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Abstract

The classACC consists of circuit families with constant depth over unbounded fan-in AND, OR,
NOT, and MODm gates, wherem > 1 is an arbitrary constant. We prove:

• NEXP, the class of languages accepted in nondeterministic exponential time, does not have non-
uniformACC circuits of polynomial size. The size lower bound can be slightly strengthened to
quasi-polynomials and other less natural functions.

• ENP, the class of languages recognized in2O(n) time with anNP oracle, doesn’t have non-uniform
ACC circuits of2n

o(1)

size. The lower bound gives an exponential size-depth tradeoff: for everyd,
m there is aδ > 0 such thatENP doesn’t have depth-d ACC circuits of size2n

δ

with MODm gates.

Previously, it was not known whetherEXPNP had depth-3 polynomial size circuits made out of only
MOD6 gates. The high-level strategy is to design faster algorithms for the circuit satisfiability problem
overACC circuits, then prove that such algorithms entail the above lower bounds. The algorithms com-
bine known properties ofACC with fast rectangular matrix multiplication and dynamic programming,
while the second step requires a strengthening of the author’s prior work.

∗This work was supported by the Josef Raviv Memorial Fellowship at IBM Almaden Research Center, and NSF Grant CCF
1212372 at Stanford.
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1 Introduction

Non-uniform computation allows the sizes of programs to grow with the sizes of inputs. A non-uniform
computation can be naturally represented as an infinite family of Boolean circuits, one for each possible
input length. A long-term goal of complexity theory is to understand how non-uniform computations com-
pare with the usual uniform models, which have fixed-size programs. Non-uniform circuit families can
recognizearbitrary (even undecidable) languages, by having a large enough circuit for each input length.
Non-uniformity becomes much more interesting when we restrict thesizesof computations: are there inter-
esting uniform computations that cannot be simulated by small non-uniform circuit families? For instance,
could everyexponential-timeuniform computation be simulated using circuit families ofonly polynomial
size? Amazingly, this question is still open. For another example,P 6= NP follows if one could provide an
NP problem that cannot be solved by any circuit family where thesize of thenth circuit is at most polyno-
mial in n. Lower bounds against non-uniform computation establish impossibility results for computation
in the physical world: it could be thatP 6= NP, yetNP-complete problems can still be efficiently solved
using “bloated” programs with sufficiently many lines of code for large inputs. Non-uniform circuit size
lower bounds forNP would rule out this possibility. (However, the best known circuit size lower bound for
anyNP problem is only5n − o(n) [LR01, IM02].)

In the early 1980’s, researchers began to carefully study the power of non-uniformlow depthcircuits.
Intuitively, such circuits correspond to extremely fast parallel computations. The initial hope was that if
some functions inNP were proved to require large, restricted circuit families,then by gradually lifting the
restrictions over time, superpolynomial size unrestricted lower bounds forNP could be attained, proving
P 6= NP. Furst, Saxe, and Sipser [FSS81] and independently Ajtai [Ajt83] showed that functions such as
the parity ofn bits cannot be computed by polynomial sizeAC0 circuits, i.e., polynomial size circuit families
of constant depth over the usual basis of AND, OR, and NOT gates, where each AND and OR may have
arbitrarily many inputs. Yao [Yao85] improved the lower bounds to exponential size, and Håstad[Hås86]
proved essentially optimalAC0 lower bounds for parity. Around the same time, Razborov [Raz85] proved
superpolynomial lower bounds for solving clique withmonotonecircuits (i.e., general circuits without NOT
gates), and the bound was improved to exponential size by Alon and Boppana [AB87]. However, it was
later shown [Raz89] that the monotone techniques probably would not extend to general circuits.

Encouraged by the progress onAC0, attention turned to lower bounds for what seemed to be minorgener-
alizations. The most natural generalization was to grantAC0 the parity function for free. Razborov [Raz87]
proved an exponential lower bound for computing the majority of n bits with constant-depth circuits made up
of AND, OR, NOT, and MOD2 gates. (A MODm gate outputs1 iff m divides the sum of its inputs.) Then
Smolensky [Smo87] proved exponential lower bounds for computing MODq with constant-depth circuits
made up of AND, OR, NOT, and MODp gates, for distinct primesp andq. Barrington [Bar89] suggested
the next step would be to prove lower bounds for the classACC, which consists of constant-depth circuit
families over the basis AND, OR, NOT, and MODm for arbitrary constantm > 1.1 It is here that progress
on strong lower bounds began to falter (although there has been progress on further restricted cases, cf. the
Preliminaries). Although it was conjectured that the majority of n bits cannot have polynomialACC circuits,
strongACC lower bounds remained elusive.

After some years of failing to prove a superpolynomial lowerbound, the primary questions were weak-
ened. Rather than trying to find simple functions that cannotbe computed with weak circuits, perhaps
we could rule out weak circuits for complicated functions. Could one prove that nondeterministicexpo-

1The class is also calledACC0 in the literature. However, asACCi is hardly studied at all, for anyi > 0, at the present time it
makes sense to drop the superscript.
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nential time (NEXP) doesn’t have polynomial size circuits? A series of papers starting with Nisan and
Wigderson [NW94, BFNW93, KvM99, IKW02] showed that even this sort of lower bound would imply
derandomization results: in the case ofNEXP lower bounds, it would imply that Merlin-Arthur games can
be non-trivially simulated with nondeterministic algorithms. This indicated that proving good circuit lower
bounds forNEXP would already require significantly new ideas.

In this paper, we address two frontier questions concerningnon-uniform circuit complexity:

1. Does nondeterministic2O(n) time have non-uniform polynomial sizeACC circuits?
(Is NTIME[2O(n)] in non-uniformACC?)

2. Does exponential time with anNP oracle have non-uniform polynomial size circuits?
(Is EXPNP ⊆ P/poly?)

Over the years, these questions have turned into notorious and somewhat embarrassing open problems,
because it seems so obvious that the answers should be no. It was open ifEXPNP could be recognized with
depth-3 polynomial size circuits made out of only MOD6 gates.2 We make headway on these frontiers,
giving a strongno answer to the first question.

Theorem 1.1 NTIME[2n] does not have non-uniformACC circuits of polynomial size.

Stronger size lower bounds hold (e.g. quasi-polynomial size) but the results are not very clean; see
Section5.1 for details. ForEXPNP, we can prove exponential lower bounds.

Theorem 1.2 (Exponential Size-Depth Tradeoff)For everyd andm, there is aδ > 0 and a language in
ENP that fails to have non-uniformACC circuits of depthd and size2n

δ
with MODm gates.

Recall that the smallest complexity class for which we know exponential-size (unrestricted) circuit lower
bounds isEXPNP

NP

, the third level of the exponential hierarchy [MVW99].

Extending the approach of this paper to settle the second frontier question may be difficult, but this
prospect does not look as implausible as it did before. If polynomial unrestricted circuits could be simulated
by subexponentialACC circuits, or if one could improve just a little on the runningtime of algorithms for
the circuit satisfiability problem, the second question would be settled.

1.1 An Overview of the Proofs

Let us sketch how these new lower bounds are proved, giving a roadmap for the rest of the paper. In
recent work [Wil10], the author suggested a research program for proving non-uniform circuit lower bounds
for NEXP. It was shown that for many circuit classesC, sufficiently faster satisfiability algorithms forC-
circuits would entail non-uniform lower bounds forC-circuits. The objective of this paper is to carry out the
proposed research program in the case ofACC circuits.

The proof of the lower bound forENP (Theorem1.2) is a combination of complexity-theoretic ideas
(time hierarchies, compression by circuits, the local checkability of computation) and algorithmic ideas
(fast matrix multiplication, dynamic programming, table lookup).

1. First, we show that satisfiability algorithms for subexponential sizen-inputACC circuits with running
timeO(2n/nk) imply exponential sizeACC lower bounds forENP (Theorem3.2), wherek is sufficiently

2Note that slightly larger classes such asMAEXP andNEXPNP are known to not have polynomial size circuits; see the Prelim-
inaries.
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large. (The model of computation for the satisfiability algorithm is flexible; we may assume the multitape
Turing machine or a random access machine. See the Preliminaries.) This step considerably strengthens
earlier work, which could only show that ano(2n/3) time algorithm forACC circuit satisfiability implies
lower bounds [Wil10]. The idea is to prove that, if there is a faster algorithm forACC Circuit SAT, and
there are subexponential (2n

o(1)
) sizeACC circuits forENP, then everyL ∈ NTIME[2n] can be accepted by

a nondeterministic algorithm inO(2nn10/nk) time. (Here,10 is a substitute for a small universal constant.)
Whenk > 10 this contradicts the nondeterministic time hierarchy theorem [SFM78, Zak83], so one of the
assumptions must be false.

