of SatisfiabilityA. Biere, M.
Heule, H. van Maaren and T. Walsh (eds.), 341-362, 2008.

[FLVMVO05] L. Fortnow, R. Lipton, D. van Melkebeek, and A. \fag. Time-space lower bounds for satisfi-
ability. JACM52(6):835-865, 2005.

[FSS81] M. Furst, J. Saxe, and M. Sipser. Parity, circuitsl the polynomial time hierarchiylathematical
Systems Theord/7:13-27, 1984. Also in FOCS'81.

[GO94] I. Gohberg and V. Olshevsky. Fast algorithms withgpoeessing for matrix-vector multiplication
problems.J. Complexityl0(4):411-427, 1994.

[GS89] Y. Gurevich and S. Shelah. Nearly linear tinhegic at Botik '89 Springer-Verlag LNCS 363,
108-118, 1989.

[Gre95] F. Green. Lower bounds for depth-three circuitshvatjuals and mod-gates. Rroceedings of
STACSSpringer LNCS 900:71-82, 1995.

[GKRST95] F. Green, J. Kdbler, K. W. Regan, T. Schwentiaid . Toran. The power of the middle bit of
a #P functionJ. Computer and System Scienb8¢3):456—-467, 1995.

[Gro98] V. Grolmusz. A lower bound for depth-3 circuits withOD m gates.Information Processing
Letters67(2):87—90, 1998.

[GTOO] V. Grolmusz and G. Tardos. Lower bounds for (MODp-M@Pcircuits. SIAM J. Computing
29(4):1209-1222, 2000.

[Han06] K. A. Hansen. Constant width planar computatiorrati@rizes ACE. Theory of Computing Sys-
tems39(1):79-92, 2006.

[Has86] J. Hastad. Almost optimal lower bounds for smafhith circuits Advances in Computing Research
5:143-170, 1989. See also STOC'86.

[HM73] J. Hopcroft and J. Musinski. Duality applied to thengplexity of matrix multiplication and other
bilinear forms.SIAM J. Computin@(3):159-1973, 1973.

[HP98] X. Huang and V. Y. Pan. Fast rectangular matrix mlitigtion and applications]. Complexity
14(2):257-299, 1998.

[IKWO02] R. Impagliazzo, V. Kabanets, and A. Wigderson. laus# of an easy witness: exponential time
versus probabilistic polynomial tim@. Computer and System Scien6é¢4):672—694, 2002.

[IMP12] R. Impagliazzo, W. Matthews, and R. Paturi. A sagisfiity algorithm for AC®. In Proc. ACM-
SIAM Symposium on Discrete Algorithn@$1-972, 2012.

[IMO2] K.Ilwama and H. Morizumi. An explicit lower bound d&fn — o(n) for Boolean circuits. IrProc.
MFCS Springer LNCS 2420:353-364, 2002.

23

[KIO4] V. Kabanets and R. Impagliazzo. Derandomizing polymal identity tests means proving circuit
lower boundsComputational Complexit¥3(1-2):1-46, 2004.

[Kan82] R. Kannan. Circuit-size lower bounds and non-rdullity to sparse setdnformation and Control
55(1-3):40-56, 1982.

[KVVY93] R.Kannan, H. Venkateswaran, V. Vinay, A. C.-C. Yadcircuit-based proof of Toda’s theorem.
Information and Computatiot04(2):271-276, 1993.

[KvM99] A. Klivans and D. van Melkebeek. Graph nonisomogghi has subexponential size proofs un-
less the polynomial-time hierarchy collaps8$AM J. Computin@®1(5):1501-1526, 2002. Also in
STOC99.

[KHO09] M. Koucky and K. A. Hansen. A new characterization c€@” and probabilistic C& Computa-
tional Complexityl9(2):211-234, 2010.

[KP97] M. Krause and P. Pudlak. On the computational povelepth 2 circuits with threshold and mod-
ulo gatesTheor. Comput. Scil74(1-2):137-156, 1997. See also STOC'94.

[LRO1] O. Lachish and R. Raz. Explicit lower bound ©fn — o(n) for Boolean circuits. IrProc. ACM
Symposium on Theory of Computiig99—-408, 2001.