Two known facts are applied in the proof. First, there is a polynomial-time reduction from anyL ∈
NTIME[2n] to theNEXP-complete problem SUCCINCT 3SAT such that every instancex of lengthn (for
sufficiently largen) is reduced to a (unrestricted, notACC) circuitCx of sizeO(n5) with at mostn+5 log n
inputs (Fact3.1). That is, the string obtained by evaluatingCx on itsO(2nn5) possible assignments (in
lex order) encodes a 3CNF formulaFCx that is satisfiable iffx ∈ L. Informally, this says that languages
L ∈ NTIME[2n] have “succinct” reductions to exponentially long 3SAT instances.

Second, ifENP is in subexponential-sizeACC, then (given anx) there is some satisfying assignment to
the formula encoded byCx that can be described by anACC circuit W of subexponential size (Fact3.2).
That is, the string obtained by evaluatingW on all possible assignments encodes a satisfying assignment
to the exponentially longFCx . Informally, this means that, ifENP has subexponentialACC circuits, then
every “succinct” satisfiable 3SAT instance has at least one “succinct” satisfying assignment: compressible
satisfiable formulas have compressible satisfying assignments.

We can try to combine these two facts, as follows. IfCx were anACC circuit, then anyL ∈ NTIME[2n]
could be accepted inO(2nn5/nk) nondeterministic time, by guessing a subexponentialACC circuit W and
constructing anACC circuit satisfiability instanceD built of Cx andW , whereD is satisfiable if and only
if W does not encode a satisfying assignment toFCx (as shown in the author’s prior paper [Wil10]). The
circuit D has at mostn + 5 log n inputs and2n

o(1)
size, so the assumedACC satisfiability algorithm can

handleD in O(2nn5/nk) time.

The above argument doesn’t quite work, because we do not knowhow to produce aCx that is anACC
circuit (indeed, it may not be possible). AnACC SAT algorithm will not work onD, becauseD contains a
copy of an unrestricted circuitCx. However, assumingP has subexponentialACC circuits, we show how to
guess and verifyan equivalentACC circuitC ′

x in nondeterministicO(2nn10/nk) time using a slightly faster
ACC SAT algorithm (Lemma3.1). This makes it possible to proveACC lower bounds even with weakACC
satisfiability algorithms. Furthermore, this part of the proof does notuse specific properties ofACC, so it
may be useful for proving stronger lower bounds in the future.

2. Next, we show how satisfiability of subexponentialACC circuits of depthd andn inputs can be
determined in2n−Ω(nδ) time, for aδ > 0 that depends ond (Theorem4.1). Given any such circuitC,
replace it withC ′ which is an OR of2n

δ
copies ofC, where the firstnδ inputs of each copy are substituted

with a variable assignment. ThisACC circuit C ′ hasn − nδ inputs,2O(nδ) size, andC is satisfiable if and
only if C ′ is. Applying a powerful result of Yao, Beigel-Tarui, and Allender-Gore (Lemma4.1), C ′ can be

replaced by an equivalent depth-2 circuitC ′′ of 2n
δ2O(d)

size, which consists of an efficiently computable
symmetric function at the output gate and AND gates below it.Settingδ ≪ 1/2O(d), and exploiting the
structure of the depth-2 circuit,C ′′ can be evaluated on all of its possible assignments in2n−nδ

poly(n) time
(Lemma4.2). This concludes the sketch of theENP lower bound.

The only use of the full assumption “ENP hasACC circuits” is in Fact3.2. The lower bound for
NEXP (Theorem1.1) applies the result (which follows from work of Impagliazzo, Kabanets, and Wigder-
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son [IKW02]) that if NEXP has polynomial size (unrestricted) circuits then satisfiable instances of SUC-
CINCT 3SAT already have polynomial size (unrestricted) circuitsW encoding satisfying assignments (The-
orem5.1). But if P hasACC circuits, it is easy to see that these unrestricted circuitsmust have equivalent
ACC circuits as well (Lemma5.1). This helps extend theENP lower bound toNEXP. However, the resulting
size lower bound is not exponential: fromS(n)-size circuits forNEXP one only obtainsS(S(S(n)c)c)c-size
ACC circuits encoding satisfying assignments. This allows forsome “half-exponential” type improvements
in the size lower bounds againstNEXP.

Perhaps the most interesting aspect of the proofs is that only the satisfiability algorithm forACC circuits
relies on specific properties ofACC. Improved exponential-time algorithms for satisfiability are the only
barrier to further progress on circuit lower bounds forNEXP. In general, this paper weakens the algorithmic
assumptions necessary to prove lower bounds, and strengthens the lower bounds obtained. LetC be a class
of circuit families that is closed under composition (the composition of two circuit families fromC is also a
family in C) and containsAC0. PossibleC include constant-depth threshold circuits, Boolean formulas, and
unrestricted Boolean circuits. The arguments of Section3 and Section5 imply the following metatheorem.

Theorem 1.3 There is ak > 0 such that, if satisfiability ofC-circuits withn variables andnc size can be
solved inO(2n/nk) time for everyc, thenNTIME[2n] doesn’t have non-uniform polysizeC-circuits.

2 Preliminaries

We presume the reader has background in circuit complexity and complexity theory in general. The
textbook of Arora and Barak [AB09] covers all the necessary material; in particular, Chapter14 gives an
excellent summary ofACC and the frontiers in circuit complexity.

On the machine model. An important point about this paper is that the choice of uniform machine model
is not crucial to the arguments. We show that if large classeshave small non-uniformACC circuits, then
NTIME[2n] ⊆ NTIME[o(2n)] (in fact, NTIME[2n] ⊆ NTIME[o(2n/nk)] for sufficiently largek), which
is a contradiction in all computational models we are aware of. Moreover, Gurevich and Shelah proved
that the nondeterministic machine models are tightly related in their time complexities. For example, let
NTIMERTM [t(n)] be the languages recognized by nondeterministict(n) time random-access Turing ma-
chines, and letNTIMETM [t(n)] be the class for multitape Turing machines.

Theorem 2.1 (Gurevich and Shelah [GS89])
⋃

c>0NTIMERTM [n logc n] =
⋃

c>0NTIMETM [n logc n].

As a consequence, even if we showedNTIMETM [2n] ⊆ NTIMERTM [2n/nk] for sufficiently largek,
we would still obtain the desired contradiction. (Note thatsuch a result isnot known for the deterministic
setting.) A random access Turing machine can also simulate astandard random access machine with only
constant factor overhead [PR81]. Hence in our proof by contradiction, we may assume that thesource
algorithm we’re simulating is only a multitape TM, while thetarget algorithm has all the power we need to
perform typical computations from the literature.

Notation. Inside of an algorithm description, the integern refers to the length of the input to the algorithm.
For a functionf : N → N, we use poly(f(n)) to denote a growth rate of the formcf(n)c for a constantc.

The size of a circuit refers to the number of wires in it. However, since attention shall be restricted
to circuits with at least polynomially many gates, the distinction between the number of wires and gates
does not matter. In this paper, anunrestricted circuithas gate types AND/OR/NOT, unrestricted depth, and
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each gate has fan-in two. (That is, an unrestricted circuit is the generic variety used in the definition of
P/poly.) All circuit size functionsS considered in this paper are assumed to be monotone nondecreasing,
i.e.,S(n+ 1) ≥ S(n) for all n.

We say that acircuit classC is a collection of circuit families that (a)containsAC0 (for every circuit
family in AC0, there is an equivalent circuit family inC) and (b)is closed under composition: if {Cn} and
{Dn} are families inC, then for everyc, the circuit family consisting of circuits which taken bits of input,
feed them tonc + c copies of circuits fromCn, and feed the outputs to the inputs ofDnc+c, is also a circuit
family in C. Essentially all classes studied extensively in the literature (AC0, ACC, TC0, NC1, NC2, P/poly,
etc.) are circuit classes in this sense. For classes that allow for superpolynomial size circuits, the polynomial
“nc + c” in the above may be relaxed appropriately.

For a complexity classC, the class i.o.-C consists of languagesL ⊆ Σ⋆ such that there is a language
L′ ∈ C whereL ∩ Σn = L′ ∩ Σn holds for infinitely manyn.

When the expression “O(1)” appears inside of the time bound for a complexity class, this is short-
hand for the union of all classes where theO(1) is substituted by a fixed constant. For example, the class
TIME[2n

O(1)
] is shorthand for

⋃

c≥0 TIME[2n
c
].