[Lip10] R.J. Lipton. Galactic AlgorithmsGodel's Lost Letter and P2 NP, 2010.
http://rjlipton.wordpress.conl 2010/ 10/ 23/ gal acti c-al gorithns/

[MVWO9] P. B. Miltersen, N. V. Vinodchandran, and O. WatamalSuper-polynomial versus half-
exponential circuit size in the exponential hierardAgoc. COCOON Springer LNCS 1627:210—
220, 1999.

[NW94] N. Nisan and A. Wigderson. Hardness vs RandomndssComputer and System Sciences
49(2):149-167, 1994. See also FOCS’88.

[Pan84] V. Y. Pan. How to multiply matrices fast&pringer-Verlag LNC379, 1984.

[PY86] C.H.Papadimitriou and M. Yannakakis. A note on soctrepresentations of graphsformation
and Control71:181-185, 1986.

[PR81] W.J. Pauland R. Reischuk. On Time versus Spade@omputer and System Scien28¢3):312—
327, 1981.

[Raz85] A. A. Razborov. Lower bounds on the monotone coniglet some Boolean function®oklady
Akademii Nauk SSSE1(4):798-801, 1985. TranslatedSoviet Math. Dokl31(2):354-357.

[Raz87] A. A. Razborov. Lower bounds on the size of boundeptid@etworks over a complete basis
with logical addition.Matematicheskie Zamet4il(4):598—-607, 1987. Translationtathematical
Notes of Academy of Sciences US3R4):333-338, 1987.

[Raz89] A. A. Razborov. On the method of approximationsPtac. ACM Symposium on Theory of Com-
puting 169-176, 1989.

[RR97] A. A. Razborov and S. Rudich. Natural Proals.Computer and System Scien&egl):24—35,
1997.

24

http://rjlipton.wordpress.com/2010/10/23/galactic-algorithms/

[Rob91] J. M. Robson. A (1" log T') Reduction from RAM Computations to Satisfiabilifyheor. Com-
put. Sci.82(1):141-149, 1991.

[San10] R. Santhanam. Fighting perebor: new and improwvgatighms for formula and QBF satisfiability.
In Proc. IEEE Symposium on Foundations of Computer Scjet@%-192, 2010.

[Sch78] C.-P. Schnorr. Satisfiability is quasilinear coetglin NQL.JACM25(1):136-145, 1978.
[Sch81] A. Schonhage. Partial and total matrix multigiica. SIAM J. Computind.0(3):434—-455, 1981.

[Sch05] R. Schuler. An algorithm for the satisfiability pketm of formulas in conjunctive normal fornd.
Algorithms54(1):40-44, 2005.

[SFM78] J. Seiferas, M. J. Fischer, and A. Meyer. Separatioigdeterministic time complexity classes.
JACM25:146-167, 1978.

[ST12] K. Seto and S. Tamaki. A satisfiability algorithm angi@ge-case hardness for formulas over the
full binary basis. InProc. IEEE Conference on Computational Complexity7-116, 2012.

[Tod91] S. Toda. PP is as hard as the polynomial-time hiega®@IAM J. Computin@0:865-877, 1991.

[Smo87] R. Smolensky. Algebraic methods in the theory ofdolounds for Boolean circuit complexity.
In Proc. ACM Symposium on Theory of Computing-82, 1987.

[Th&94] D. Thérien. Circuits constructed with MODq gatesinot compute AND in sublinear siZ€om-
putational Complexityt:383—-388, 1994.

[TouO1] I. Tourlakis. Time-space tradeoffs for SAT on noifiorm machinesJ. Computer and System Sci-
ences$3(2):268-287, 2001.

[Tse68] G. Tseitin. On the complexity of derivation in pregmnal calculus.S Studies in Constructive
Mathematics and Mathematical Logjckl5-125, 1968.

[VV86] L. G. Valiant and V. Vazirani. NP is as easy as detegtimique solutionsTheor. Comput. Sci.
47(3):85-93, 1986.

[Wanl1l] F. Wang. NEXP does not have non-uniform quasi-pmiyial-size ACC circuits of o(loglog n)
depth.Proc. TAMG Springer LNCS 6648:164-170, 2011.

[Wil10] R. Williams. Improving exhaustive search impliesperpolynomial lower bounds. IRroc. ACM
Symposium on Theory of Computi2g1—-240, 2010.

[Wil11l] R.Williams. A casual tour around a circuit complgxbound.SIGACT Newd2(3):54-76, Septem-
ber 2011.

[Yao85] A. C.-C. Yao. Separating the polynomial-time hrerey by oracles. IfProc. IEEE Symposium on
Foundations of Computer Sciende-10, 1985.

[Yao90] A. C.-C. Yao. On ACC and threshold circuits.Pnoc. IEEE Symposium on Foundations of Com-
puter Science619-627, 1990.

25

[YP94] P.Y.Yanand I. Parberry. Exponential size lower kasifor some depth three circuiteformation
and Computatiori12:117-130, 1994.

[Zak83] S. Zak. A Turing machine time hierarctiyheor. Comput. Sck6:327-333, 1983.

A Appendix: Proof of Lemma 4.1

Reminder of Lemma4.1 Letm andd be fixed constants. There is an algorithm and funcfiolNxN — N
such that given aACC circuit with MOD,,, gates of deptld and sizes, the algorithm outputs an equivalent
SYM circuit of sOUoe’ ™ s) size, The algorithm takes at me&t1os’ ™ s) time.

Furthermore, given the number of ANDs in the circuit thatleate to1, the symmetric function itself
can be evaluated ig°(e”“™ 3) time.

There is absolutely nothing new in the proof below. The dthor is described as a seriessdlos’ ™)
time transformations, closely following Allender and G§A€594)] in the appropriate places. We just need
to point out that the relevant transformations are stilkcedfitly computable when the algorithm is given an
arbitrary input circuit.

Proof. Let C be the given circuit. Note that by increasing the siz&dfom s to s°(?), we may always
assume at any point in the algorithm tldais a tree (i.e., all gates have fan-out 1).

Transformation 1. Let s be the size ofC. We transformC' into a probabilistic circuitC’ that has
poly(log s) probabilistic inputs, such th&t’ has constant deptk®(M) size,C’ has no OR or MOR), gates
for any compositen, andC’ has AND gates of fan-in at most pdlyg s). (The circuitC” is said to accept
an inputz if it outputs 1 on the majority of settings to the probabilistic inputs.)

First, note that one can replace NOT gates by M{Qdates (for anyn), and one can replace the AND and
OR gates by fixed-depth probabilistic circuits with havindgyoMOD,,, gates and AND gates of pdlyg s)
fan-in. In fact, all of the AND and OR gates can shareghmeset of polylog s) probabilistic inputs. This
is a standard trick that goes back to Valiant and Vazirghg6] (also found in an alternative proof of Toda’s
theorem KVVY93]) that can be performed is () time.

The MOD,, gates for compositen are eliminated as follows. Let;"---p;* be the factorization of
m. Sincem divides a number: iff p7* dividesz for all i, every MOD,, gate can be replaced by an AND
of MOD . gates. (Note the factorization o can be computed in at mo8&(y/mpoly(log m)) time.
Assuminé for example that: < s andm has at most poljlog s) distinct primes, this does not factor into
the final running time, and does not create ANDs of large fap®bserve that® divides a numbet: iff for
alli =0,...,e — 1, p divides (pr) Using this fact, a MO[: gate can be replaced with a constant-fan-in
AND of MOD,, gates of constant-fan-in ANDs, as follows. A M@Dyate witht inputs is replaced with an
AND of fan-in e, where the inputs are MO ates. For ali = 0, ..., e — 1, theith MOD, gate has fan-in
(pt) one for every subset of thenputs that has cardinality’. Forallj = 1,..., (If) theith MOD, gate
has itsjth input connected to an AND of thé-subset of inputs corresponding to integgr All of this can
be computed within®®*) time, and hence®® time.

Transformation 2. We have a probabilistic circuit” with poly(log s) probabilistic inputs, constant depth,
s°() size, no OR or MOR), gates for any composite, and AND gates of fan-in at most pdlyg s). Now
we produce & with no probabilistic inputs and all of the above properessept that the output gate is
now a MAJORITY gate (which outputs the majority value of itpuits). This is easy to do, by enumerating

26

through all possible values of the p6lyg s) inputs, making a new copy af” for every valuation, and
taking the MAJORITY of all these copies. Certainly the newcait C” has sizes@Po(ogs)) and the
transformation can be performed in this much time.