Other Prior Work. Kannan [Kan82] showed in 1982 that for any superpolynomial constructiblefunction
S : N → N, the classNTIME[S(n)]NP does not have polynomial size circuits. Another somewhat small
class known to not have unrestricted polynomial size circuits isMAEXP [BFT98]. Later it was shown that
theMAEXP lower bound can be improved tohalf-exponentialsize functionsf which satisfyf(f(n)) ≥
2n [MVW99]. Kabanets and Impagliazzo [KI04] proved thatNEXPRP eitherdoesn’t have polynomial size
Boolean circuits (over AND, OR, NOT),or it doesn’t have polynomial size arithmetic circuits (over the
integers, with addition and multiplication gates). Note thatNEXPRP ⊆ MAEXP.

A line of work stemming from Toda’s Theorem [Tod91] has studied ways of representing low-depthACC

circuits by certain depth-two circuits which will play a critical role in this paper. Define aSYM+ circuit to
be a depth-two circuit which computes some symmetric function at the output gate, and computes ANDs
of input variables on the second layer.3 Extending work onAC0 by Allender [All89], Yao [Yao90] showed
that everyACC circuit of s size can be represented by a probabilisticSYM+ circuit of sO(logc s) size, where
c depends on the depth, and the ANDs have poly(log s) fan-in. Beigel and Tarui [BT94] showed how to
remove the probabilistic condition. Allender and Gore [AG94] showed that every subexponentialuniform
ACC circuit family can be simulated by subexponentialuniformSYM+ circuits. This was applied to show
that the Permanent does not haveuniform ACC circuits of subexponential size. Later, Allender [All99]
improved the Permanent lower bound to polynomial size uniform TC0 circuits. However, these proofs
require uniformity, and the difference between uniformityand non-uniformity may well be vast (e.g., it is
clear thatP 6= NEXP, but open whetherNEXP ⊆ P/poly). Greenet al. [GKRST95] showed that the
symmetric function can be assumed to be the specific functionwhich returns themiddle bitof the sum of its
inputs. This representation may also be used in the lower bounds of this paper.

There has also been substantial work on representingACC in other interesting ways [BT88, AAD00,
Han06, KH09] as well as many lower bounds in restricted cases [BST90, Thé94, YP94, KP97, BS95, Cau96,
Gro98, GT00, CGPT06, CW09]. Significant work has gone into understanding theconstant degree hypoth-
esis[BST90] that a certain type of low-depthACC circuit requires exponential size to compute the AND
function. The hypothesis is still open.

3Some have definedSYM+ circuits differently, allowing the ANDs to take negated variables as input. In AppendixB we sketch
why there is no essential difference between the two definitions (for our purposes, at least).
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All prior works on non-uniformACC lower bounds attack the problem in a “bottom-up” way. (The
exceptions are the uniform results mentioned above [AG94, All99].) Lower bounds have been proved for
highly restricted circuits and these restrictions have been very gradually relaxed over time. In this paper,
the strategy is “top-down”: the goal is to find the smallest complexity classes for which it is still possible to
prove superpolynomialACC lower bounds. This is in line with the overall goal of eventually proving large
circuit lower bounds forNP.

As mentioned before, this paper builds on the author’s priorwork which showed that mild improvements
over exhaustive search can sometimes imply lower bounds. Let us briefly review the prior state-of-the-art
for Circuit SAT algorithms. It is known that CNF satisfiability can be solved in2n−Ω(n/ ln(m/n))poly(m)
time, wherem is the number of clauses andn is the number of variables [Sch05, CIP06, DH08]. Recent
work of Calabro-Impagliazzo-Paturi [CIP09] and Impagliazzo-Matthews-Paturi [IMP12] has culminated in
a randomized algorithm for depth-d AC0 circuit satisfiability that runs in2n−Ω(n/(log s)d−1) time on circuits
with s gates. Recently, Santhanam [San10] has applied ideas inspired by formula size lower bounds to
show that for a fixed constantk, satisfiability of formulas over AND, OR, and NOT can be determined in
O(2n−n/ck) time onn-variable formulas of sizecn. Very recently, Seto and Tamaki [ST12] have extended
Santhanam’s results to formulas over arbitrary two-bit Boolean-valued functions. Unfortunately, these upper
bounds are not yet strong enough to prove new circuit lower bounds forNEXP.

How do we avoid the barriers? There are several well-known formal barriers to proving lower bounds.
Let us say a little about their relation to this work. Intuitively, we circumvent the natural proofs bar-
rier [RR97] because of the use of diagonalization. More precisely, we rely heavily on strong completeness
properties of a specificNEXP language, namely SUCCINCT 3SAT, to prove that it cannot have smallACC

circuits. So it looks unlikely that one may extract anyP-natural orNP-natural properties from the proof.
(Furthermore, there is little evidence thatACC contains pseudorandom functions, so natural proofs may not
be a barrier forACC after all.) It is hard to formally rule out that a proof cannotpossibly be made natural,
without showing either an algorithmic lower bound (there isno efficient algorithm with certain properties)
or a circuit upper bound (the circuit class under discussionhas pseudorandom functions). Nevertheless,
statements like “Satisfiability ofC circuits is inO(2n/n10) time” do appear to be far weaker than statements
like “There are no strong pseudorandom functions implementable withC circuits”.

More conclusively, the approach of this work definitely avoids relativization [BGS75] and algebriza-

tion [AW09] because there are oraclesA relative to whichNEXPA ⊂ ACCA, and evenNEXPÃ ⊂ ACCA

(Scott Aaronson, personal communication). Here the lower bounds rely on a more efficientACC SAT algo-
rithm which uses non-relativizing properties ofACC circuits. In general, the approach of using slightly-faster
SAT algorithms to prove lower bounds appears fruitful for circumventing oracle-based barriers, because all
known improved SAT algorithms break down when oracles (or algebraic extensions thereof) are added to the
instance. That is, significant improvements over exhaustive search necessarily exploit structure in instances
that black-box methods cannot see.

3 A Strengthened Connection Between SAT Algorithms and Lower Bounds

In this section, we prove that if one can achieve a very minor improvement over exhaustive search in
satisfyingACC circuits, then one can prove lower bounds forACC. The required improvement is so minor
that we are able to achieve it, in the next section. However, let us stress upfront that all the results in this
section hold equally well for other circuit classes as well:we only require basic properties ofACC that
practically all robust circuit classes satisfy.
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Define the ACC CIRCUIT SAT problem to be:given anACC circuit C, is there an assignment of its
inputs that makesC evaluate to1? In recent prior work [Wil10], the author proved a relation between
algorithms for ACC CIRCUIT SAT and lower bounds forACC circuits:4

Theorem 3.1 ([Wil10]) Let s(n) = ω(nk) for everyk. If ACC CIRCUIT SAT instances withn variables
and nk size can be solved inO(2n/3/s(n)) time for everyk, thenENP does not have non-uniformACC
circuits of polynomial size.

We shall sharpen this theorem considerably. Throughout thefollowing, let S : N → N andd : N → N

be monotone nondecreasing functions such thatS(n) ≥ n andd(n) ≥ 1. Let C be a circuit class as defined
in the Preliminaries. (C can beACC, TC0, NC1, P/poly, etc.) Define theC-CIRCUIT SAT problem to be:
given a circuitC from classC, is there an assignment of its inputs that makesC evaluate to1?

Theorem 3.2 LetS(n) ≤ 2n/4. There is ac > 0 and b > 0 such that, ifC-CIRCUIT SAT instances with
at mostn + c log n variables, depth at most2 · d(3n) + b, andO(n S(2n) + S(3n)) size can be solved in
O(2n/nc) time, thenENP does not have non-uniformC circuits of depthd(n) andS(n) size.

The constantk depends on the model of computation in which the SAT algorithm is implemented, but for
all typical models,c is not large (less than10). For us, the important corollary is this: ifACC satisfiability
has a slightly faster algorithm on circuits that are mildly larger thanS(n), thenENP does not haveACC
circuits of S(n) size. In what follows, we prove Theorem3.2 only for ACC circuits, but the proof also
works for any other circuit class. (The reader can verify that the only two properties ofACC used are that
the class containsAC0, and the class is closed under composition of circuit families.)

To understand the difficulty behind proving Theorem3.2, let us recall the proof of Theorem3.1 to see
why it needed such a strong assumption. The generic proof idea in [Wil10] for results such as Theorem3.1
is to derive a contradiction from assuming small circuits for ENP and a faster algorithm for CIRCUIT SAT.
In particular, it is shown that under the two assumptions, every languageL ∈ NTIME[2n] can be recognized
in NTIME[o(2n)], which is false by the nondeterministic time hierarchy theorem [SFM78, Zak83]. The
contradiction is derived from stitching together several facts about circuits and satisfiability.