Transformation 3. Now we have a circui€” has sizes®Po¥(o25)) size, a MAJORITY gate at the output,
no OR or MOD,, gates for any composite:, and AND gates of fan-in at most pdlyg s). We produce
another constant-deptfi”” where all these polylog fan-in AND gates are at the bottomM@D,, gates are
below them inC"”.

Take any AND gatey with f = poly(log s) fan-in. Without loss of generalityy has MOD, gates
hi,...,h; as input for some fixed primg, by inserting “dummy” MOD), gates in the appropriate places,
and all MOD, gates have the same fan+ < s@(Pol(logs)) by inserting “dummy” zeroes in the inputs.
We want to show that this AND of MOPgates can be rewritten as a MQDf ANDs.

Let z;; represent thgth input to the MOD) gateh;. Allender and GoreAG94] show that this AND of
MOD, can be rewritten as:

! f kE p—1
/\ Zwij =0 mod p|| = Z(p — 1)’“_1 Z Z H H Tiy iy o mod p, (4)
=1 J k=1 {i1,- i }CIS] <j1,1,~~~7j1,;fi1>€[f’}p*1 t=1 (=1

Gkoy1emsdlp—1)ELF]PTE

where[P] = 1 if the predicateP is true, and) otherwise.
The right-hand side can be represented with a M@&xe with fan-in at most

f
O (Z <£> (f/)k(])-l)) < SO(IOOW(IOgS)),

k=1
which is connected to ANDs of fan-in at magt (p — 1). The transformation takes’(Po(log) time.

Transformation 4. We have &> of s©(Poly(log5)) sjze with AND gates of polylog fan-in connected to the
inputs, a MAJORITY at the output, and MQDgates in between, whege is a prime dividingm = O(1).
We now show how to expres¥” as a symmetric function af’(Poly(ogs)) AND gates, completing the proof.
To do this, we prove that if you have a circdit which has a symmetric function at the output, ANDs
at the bottom, and depti-subcircuits of MOD),’s in between, then this can be turned into an equivalent
D’ with quasi-polynomial size, a symmetric function at the, t8pIDs at the bottom, and deptld- — 1)
subcircuits of MOD),’s. That is, the topmost layer of MQPDs can be “consumed” by choosing a different
symmetric function.
We may assume without loss of generality that faljates with input to the symmetric functiafi :
[f] — {0,1} are MOD, gates, for a fixed primg, and all of the MOD) gates have the same fan-ff (by
adding dummy wires and gates where necessary)z,die thejth input to theith MOD, gate. Note that
the function we want to simulate & (z1 1, . .., z7.5) = F(3./_ MOD,(z; 1, ..., 2). We will replace
H with a symmetric functiont” of ANDs of polylogarithmic fan-in. Then, applying Transfoation 3 to
these ANDs, the resulting circuit can be converted into ohi&lvhas the ANDs at the bottom and only a
guasi-polynomial increase in size.

Define

/
G(r1,...,xpp) = F (Z MOD,(;1, - .., ;) mod Pk>
i=1

27

wherefk is the smallest integer exceedihg, f. Thenp® > f, so it is clear thaG(z11,..., 25 p) =
H(x1,,...,25) when allz; ; are in{0,1}. We shall show how to implemexit as a symmetric function
F’ of ANDs.

We use thanodulus amplifying polynomialsf Beigel and TaruiBT94]. Define

k—1 .
Py(a) = (- — 1)t (Z (""" 1)3:) .

1=0

This polynomial has the property that for al>> 0 andp > 1,
z =0 mod p = P(z) = 0 mod pF,

2 =1mod p = Py(z) = 1 mod p.

DefiningQy(z) = 1— Py (2P~!) and appealing to Fermat's little theorem, it follows tiat(x) = 1 mod p*

if p dividesz, and is equal t® mod p”* otherwise. Therefor@k(zgl1 yi) = MOD,(y1, . .., y) mod pF,
and

f I’
G(:Ul,l,...,:nf,f/) =F ZQk Zwm' HlOdpk
i=1 j=1

Note that eaclti),f(zfz1 x; ;) is a symmetric multivariate polynomial of degree at mb@i — 1). Hence

Q1 can be expanded into a sum of at mpgt f/)Ok@E-1) < sOPoly(logs)) terms. Each term is a product
of poly(log s) variables and a coefficiemntthat is represented i@ (k log k) < poly(log s) bits and easily
computed. The product of variables can be directly reptesdny an AND. Multiplication by the coefficient
¢ can be simulated by taking the sumcaatopies of the relevant monomials (ANDS).

Therefore the sum of alf of these sums of monomials can be efficiently expressed asyée sum
modulop”® of sO(PoVoes)) AND gates, where each AND has fandiip — 1) < poly(log s). Finally, we
take the symmetric functiod” to be: compute the sum of the outputs of all the AND gates created,
then outputF (v mod p*). Observe that a symmetric function composed with a sum nogguis still a
symmetric function.

In summary, for any constant depth circuit, all the abovedfarmations take at most quasi-polynomial
time, increase the circuit size by only a quasi-polynomiabant, and the transformations are applied at
most a quasi-polynomial number of times. (Transformatiamapplied a constant number of times.) More-
over, the symmetric function generated at the end of theggotakes no more time to evaluate than the time
it takes to build the&sYM™ circuit. In more detail, the final symmetric function has fbam

F(v) = MAJORITY((- - - (v mod p) mod p?) - - mod pl"),
for somed’ that depends on the constant degthnd constant modulus. Here, MAJORITY outputs the

high-order bit of its input, and eagdfri is at most a constant factor larger than the size of the finaliti [

B Appendix: Transforming to SYM™ Without Negations

Suppose we are given a circditwhich is a SYM of K = nPo(°es) ANDs of poly(log s) fan-in, where
the AND gates may have some negated variables as input. Weketch how to transforif’ into a circuit

28

C’ which is a SYM of K’ = nPo¥(logs) ANDs of poly(log s) fan-in, where the ANDs are of variables only
(no negations).

The SYM of ANDs circuitC' can be represented as a functipn {0, ..., K} — {0,1} composed with
a poly(log n)-degree polynomiak : {0,1}"™ — {0,1}. The functiong simulates the SYM gate, and the
function h sums up the total number of ANDs which are true on a given asggt. That isf is a sum
of terms over all possible AND gates, where each term dyrexttresponds to the product of the literals in
some AND gate: each negated literat; is multiplied as(1 — x;), and each positive literal; is multiplied
as justr;. Hence, a term evaluates t@n a0 — 1 assignment if and only if the corresponding AND outputs
true.

We can expand the polynomialinto a sum of products of variables @(nP°Y(°2")) time, sinceh is a
sum ofnPoY(og™) products, each product being a pabg n)-degree polynomial. Call this new arithmetic
expressiorh’, which has the form

W (x1,...,20) = Z CS'qu

SC[n] i€S

where eachg is an integer in the intervd-K’, K’|, and all butO(K') of the cg are zero (ands’ =
nPoY(ogn)) "Say that a subset C [n] is negativeif cs < 0, andpositiveif cg > 0.

It is easy to represerit’ as a SYM of ANDs ofentirely non-negated variablgsvith a different SYM
function from before). The trick is to mildly expand the ddmaf the functiong so that it can keep track
of the contributions from negativd and positiveS, separately. Let be the smallest integer satisfying
2¢ > K. Initially our new circuitC’ has no AND gates. For every which is negative, add-cg AND
gates over the variables # to the circuitC’. For everyS which is positive, ad®‘ - ¢g AND gates over
the variables inS to the circuitC’. Now consider the sum of all AND gates @& on some assignment
(y1,...,yn) € {0,1}". This sum has the form

AB
in binary, whereB is an ¢-bit string andA — B (construingA and B as non-negative integers) equals
h(y1,-..,yn). Hence we can redefine the functigro be
J(AB) = A - B.

This g, combined with the above description of AND gates, reprissarSYM of ANDs of non-negated
variables that is equivalent to the original circait

C Appendix: Coppersmith’s algorithm
Recall we are studying the following algorithm of Coppertmi

Lemma C.1 (Coppersmith [Cop82]) For all sufficiently largeN, multiplication of anN x N matrix with
an N'! x N matrix can be done i®(N?log? N) arithmetic operations.

Prima facie, it could be that Coppersmith’s algorithm is sumiform, making it difficult to apply. For
the sake of completeness, here we verify using standarg itieh Coppersmith’s algorithm can indeed be
implemented to run (even on a multitape TM)A@{N? - poly(log N)) time, on matrices over any field of
poly(N) elements. (As we work with-1 matricesA” and B” in our application, it suffices for us to work
over a prime field of polyN) elements.) We focus on the implementation details of hisrdlgm, without

29

going very far into its correctness. The algorithm reliessome of the older tools from the matrix multipli-
cation literature. More background on these tools can bedau the highly readable referendegn84.