Define SUCCINCT 3SAT as the problem:given a circuitC onn inputs, letFC be the2n-bit instance of
3-SAT obtained by evaluatingC on all of its possible inputs in lexicographical order. IsFC satisfiable?

That is, given acompressed encodingof a 3-CNF formula, the task is to determine if the underlying
decompressed formula is satisfiable. For natural reasons, call FC the decompressionof C, and callC the
compressionof FC . The SUCCINCT 3SAT problem is a canonicalNEXP-complete problem [PY86].

Fact 3.1 There is a constantc > 0 such that for everyL ∈ NTIME[2n], there is a reduction fromL to
SUCCINCT 3SAT which on inputx of lengthn runs inpoly(n) time and produces a circuitCx with at most
n + c log n inputs andc · nc + c size, such thatx ∈ L if and only if the decompressed formulaFCx of
2n · poly(n) size is satisfiable.

Fact 3.1 follows from several prior works concerned with the complexity of the Cook-Levin theo-
rem [Tou01, FLvMV05]:

Theorem 3.3 (Tourlakis [Tou01], Fortnow et al. [FLvMV05 ]) There is ac > 0 such that for allL ∈
NTIME[n], L reduces to 3SAT inc · n(log n)c time. Moreover there is an algorithmAL (with random
access to its input) that, given an instance ofL with lengthn and an integeri ∈ [cn(log n)c + c] in binary,
AL outputs theith clause of the resulting 3SAT formula inc(log n)c + c time.

4In fact a more general result for any circuit class was proved, which implies Theorem3.1.
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In fact, the proofs in the above references build on even earlier work of Schnorr, Cook, Gurevich-Shelah,
and Robson [Sch78, Coo88, GS89, Rob91]. In a nutshell, all of these proofs exploit thelocality of computa-
tion: every nondeterministic computation running in linear time can be represented with a nondeterministic
circuit of sizeO(n·poly(log n)) which has a highly regular and efficiently computable structure. This circuit
can be easily modeled as a 3-CNF formula using the Tseitin transformation [Tse68] that assigns a variable
to each circuit wire and uses 3-CNF clauses to model the input-output relationships for each gate.

The value ofc in Theorem3.3 depends on the underlying computational model; typically one can take
c to be at most4. A standard padding argument (substituting2n in place ofn) yields Fact3.1. In more
detail, givenL ∈ NTIME[2n], we apply Theorem3.3 to the languageL′ = {x012|x| | x ∈ L}, which is in
NTIME[n]. On an inputx, this generates an equivalent 3SAT instance of lengthO(2|x||x|c). As it is easy
to simulate random accesses to an input of the formx012

|x|
with a uniform poly(|x|) size circuit, one can

simulate theO((log n)c) time algorithm of Theorem3.3onL′, with a uniform poly(|x|c) size circuit.

Using Fact3.1, one can then prove that if the lower bound forENP fails to hold, then every succinctly
compressible satisfiable formula that is output by the SUCCINCT 3SAT reduction has some succinctly com-
pressiblesatisfying assignment.

Fact 3.2 If ENP hasACC circuits of sizeS(n), then there is a fixed constantc such that for every language
L ∈ NTIME[2n] and everyx ∈ L of length n, there is anACC circuit Wx of size at mostS(3n) with
k ≤ n + c log n inputs such that the variable assignmentzi = W (i) for all i = 1, . . . , 2k is a satisfying
assignment for the formulaFCx , whereCx is the circuit obtained by the reduction in Fact3.1.

Proof of Fact 3.2. Consider theENP machine:

N(x, i): Compute theSUCCINCT 3SAT reduction fromx to Cx in polynomial time. Decom-
pressCx, obtaining a formulaF ofO(2|x||x|c) size. Letk be the number of inputs toCx. Binary
search for the lexicographically smallest satisfying assignmentA toF , by repeatedly querying:
given(F,A) where|A| ≤ 2k, is there an assignmentA′ ≤ A that satisfiesF? Then output the
ith bit ofA.

Note the queries can be answered inNP, andN needsO(2k) queries to the oracle. By assumption,N has
ACC circuits of sizeS(n). It follows that for everyx ∈ L there is some satisfying assignment toF which
is encoded by a circuit of sizeS(|〈x, i〉|) ≤ S(3|x|), where〈·, ·〉 is a polynomial-time computable pairing
function. �

With these two facts, we may try to recognize anyL ∈ NTIME[2n] with a o(2n) nondeterministic
algorithm (a contradiction), as follows. Given a stringx of lengthn, compute the SUCCINCT 3SAT circuit
Cx in polynomial time and nondeterministicallyguessaS(3n)-size circuitW . Now the goal is to check that
W succinctly encodes a satisfying assignment for the underlying formulaFCx . To verify this condition, the
algorithm constructs a CIRCUIT SAT instanceD. The circuitD hasn + c log n inputs fed toO(n) copies
of Cx, so that wheni is input toD, the copies altogether print theith clause of the 3CNF formulaFCx .
These copies output three variable indices of length at mostn + c log n, along with sign bits (whether or
not the variables are negated in the clause). ThenD feeds each index to a copy ofW , which prints a bit.
FinallyD compares the sign bits with the three bits printed by the copies ofW , and outputs0 iff the variable
assignment encoded byW satisfies theith clause. ObserveD has poly(n) + O(S(3n)) size. Running a
fast enough CIRCUIT SAT algorithm lets us determine the satisfiability ofD in o(2n) time. Finally, this
algorithm forL acceptsx iff D is unsatisfiable. To see that this algorithm is correct, observe there is a
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size-S(3n) circuit W such thatD is an unsatisfiable circuit, if and only if there is such aW encoding a
satisfying assignment forFCx , if and only ifx ∈ L.

The above argument cannot be carried out directly to proveACC circuit lower bounds from ACC CIR-
CUIT SAT algorithms, because of Fact3.1. Given an instancex of L, the resulting circuitCx produced in
the reduction fromL to SUCCINCT 3SAT can be constructed in polynomial time, however it lookshard
(perhaps impossible) to show that thisCx can be assumed to be anACC circuit. AsCx is a component of the
circuit D, it follows thatD itself would not be anACC circuit, so an ACC CIRCUIT SAT algorithm would
not seem to be useful for determining the satisfiability ofD.

In the proof of Theorem3.1 in the author’s prior work [Wil10], this problem was fixed by settling for a
weaker reduction fromL to SUCCINCT SAT, which generates anAC0 circuit C ′

x with 3n+O(log n) inputs
rather thann+ O(log n). Unfortunately this constant factor makes a huge difference: to quickly determine
satisfiability of the resulting circuitD′ in o(2n) time, a2n/3/nω(1) time algorithm for ACC CIRCUIT SAT

is needed, instead of a2n/nω(1) algorithm. Algorithms of the former type are not known even for 3SAT;
algorithms of the latter type are much more plentiful.

While it is unlikely that theseCx circuits can be implemented inACC, note that we alreadyassume
that ACC is powerful in some sense: in a proof by contradiction, we mayassume many functions have
smallACC circuits! Since the function computed byCx is computable in polynomial time, then even if we
assume that onlyP hasACC circuits, there stillexistsa circuitC ′

x which isACC and equivalent toCx, but
it is from a non-uniform family, and therefore may be arbitrarily difficult to construct. However, we can
use nondeterminism in the algorithm recognizingL in NTIME[o(2n)], so at the very least we canguessthis
elusiveC ′

x. We also have a good algorithm for ACC CIRCUIT SAT at our disposal. By guessing two more
ACC circuits to help us, it turns out that we can always generate acorrectACC circuit C ′

x that is equivalent
toCx in o(2n) time. We arrive at our main lemma:

Lemma 3.1 There is a fixedc > 0 and b > 0 with the following property. AssumeP hasACC circuits of
depthd(n) and size at mostS(n) ≤ 2n/4. Further assume there is somek > 2c such thatACC CIRCUIT

SAT on circuits withn + k log n inputs, depth2 · d(3n) + b, and at mostO(S(3n) + S(2n)n) size can be
solved inO(2n/nk) time.

Then for everyL ∈ NTIME[2n], there is a nondeterministic algorithmA and constante such that:

• A runs inO(2n/nk + S(3n) · ne) time,

• for everyx of lengthn, A(x) either prints reject or it prints an ACC circuit C ′
x with n + c log n

inputs, depthd(3n), andS(n + c log n) size, such thatx ∈ L if and only ifC ′
x is the compression of

a satisfiable 3-CNF formula of2n · ne size, and

• there is always at least one computation path ofA(x) that prints a valid circuitC ′
x.