Coppersmith’s algorithm follows a paradigm introduced leh&hage $ch81. For example, suppose
we wish to multiply two matricest” and B”. First wepreprocessA” and B” in some efficient way; in our
first example, we devise highly structured matricesA’, B, B’ so thatA” - B” = A’- A- B - B’. The
matricesA and B are sparse “partial” matrices with particular structurehieir nonzeroes, and’ and B’
are explicit matrices of scalar constants which are indégenof A” and B”. Next, we recursively apply
a constant-sized matrix multiplication algorithm to mpilyi A and B essentially optimally. (Recall that
Strassen’s algorithm has an analogous form; such algasitmen known to be efficiently implementable on
a multitape TM.) Finally, wepostprocesshe resulting produaf’ to obtain our desired produet” - B”; in
the first example, this means computiAg- C - B’. Using the explicit structure of’ and B’, these matrix
products are also done nearly optimally. Our aim is to vehbt each step of this process can be efficiently
computed, for Coppersmith’s full matrix multiplicationgalrithm.

Coppersmith begins witH” of dimension*/5 x (, if .)2M/° and B” of dimensiong{, ;) 24/ x

2M/5 where M ~ log N, and obtains a® (5" poly(M)) algorithm for their multiplication. Later, he
symmetrizes the construction to get the algorithm for the&rdd dimensions. In this first construction, the
structured matriced’ and B’ have dimensiong**/> x 2M and2M x 2M/5 respectively. Coppersmith needs
that all24M/5 x 24M/5 sybmatrices ofd’ and2M/> x 2M/5 submatrices of3’ are non-singular. Following
Schonhage, this can be accomplished by pickihgnd B’ to be rectangular Vandermonde matrices. More
precisely, thei, j entry of A’ is («;)""!, whereay, as, . .. are distinct elements of the field’ is defined
analogously. Such matrices have the additional advantageshey can be succinctly described (watH
field elements), and linear algebra with them can be doneeféigjently, as described below.

The matricesA and B have dimensiong x 3M and3M x 2M | respectively. Although these dimensions
are large, the matrices are stored in a sparse representatid they have structure in their nonzeroes. In
more detail,A has onlyO(5™) nonzeroespB has onlyO(4*) nonzeroes, and there is an optimal algorithm
for multiplying 2 x 3 (with 5 nonzeroes) angix 2 matrices (with 4 nonzeroes) that can be recursively applied
to multiply A and B optimally, inO(5™ - poly(M)) operations. (In particular, thz x 3 and3 x 2 matrix
multiplication is an “approximate” algorithm, which can becursively applied to larger matrices using
O(M)-degree univariate polynomials over the field; operationsach polynomials increase the overall
time by only a polyM) factor.) Thesed and B are constructed by multiplying each of tl(lgf‘f/5)24M/ ?

columns inA” and ;) 2*"*/* rows in B” by inverses of Vandermonde matrices and their transpases (t

inverses of appropriatz??/5 x 24M/5 submatrices oft’ and2/5 x 2M/5 submatrices of3’, respectively).
Due to the structure of inverse Vandermonde matrices arid ttia@sposesy x n matrices of this form
can be multiplied withm-vectors inO(n - poly(log n)) operations with explicit algorithms (for references,
cf. [CKY89, GO94).5 Hence the inverse of a submatrix.af can be multiplied with an arbitrary vector in

O(2*M/5 . poly(M)) operations. It follows that constructing and B takes onIyO((4]]Vyf/5)24M/5 - QAM/5

poly(M)) time. Sinces™ ~ (4]{‘44/5)441‘4/5 (within poly(M) factors), this quantity i€ (5 - poly(M1)).

By construction (using an efficient correspondence betwssdtnimns of A” and columns of4’ with
24M/5 nonzeroes), we havd” - B” = A’ - (A - B) - B'. After A andB are constructed, the constant-sized
algorithm for2 x 3 and3 x 2 mentioned above can be applied in the usual recursive wayttpiy the

®In general, operations on Vandermonde matrices, theispases, their inverses, and the transposes of inverse® cedixed
to fast multipoint computations on univariate polynomidier example, multiplying an x n Vandermonde matrix with a vector
is equivalent to evaluating a polynomial (with coefficiegigen by the vector) on the elements that comprise the Vandermonde
matrix, which takes)(n log n) operations. This translates@(n - poly(log n)) time on multitape TMs over small fields.