That is, given an instancex, the algorithmA nondeterministically generates an equivalent SUCCINCT

3SAT instanceC ′
x which is anACC circuit. Let us first give a high-level overview of the proof.Informally,

A will guess and verifyC ′
x in three stages.

1. A guesses anACC circuit D of depthd(2n) andO(S(2n) log n) size which encodes all the gate and
wire information of the circuitCx which hascnc + c size. Given a gate indexj = 1, . . . , cnc + c,
D produces the gate type ofj, as well as the indices of gates whose outputs are the inputs for gatej.
The correctness ofD can be verified inO(ncS(2n) · poly(log S(2n))) time by simply producing the
entire circuit ofcnc + c size that is described byD, and checking that it is identical toCx.
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2. Next,A guesses anACC circuit E of depthd(3n) andO(S(3n)) size which encodes the outputs of
all gates ofCx on all inputsi: given inputi and a gate indexj = 1, . . . , cnc + c, E produces the
output of gatej in Cx evaluated oni. A verifies thatE is correct, using the fact thatD is correct.
By constructing an appropriate ACC CIRCUIT SAT instance that checks forall inputs andall gates
that the claimed inputs to that gate are consistent with the output of the gate, this verification takes
O(2n/nk) time (fork chosen to be greater than2c).

3. Then using the fact thatE is correct, it is easy to verify that a guessedACC circuit C ′
x is correct via

a call to ACC CIRCUIT SAT that runs inO(2n/nk) time. A only needs to check if there is ani such
thatC ′

x(i) 6= E(i, j⋆), wherej⋆ is the index of the output gate ofCx. (Alternatively, we could just
print the circuitE(·, j⋆) as a valid ACC circuit that is equivalent toCx(·).) If E is correct and no such
i exists, thenC ′

x is also correct.

Proof of Lemma 3.1. We describeA in detail. On inputx of lengthn, A guesses anACC circuitC ′
x of size

S(n+ c log n), and constructs the SUCCINCT 3SAT circuitCx with n+ c log n inputs and at mostcnc + c
size (of Fact3.1) in polynomial time, for a fixedc that is independent ofL. By Fact3.1, x ∈ L if and only
if Cx is the compression of a satisfiable formulaFCx of O(2nnc) length. We must verify thatC ′

x andCx

compute exactly the same function, using only the algorithmfor ACC CIRCUIT SAT.

Without loss of generality, the unrestricted circuitCx above has gate types AND, OR, NOT, and INPUT,
where every AND and OR has fan-in two. By definition, an INPUT gate has no inputs, and the output value
of an INPUT gate is the appropriate input bit itself. The gates are indexed by the numbers1, . . . , cnc + c,
where the firstn+ c log n indices correspond to then+ c log n INPUT gates, and the(cnc+ c)th gate is the
output gate.

Since the mapx 7→ Cx is polynomial time computable, the following functionf is polynomial-time
computable:

Givenx, and a gate indexj = 1, . . . , cnc + c, f(x, j) outputs the gate type (AND, OR, NOT,
INPUT) of thejth gate in the circuitCx. Furthermore, if the gate type is NOT, thenf outputs
the gate indexj1 in Cx whose output is the input toj; if the gate type is an AND or OR, thenf
outputs the two gate indicesj1 andj2 in Cx whose outputs are the two inputs ofj.

Consider the decision problemDf :

Givenx, j, andi = 1, . . . , 2c log n+O(1), decide if theith bit off(x, j) is 1.

The problemDf is solvable in polynomial time and hence hasO(S(n + c log n + O(log log n)))-size,
d(n+ c log n+O(log log n))-depthACC circuits, by assumption.

Let D(x, j) be anACC circuit implementing the functionality off . Note we may assume the size ofD
is

O(S(n+O(log n)) log n) ≤ O(S(2n) log S(n)), (1)

by simply taking2c log n + O(1) copies of theS(n + O(log n))-size circuit solving the decision problem
Df . (By convention, let us assume that whenD is printing the gate information for an INPUT gate, it prints
all-zeroes strings in place ofj1 andj2, and whenD is printing the information for a NOT gate, it prints
all-zeroes in place ofj2.) Similarly, the depth ofD can be assumed to be at mostd(2n).

The nondeterministic algorithmA guessesD, and verifies thatD is correct on the given inputx in time

O(ncS(n +O(log n)) · poly(log S(n+O(log n)))) ≤ nc · S(2n) · poly(log S(2n)) ≤ O(22n/3),

11



by evaluatingD(x, ·) on all possiblej = 1, . . . , cnc+ c, and checking that all outputs ofD correspond with
the relevant gates inCx. If D does not output all the gates ofCx correctly, thenA rejects.

Next, consider the problem:

Givenx, an inputi of n+ c log n bits, and a gate indexj = 1, . . . , cnc + c, output the bit value
on the output wire of thejth gate whenCx is evaluated oni.

By assumption, this problem also hasACC circuits, sinceCx can be constructed and evaluated on any input
i in polynomial time. LetE(x, i, j) be anACC circuit with this functionality, of size

S(n+ (n+ c log n) + c log n+O(1)) ≤ S(3n), (2)

and depth at mostd(3n) as well.

Now, algorithmA guessesE and wishes to verify its correctness onx. To do this,A constructs a
circuit VALUE(i, j) built out ofD andE, wherei hasn+ c log n bits andj = 1, . . . , cnc + c. Intuitively,
VALUE(i, j) will output 0 if and only if E produces a sensible output for thejth gate ofCx evaluated on
input i.

First, VALUE(i, j) feedsj to the circuitD(x, ·), producing gate indicesj1, j2, and a gate typeg. VALUE
then computesv1 = E(x, i, j1), v2 = E(x, i, j2) andv = E(x, i, j). (Depending ong, thesej1 andj2 may
be all-zeroes, but this does not matter to us.)

If g = INPUT, then VALUE outputs0 if and only if j ∈ {1, . . . , n + c log n} (j is among the first
n+c log n inputs) and thejth bit of i equalsv. This behavior can be easily implemented with anAC0 circuit
of size

O(n log n). (3)

If g = NOT, then VALUE outputs0 if and only if v1 = ¬v.

If g = AND, then VALUE outputs0 if and only if v1 ∧ v2 = v.

If g = OR, then VALUE outputs0 if and only if v1 ∨ v2 = v.

Note that each of the above three conditions can be implemented with a constant number of gates, given
the valuesg, v1, v2, andv. It follows that VALUE can be implemented as anACC circuit.

SinceA has not rejected,D is correct, so we know that for alli, j, the gate typesg and input connections
j1 andj2 are correct. Therefore VALUE(i, j) = 1 if and only if E asserts that the output of gatej in Cx(i)
equalsv, andE asserts the inputs toj have valuesv1, v2, but the gate typeg dictates that the output ofj
should be¬v. It follows that VALUE is an unsatisfiable circuit if and onlyif E prints correct values for all
gates inCx(i), over alli.

Therefore, by callingACC circuit satisfiability on VALUE(·, ·), A determines whetherE is correct. The
algorithmA rejectsif E is deemed incorrect. The circuit VALUE(i, j) hasn+2c log n+O(1) inputs, depth
at mostd(2n) + d(3n) + b for a fixed constantb, and it follows from (1), (2), and (3) that the circuit for
VALUE hasO(S(3n) + S(2n) log S(2n) + n logS(n)) ≤ O(S(3n) + S(2n)n) size. By assumption, the
assumedACC satisfiability algorithm runs inO(2n/nk) time for somek > 2c.

After checking thatE is a correct guess, the question of whetherC ′
x is equivalent toCx can now be

verified. (Alternatively, at this point we may simply print the circuitE(·, cnc + c) as a valid circuit that
is equivalent toCx(·).) First note that ifE is correct, then for alli, Cx(i) = E(x, i, cnd + c). Therefore
it suffices to set up anACC circuit EQUIV(i) which outputs1 if and only if C ′

x(i) 6= E(x, i, cnc + c),
and determine if EQUIV is satisfiable using the algorithm forACC CIRCUIT SAT. Since EQUIV(i) has
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n + c log n inputs, depthd(3n) +O(1), and sizeO(S(n + O(log n))), the circuit satisfiability call runs in
O(2n/nk) time, by assumption. If EQUIV is satisfiable, thenA rejects.

Finally,A prints its guessed circuitC ′
x if the algorithm did not reject on any of the above steps. �

Remark 1 The proof of the lemma does not require specific properties ofACC. We only need that the
underlying circuit classC containsAC0 and is closed under composition of two circuit families. Thesame
goes for the proof of Theorem3.2below.

Remark 2 In fact the lemma shows that, given any circuitC and aC-circuit D, we can efficiently check
if C is equivalent toD using nondeterminism (under the assumptions thatP hasC-circuits and there are
efficientC-SAT algorithms). IfP hasC-circuits, then Circuit Evaluation hasC-circuits. Therefore any circuit
family{Cn} will have an equivalentC-circuit family, as well asC-circuits encoding the “gate information”
and “gate values” of{C}.

With Lemma3.1 in hand, the proof of Theorem3.2 closely follows the author’s prior work (Theo-
rem 3.1), except the circuitC ′

x is substituted in place ofCx. Let us give the details. We use the specific
example ofACC in place of a generic circuit classC; modification for other classesC is straightforward.

Reminder of Theorem 3.2 Let S(n) ≤ 2n/4. There is ac > 0 and b > 0 such that, ifC-CIRCUIT SAT

instances with at mostn+ c log n variables, depth at most2 · d(3n) + b, andO(n S(2n) +S(3n)) size can
be solved inO(2n/nc) time, thenENP does not have non-uniformC circuits of depthd(n) andS(n) size.

Proof of Theorem 3.2. Suppose ACC CIRCUIT SAT instances withn + c log n variables, depth2 ·
d(3n) + O(1), andO(n S(2n) + S(3n)) size can be solved inO(2n/nc) time for a sufficiently largec.
Further suppose thatENP has non-uniformACC circuits of depthd andS(n) size. The goal is to show that
NTIME[2n] ⊆ NTIME[o(2n)], contradicting the nondeterministic time hierarchy [SFM78, Zak83].

Let L ∈ NTIME[2n]. We describe a fast nondeterministic algorithmB decidingL. As discussed earlier
(Theorem2.1), we may assumeL has a multitape Turing machine implementation inO(2n) time, and we
only need to simulateL on a RAM inO(2n/nc) time for large enoughc to obtain the contradiction.

On inputx of lengthn, B first runs the nondeterministic algorithmA of Lemma3.1. Using the ACC
CIRCUIT SAT algorithm and the fact thatP hasACC circuits,A runs inO(2n/nc + S(3n) · poly(n)) ≤
O(2n/nc) time, and for some computation path,A produces anACC circuit C ′

x of S(n + c log n) size,
d(n + c log n) depth, andn + c log n inputs such thatx ∈ L if and only if C ′

x is the compression of a
satisfiable formulaFC′

x
.

ThenB nondeterministically guesses aS(3n)-sized(3n)-depth circuitW . By Fact3.2, there exists such
aW that encodes a satisfying assignment forFC′

x
if and only if x ∈ L.

Next,B constructs an ACC CIRCUIT SAT instanceD to verify thatW is correct (just as in the proof of
Theorem3.1). The circuitD hasn+c log n inputs fed toO(n) copies ofC ′

x, so that wheni is input toD, the
ith clause of the 3CNF formulaFC′

x
is printed onO(n) bits of output. TheO(n) bits encode three variable

indices along with sign bits for each variable. For the threevariables, an assignment is computed for them
by evaluating the indices on three copies ofW . Finally,D compares the sign bits with the bits output by the
copies ofW , and outputs0 iff the variable assignment encoded byW satisfies theith clause. Now observe
that our guessedW encodes a satisfying assignment forFC′

x
, if and only if every clause ofFC′

x
is satisfied

by the assignment encoded byW , if and only ifD(i) = 0 for all i, if and only ifD is unsatisfiable.
Observe thatD hasO(n S(2n) + S(3n)) size, depth at most2d(3n) + O(1), andn + c log n inputs.

By assumption, the satisfiability ofD can be determined inO(2n/nc) time, henceB decides ifx ∈ L in
O(2n/nc) time. �
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4 A Satisfiability Algorithm for ACC Circuits

Now we present an algorithm that determines the satisfiability of ACC circuits slightly faster than the
2n runtime of exhaustive search. There are two components in the algorithm: a nice representation ofACC

circuits, and a method for evaluating this representation quickly on all of its inputs. This method can be
implemented using either fast rectangular matrix multiplication, a dynamic programming approach, or a
divide-and-conquer recursive approach.

It follows from the work of Yao [Yao90], Beigel and Tarui [BT94], and Allender and Gore [AG94] that,
given anyACC circuit of sizes, one can produce asO(logc s) sizeSYM+ circuit in poly(sO(logc s)) time that
has equivalent functionality. (For more background, see the Preliminaries.)

Lemma 4.1 There is an algorithm and functionf : N×N → N such that given anACC circuit with MODm

gates of depthd and sizes, the algorithm outputs an equivalentSYM+ circuit of sO(logf(d,m) s) size, with
ANDs ofO(logf(d,m) s) fan-in. The algorithm takes at mostsO(logf(d,m) s) time.

Furthermore, given the number of ANDs in the circuit that evaluate to1, the symmetric function itself
can be evaluated insO(logf(d,m) s) time.

The functionf(d,m) is estimated to be no more thanmO(d). Technically speaking, the above lemma is
not explicitly proved in prior work, but Allender and Gore effectively show it: they prove that given auni-
formACC circuit (with an efficiently computable connection language), there is a similarlyuniformSYM+

circuit of the appropriate size. Their proof corresponds toan efficient, deterministic algorithm computing
the transformation, and this algorithm works equally well if it is simply given anyACC circuit as input (not
necessarily uniform). Since the proof of the lemma is essentially identical to previous proofs already in the
literature, it has been placed in AppendixA.

We stress that the transformation fromACC to SYM+ results in a circuit withno negated variables: just
a symmetric function of ANDs of variables. (This property isused in the dynamic programming algorithm
below.) It is a simple exercise to transform a SYM of ANDs of polylog fan-in (with negations on some
of the wires coming out of input variables) to a SYM of ANDs of variables, while preserving the relevant
parameters of Lemma4.1. A proof sketch of this transformation is in AppendixB.

4.1 Rapid evaluation of an ACC circuit on all of its inputs

The other component of theACC satisfiability algorithm is a method for rapidly evaluatinga givenSYM+

circuit on all of its possible satisfying assignments:

Lemma 4.2 (Evaluation Lemma) There is an algorithm that, given aSYM+ circuit of sizes ≤ 2.1n and
n inputs with a symmetric function that can be evaluated inpoly(s) time, runs in(2n + poly(s)) · poly(n)
time and prints a2n-bit vectorV which is the truth table of the function represented by the given circuit.
That is,V [i] = 1 iff theSYM+ circuit outputs1 on theith variable assignment.

That is, anySYM+ circuit can be evaluated on all2n assignments inpolynomial amortized time per
assignment. Brute force search would take2n · poly(s) time, but the algorithm manages to use roughly
2n + poly(s) time instead.

Lemma4.2 can be proved in three different ways; each are appealing fordifferent reasons. The first
proof, using dynamic programming, has the benefit that it canbe completely described with few technical
details. For pedagogical purposes it is preferred. The second proof uses a powerful primitive (fast matrix
multiplication) that is common in theoretical computer science, and it is plausible that the matrix multipli-
cation approach could be extended further. The third proof uses a simple divide-and-conquer approach: we
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can reduce theSYM+ circuit evaluation problem to that of evaluating a multilinearn-variable polynomial
on all 2n assignments over{0, 1}n, and solve that problem inO(2n · poly(n)) time. (This algorithm is
discussed in the author’s survey article [Wil11], and is omitted here.)

Proof 1: Dynamic Programming. The evaluation lemma can be proved using simple dynamic program-
ming, following a conversation with Andreas Björklund.

Proof of Lemma 4.2. Assume we are given aSYM+ circuit C ′′ with a collection ofs′′ AND gates over
some variables{x1, . . . , xn}. LetGj ⊆ [n] be the set of variable indices that are input to thejth AND gate.
Define a functionf : 2[n] → N, wheref(S) equals the number ofj = 1, . . . , s′′ such thatS = Gj . The
function f can be prepared as a lookup table inO(2n + s′′ · poly(n)) ≤ O(2n) time, by building a table
of 2n entries which are initially zero, and for each of thes′′ AND gates corresponding to a subsetS, we
increment theS-th entry in the table.

Now consider the functiong(T ) =
∑

S⊆T f(S) defined on allT ⊆ [n]. (Typically, g is called thezeta
transform off .) Observe thatg(T ) equals the number of AND gates set to1 on the variable assignment
obtained by settingxi = 1 for i ∈ T , andxi = 0 for i /∈ T . Therefore the table of2n integers of size
O(log s′′) representing the functiong is equivalent to the matrixN in the previous proof. Hence if we can
computeg then we can evaluateC ′′ on all of its possible inputs.