30

sparsed and B in O(5™ - poly(M)) time; call this matrixZ. Then using the Vandermonde structuredf
andB’, the productZ’ = A’ - Z can be done im(5" - poly()M)) operations, and the final produgt - B’
can be done im(5M - poly(M)) operations. All in all, we have an algorithm for multiplyimgatrices of
dimensions2*/% x (1,)24M/5 and (5) 24M/% x 2M/5 that is explicit and use®(5" - poly())
operations. Call this AGorRITHM 1. Observe AGORITHM 1 also works when the entries df’ and B”
are themselves matrices over the field. (The running timkeswrikly increase in proportion to the sizes of
the underlying matrices, but the bound on the numbeampefrations on the entrieemains the same.)

We can extract more algorithms from the above constructioexXploiting the symmetries of bilinear
algorithms. The underlying x 3 and3 x 2 matrix multiplication algorithm withb products is a bilinear
algorithm, meaning that it can be expressed in the so-cailettar form

5
ZAikBijji +p(z) = Z(Z i Aij) - (Z BijBij) - (Z i Cij) 5)
i i

ijk (=1 ij

whereaq;;, ;;, and-;; are constant-degree polynomialsairover the field, angh(z) is a polynomial with
constant coefficiemd. Such an algorithm can be converted into one with no polyatsvand minimal extra
overhead (as described in Coppersmith’s paper). Typicalgythinks of4;;, and B;,; as entries in the input
matrices, and’;; as indeterminates, so the LHS &) Corresponds to a polynomial who&g; coefficient is
theij entry of the matrix product. Note theansposeof the third matrixC' corresponds to the final matrix
product. The RHS corresponds to the special matrix mutagibn algorithm with only5 products. For
example, Strassen’s famous 7-multiplication algorithm lse expressed in the form df)(as follows:

Z AiBriCii = (Ago + A11)(Boo + Bi1)(Coo + C11) (6)
i,jk=0,1
+(A10 + A11)Boo(Co1 — C11) + Aoo(Bor — Bi1)(Cio + Ch1)
+(A19 — Aoo)(Boo + Bo1)C11 + (Aoo + Ao1)Bi11(Cio — Coo)
+A11(Bio — Boo)(Coo + Cor) + (Ao1 — A11)(Bio + Bi1)Coo.-

The LHS of 6) and @) represents the trace of the product of three matrteB, andC' (where thej entry
of matrix X is Xj;;). Itis well known that every bilinear algorithm naturallygesses multiple algorithms
through this trace representation. Since

tr(ABC) = tr(BCA) = tr(CAB) = tr((ABC)T) = tr(BCA)T) = tr((CAB)T),

if we think of A as a symbolic matrix and considé)(we obtain a new algorithm for computing a matrix
when givenB andC'. Similarly, we get an algorithm for computingiawhen givenA andC', and analogous
statements hold for computing”, B”, andC”. So the aforementioned algorithm for multiplying a sparse
2 x 3 and spars8 x 2 yields several other algorithms. In particular (the caseoofputingB” from A” and
C) we obtain an algorithm for computing 4 entries i & 2 matrix which is the product of & x 2 matrix
(with 5 nonzeroes) and2ax 2 matrix.

Using the identitytr(ABC) = tr((BCA)T) = tr(ATCTBT), we can treatB” as symbolic and let
AT andCT correspond to input matrices i)(Applying the resulting algorithm recursively, a very dimn
preprocessing and postprocessing can be used to mt(l)iiﬁ{%)%M /5 % 24M/5 gnd24M/5 « 9M/5 matrices

using an algorithm that runs i@(5 - poly(M)) time over a small field.

31

In more detail, recall in AGORITHM 1 the matricesA” and B” were decomposed to satisfif - B” =
A’ - A- B - B'. The trace identity tells us

tr(A"B"-C) =tr(AA-BB'-C) =tr(B-B'CA - A) = tr(AT . (A"TcT (BT . BT).