It remains to show how to computeg efficiently. Givenf , the functiong can be computed inO(2n ·
poly(n)) time by a dynamic programming algorithm of Yates from 1937 (cf. [BHK09], Section 2.2). For
i = 0, . . . , n, definegi : 2[n] → N by g0(T ) = f(T ), and

gi(T ) =

{

gi−1(T ) + gi−1(T \ {i}) if i ∈ T,

gi−1(T ) otherwise.

It follows that eachgi+1 can be obtained fromgi in O(2n · poly(n)) time. Induction shows thatgi(T ) =
∑

S f(S) where the sum is over allS ⊆ T subject to the condition that{j ∈ S | j > i} = {j ∈ T | j > i}.
Wheni = n, both of these sets are always empty, so it follows thatgn = g. �

The above description is suitable for random access machines, but the algorithm can also be implemented
on a multitape Turing machine using standard ideas. (Strictly speaking, a multitape implementation is not
necessary to proveACC lower bounds, because Lemma2.1 shows it suffices to have a fast random-access
implementation of anyL ∈ NTIMETM [2n]. However, the extension to multitape may be useful for future
work.)

Proof 2: Matrix multiplication. An alternative way to prove Lemma4.2is to use a fast rectangular matrix
multiplication algorithm of Coppersmith, building on prior work of Schönhage [Sch81]. This algorithm
works in the case where the “middle” dimension of the matrices is polynomially smaller than the other two.
In this case, matrix multiplication can be done nearly optimally.5

Lemma 4.3 (Coppersmith [Cop82]) For all sufficiently largeN , multiplication of anN×N .1 matrix with
anN .1 ×N matrix can be done inO(N2 log2 N) arithmetic operations.

More precisely, Coppersmith shows that there is a constantK such that one can multiply anN×N matrix
with anN × N .1 matrix in K · N2 log2 N operations with a bilinear algorithm, i.e., a depth-3 arithmetic

5Curiously, later work on rectangular matrix multiplication from the 90’s [Cop97, HP98] does not provide tight enough bounds:

only N
2+ε for all ε > 0, rather thanN2 log2 N . Note that a bound ofN2

· 2(logN)o(1) already suffices for our application.
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circuit with additions at the top level, multiplications inthe middle, and additions at the bottom level, where
each input wire to an addition gate may also multiply the input by a scalar. From the duality of bilinear
matrix multiplication algorithms [HM73], a bilinear algorithm for multiplyingN ×N andN ×M directly
implies a bilinear algorithm for multiplyingN ×M andM ×N . Furthermore, Coppersmith’s algorithm is
explicit, in that it can be executed on typical machine model(even a multitape TM) inO(N2 · poly(logN))
time, on matrices over any field of poly(logN) elements. A discussion of implementation details for his
construction can be found in AppendixC. For us, the relevant corollary is the following.

Corollary 4.1 For all sufficiently largeN , two 0-1 matrices of dimensionsN × N .1 andN .1 ×N can be
multiplied over the integers inO(N2 · poly(logN)) time.

We arrive at our second proof of Lemma4.2.

Proof of Lemma 4.2. Suppose we are given aSYM+ circuit C ′′ of sizes′′ ≤ 2.1n. Partition the inputs
of C ′′ into two setsA andB of size at mostn′ = (n + 1)/2 each. Set up two matricesMA andMB of
dimensions2n

′ × s′′ ands′′ × 2n
′

(respectively). The rows ofMA are indexed by all possible assignments
to the variables in setA, while the columns ofMA are indexed by the AND gates ofC ′′. Similarly, the
columns ofMB are indexed by variable assignments inB, while the rows ofMB are indexed by the ANDs
of C ′′. Define:

MA(i, j) =

{

1 if the ith assignment of variables fromA does not force thejth AND to be0,

0 otherwise,

and

MB(j, k) =

{

1 if the kth assignment of variables fromB does not force thejth AND to be0,

0 otherwise.

Note the preparation ofMA andMB takes at most2n/2 · s′′ · poly(n) ≤ O(2n/2+.2n) time.

Multiply MA andMB , yielding a matrixN . Note thatMA(i, j) ·MB(j, k) = 1 iff the ith assignment in
A and thekth assignment inB together set thejth AND of C ′′ to 1. (Given an assignment to all variables
in A andB, the AND is forced to either1 or 0.) HenceN(i, k) equals the number of ANDs set to1 by the
ith assignment inA and thekth assignment inB. Therefore,C ′′ is satisfiable if and only if some entry of
N makes the symmetric function ofC ′′ output1.

Sinces′′ ≤ 2.1n
′
, the fast rectangular matrix multiplication of Corollary4.1applies, and the multiplica-

tion of MA andMB can be done in22n
′
poly(n) time.

To decide whether some entry ofN makes the symmetric function output1, initialize a bit vectorT
of lengths′′ + 1, settingT [i] to be the value of the symmetric function ofC ′′ on eachi = 0, 1, . . . , s′′.
The construction ofT takes poly(s′′) time, since the symmetric function can be evaluated in poly(s′′) time.
Then for every pairi, k ∈ {1, . . . 2n′}, if v[N(i, k)] = 1 then stop and reportsatisfiable. If every pair has
been examined without stopping, reportunsatisfiable. The for-loop over all pairs can be implemented in
22n

′
poly(n) ≤ 2npoly(n) time by standard table lookup or by sorting the distinct elements ofN(i, k). �

As the above algorithm uses fast matrix multiplication, it is quite possibly a “galactic algorithm” (in the
sense of Lipton [Lip10]) that could never be run on a physical computer, due to hidden constants.
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4.2 The final algorithm

Given the evaluation lemma, theACC satisfiability algorithm is relatively straightforward.

Theorem 4.1 For everyd > 1 andm > 1 there is anε ∈ (0, 1) such that satisfiability of depth-d ACC

circuits with MODm gates,n inputs, and2n
ε

size can be determined in2n−Ω(nδ) time for someδ > ε that
depends only ond andm.

Proof. Let ℓ, ε be parameters to set later. Suppose we are given a depth-d ACC circuit C of s = 2n
ε

size
andn inputs. Make a circuitC ′ with s · 2ℓ size andn− ℓ inputs which is obtained by producing2ℓ copies of
C, plugging in a different possible assignment to the firstℓ inputs ofC in each copy, and taking the OR of
these copies. ObserveC ′ is a depth-(d + 1) ACC circuit, andC is satisfiable if and only ifC ′ is satisfiable.

Applying the translation fromACC to SYM+ (Lemma4.1), a circuitC ′′ can be produced which is equiv-
alent toC ′, whereC ′′ consists of a symmetric gate connected tos′′ ≤ se(ℓ

e loge s) ANDs of variables, for
some constante that depends on the depthd and modulusm. ProducingC ′′ from C ′ takes onlysO(ℓe loge s)

steps. Whens = 2n
ε
, s′′ ≤ 2en

ε(ℓenεe). Setℓ = n1/(2e), and observe thats′′ ≤ 2n
2/3

for all sufficiently
largen and sufficiently smallε.

By the evaluation lemma (Lemma4.2) and the fact that the symmetric function ofC ′′ can be evaluated in
poly(s′′) time,C ′′ can be evaluated on all of its possible assignments inO(2n−ℓ · poly(n)) ≤ 2n−Ω(n1/(2e))

time, hence the satisfiability ofC can be determined within this time. �

Two remarks. It is worth pointing out a couple more things about the algorithm. First, the algorithm can
be generalized in multiple ways which may be useful in the future. Instead of taking an OR of all partial
assignments to a small number of variables inC, one could instead take any constant number of ANDs
and ORs of partial assignments, convert this to aSYM+ circuit, then apply the evaluation lemma. This
observation shows that any quantified Boolean formula with aconstant number of quantifier blocks and
a predicate described by anACC circuit of subexponential size can also be solved faster than exhaustive
search. Second, note that the algorithm does not give a faster way to solve satisfiability for the classSYM+

itself, because in the algorithm we need that the OR of2ℓ circuits from the class is still a circuit in the class.
Hence we cannot give lower bounds forSYM+ at the present time.

5 ACC Lower Bounds

Combining the results of the previous two sections, non-uniform lower bounds forACC can be proved.

Reminder of Theorem1.2 For everyd andm, there is aδ > 0 and a language inENP that fails to have
non-uniformACC circuits of depthd and size2n

δ
with MODm gates.