This suggests the following algorithm for multiplyir(g]{‘f/5)24M/5 x 24M/5 gnd24M/5 » 2M/5 matrices.

Given A” andC” of the appropriate dimensions, preproc€ésnto the2™ x 2 matrix D = B’-(C")T- A/,

and useA’ as before to preprocest’ into a spars&@? x 2M matrix A” having(, %5)44]‘4 /5 ~ 5M nonze-
roes. Both steps can be done efficiently using the Vandermetrdcture ofd’ and B’. Next, multiply A

and D7, following the bilinear algorithm for computing & x 2 (with 4 nonzeroes) from a x 2 (with 5
nonzeroes) and 2 x 2, in O(5M poly(M)) time. The multiplication results in & x 2 matrix B with
O(4M) nonzeroes, which can be efficiently transformed to the dutgairix using the inverses of submatri-
ces of B'. (This postprocessing step is analogous to the preprogessB” in ALGORITHM 1.) Notice we
have analogous preprocessing, multiplication, and posgssing steps, albeit the steps are “out of order”
from before. (Before, multiplication of the result matrixby A’ and B’ occurred in postprocessing; now it

occurs in preprocessing, sis now part of the input.) Call this construction.8oRITHM 2.

Next, we may “tensorize” the two algorithms in a standard wiyis consists of dividing the input ma-
trices into blocks, executing &0RITHM 1 on the blocks themselves, and calling@oRrITHM 2 when the
product of two blocks is needed. As both of these algorithraseaplicit and efficient, their “tensorization”

is also explicit and efficient. AGORITHM 1 multiplies2*M/% x (/) 2*M/5 and (, y5) 2M/5 x 2M/5

matrices, and AGORITHM 2 multiplies (, ;) 2*"/? x 24M/5 and2*M/> x 2M/5. Hence their tensorization
multiplies matrices of dimensions

M M M
gAM /5 . 94M/5 g4M/5 oAM/5 d g4M/5 oAM/5 oM/5 oM/
(AM/5 “\\anmys AN\ \unss “()

and the algorithm runs i@ (52 -poly(M)) time. Since(4]f‘f/5)44M/5 ~ 5M | this means we are multiplying

5M % 5M ands5M x 22M/5 in O(52M poly(M)) time. Call this A .GORITHM 3. This is the algorithm obtained
by Coppersmith.

Finally, using the symmetry of BEGORITHM 3 itself, we can obtain an algorithm for multiplying a
5M 5 22M/5 matrix with a22M/5 x 5M matrix in O(5*™ poly(M)) time. ALGORITHM 3 is also a bilinear
algorithm that can be interpreted as an efficient way to caept(ABC) where A is 5 x 5, B is
5M x 22M/5 “andC is 22M/5 x 5M | In the above version of KGORITHM 3, we have treated and B as
input, andC' as symbolic. Treatind® andC as input yields an algorithm for multiplying’ x 22M/5 and
22M/5 5 5M in O(52Mpoly(M)) time. This algorithm also has a preprocessing step, a ptafyzartial
matrices, then a postprocessing step, which involve niigkifions with Vandermonde-style matrices, their
transposes, their inverses, and their inverse transpd®esimportant point is that this transformation does
not fundamentally change the algorithm: just asG®RITHM 2 is a “reordering” of AGORITHM 1, this
transformation of AGORITHM 3 only reorganizes these efficiently computable operatidinfollows the
final algorithm will also be efficiently computable. (Of cses it is possible in principle to describe this
algorithm directly as a preprocessing-multiplicatiorsfpsocessing procedure, but it is quite messy.) Let
N = 5™ We have arrived at the following.

Corollary C.1 For all sufficiently largeN, two 0-1 matrices of dimensiod$ x N and N'' x N can be
multiplied over the integers i®(NN? - poly(log N)) time.

32

	Introduction
	An Overview of the Proofs

	Preliminaries
	A Strengthened Connection Between SAT Algorithms and Lower Bounds
	A Satisfiability Algorithm for ACC Circuits
	Rapid evaluation of an ACC circuit on all of its inputs
	The final algorithm

	ACC Lower Bounds
	An Extension to ``Half-Exponential'' Type Lower Bounds

	Conclusion
	Appendix: Proof of Lemma 4.1
	Appendix: Transforming to SYM+ Without Negations
	Appendix: Coppersmith's algorithm