Proof. Theorem4.1 states that for everyd andm there is anε > 0 so that satisfiability of depth-d ACC

circuits with MODm gates,n inputs, and2O(nε) size can be solved in2n−Ω(nδ) time, for someδ > ε.
Theorem3.2 says there is ac > 0 such that, if ACC CIRCUIT SAT instances withn + c log n variables,
depth2d + O(1), and at mosts = n 2O(nε) size can be solved inO(2n/nc) time, thenENP does not have
non-uniformACC circuits of depthd and2n

ε
size. The lower bound follows, as2(n+c logn)−Ω((n+c logn)δ) ≪

O(2n/nc) for everyc. �

It follows that complete problems such as SMALLEST SUCCINCT 3SAT (given a circuitC and integeri,
output theith bit of the smallest satisfying assignment to the formulaFC encoded byC) require exponential
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ACC circuits. TheENP lower bound can be “padded down” in a standard way to prove superpolynomial
lower bounds for a class that is very close toPNP.

Corollary 5.1 For everyd andm, QuasiPNP = TIME[nlogO(1) n]NP does not have non-uniformACC cir-
cuits of depthd, MODm gates, and polynomial size.

Proof. If there wered andm such thatTIME[2(log n)
c
]NP had such circuits for everyc, then by a padding

argument (replacingn with 2n
1/c

) it would follow thatENP has depth-d size-2O(n1/c) circuits for everyc,
contradicting Theorem1.2. �

Note it is known thatNTIME[nlogO(1) n]NP does not have polynomial size (unrestricted) circuits [Kan82].

SuperpolynomialACC lower bounds forNEXP are also provable. First we need a theorem established
in prior work: if NEXP has (unrestricted) polynomial size circuits, then every satisfiable formula output by
the SUCCINCT 3SAT reduction in Fact3.1 has somesatisfying assignmentthat can be represented with a
polynomial size unrestricted circuit.

More precisely, say that SUCCINCT 3SAT has succinct satisfying assignmentsif there is a fixed constant
c such that for every languageL ∈ NTIME[2n] and everyx ∈ L of lengthn, there is a circuitWx of
poly(n) size withk ≤ n + c log n inputs such that the variable assignmentzi = W (i) for all i = 1, . . . , 2k

is a satisfying assignment for the formulaFCx , whereCx is the circuit obtained by the SUCCINCT 3SAT
reduction in Fact3.1. Say thatWx is a succinct satisfying assignment forCx.

Theorem 5.1 ([Wil10]) SupposeNEXP has polynomial size circuits. ThenSUCCINCT 3SAT has succinct
satisfying assignments.

Theorem5.1is not explicitly proved in the paper, however it follows immediately from another theorem.
Say thatNEXP hasuniversal witness circuits of polynomial sizeif for everyL ∈ NEXP and every correct
exponential time verifier forL, there is ac > 0 such that for everyx ∈ L, there is a circuit of size at
most|x|c + c which encodes a witness forx that is accepted by the verifier. (For more formal definitions,
see [Wil10].) The following directly implies Theorem5.1:

Theorem 5.2 ([IKW02 , Wil10]) If NEXP ⊆ P/poly then every language inNEXP has universal witness
circuits of polynomial size.

The proof of Theorem5.2follows an argument by Impagliazzo, Kabanets, and Wigderson [IKW02].

The second ingredient in the lower bound forNEXP is a simple folklore lemma:

Lemma 5.1 (Folklore) Let C be any circuit class. IfP has non-uniformC circuits ofS(n)O(1) size, then
there is ac > 0 such that everyT (n)-size circuit family (uniform or not) has an equivalentS(n +
O(T (n) log T (n)))c-size circuit family inC.

Proof. If P has non-uniformS(n)O(1)-sizeC circuits, then for somec > 0, the CIRCUIT EVAL problem
hasS(n)c-size circuits. (Recall the CIRCUIT EVAL problem is: given an arbitrary Boolean circuitC
and inputx, evaluateC on x and output the answer.) Let {Dn(·, ·)} be aS(n)c-size circuit family for
this problem. Now let{Cn} be an arbitraryT (n)-size circuit family. To obtain an equivalentC-circuit
family {C ′

n} of S(n + O(T (n) log T (n)))c size, defineC ′
|x|(x) = Dn1(C|x|, x) for an appropriate length

n1 ≤ n+O(T (n) log T (n)). �

18



Note if S(n) andT (n) are polynomials, thenS(n + O(T (n) log T (n)))c is also polynomial. Also note
Lemma5.1 implies that, ifP ⊆ ACC, then there arefixed constantsd andm such that every polynomial
size circuit family has equivalent polynomial size depth-d circuits with AND, OR, NOT, and MODm gates.
(Here,d andm are the constants arising in the resultingACC circuit family for CIRCUIT EVAL .)

Reminder of Theorem1.1 NTIME[2n] does not have non-uniformACC circuits of polynomial size.

Proof. First, we claim that ifNTIME[2n] has polysizeACC circuits, then every language inNEXP has
polysizeACC circuits. Let us sketch this implication, for completeness. If NTIME[2n] has polysizeACC
circuits, then theNEXP-complete problem SUCCINCT BOUNDED HALTING has polysizeACC circuits:
given a nondeterministic machineN , stringx, andt written in binary, doesN(x) have an accepting com-
putation path of length at mostt? The reduction from anyL ∈ NEXP to SUCCINCT BOUNDED HALTING

can be expressed with anAC0 circuit of size poly(n, log t). (Take any nondeterministic machineN with
running time2n

k
that acceptsL. Given an inputx, theAC0 circuit outputs the code ofN as the first input of

the SUCCINCT BOUNDED HALTING instance,x as the second input, and2|x|
k

as the third input, written in
binary. This only needs anAC0 circuit that outputs1 followed by|x|k − 1 zeroes.) Hence everyL ∈ NEXP

can be recognized by anACC circuit family of sizenℓ, for someℓ depending onL.

By Lemma5.1 and Theorem5.1, it follows that SUCCINCT 3SAT has succinct satisfying assignments
that are polynomial sizeACC circuits. We claim that a contradiction can be obtained by carefully examining
the proof of Theorem1.2 (the lower bound forENP). There, the only place requiring the full assumption
“ENP has non-uniformACC circuits of sizeS(n)” is inside the proof of Theorem3.2. In particular, the
assumption is needed in Fact3.2, where it is shown that for every satisfiable instance of SUCCINCT 3SAT,
at least one of its satisfying assignments can be encoded in asize-S(3n) ACC circuit. (The only other part
of Theorem3.2where the assumption is applied is Lemma3.1, but there it is only required thatP has non-
uniformACC circuits.) But from the above, we already have that SUCCINCT 3SAT has succinct satisfying
assignments which areACC circuits.

Hence the ACC CIRCUIT SAT instanceD constructed in Theorem3.2 with the witness circuitW has
size polynomial in itsn + c log n inputs. Finally, the Circuit SAT algorithm of Theorem4.1 can deter-
mine satisfiability of anyn + c log n input,nc sizeACC circuit in O(2n−log2 n) time, for everyconstantc.
Therefore unsatisfiability ofD can be determined inO(2n/nc) time for every constantc, and the desired
contradiction follows from the nondeterministic time hierarchy. �

It follows that problems complete underAC0 reductions forNEXP such as SUCCINCT 3SAT (given a
circuit C, does it encode a satisfiable 3-CNF formulaFC?) require superpolynomial sizeACC circuits.

5.1 An Extension to “Half-Exponential” Type Lower Bounds

TheNEXP lower bounds can be extended a little by studying the proof ofTheorem5.2. However, the
results are a bit ugly, so let us only sketch the arguments. A functionf : N → N is said to besub-half-
exponentialif for every k, f(f(nk)k)k ≤ 2n

o(1)
. The following was conjectured by Russell Impagliazzo

(private communication), and can be proved by augmenting Theorem5.2with other known results.

Theorem 5.3 LetS(n) be any sub-half-exponential function such thatS(n) ≥ n for all n. If NTIME[2n]
hasS(n) size circuits, then all languages inNEXP have universal witness circuits of sizeO(S(S(nc)c)c),
for somec depending on the language.

The proof goes along the lines of Theorem5.2, but withS(n) substituted in place of polynomials: we
assume (a)NEXP does not have universal witness circuits ofS(S(nc)c)c size for anyc, (b) NTIME[2n]
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does haveS(n) circuits, and derive a contradiction from the two. Assumption (a) implies that in time
O(2n), one can nondeterministically guess and verify the truth table of a Boolean function onn bits that
requiresS(S(nc)c)c size circuits for everyc, for infinitely many inputs. This is enough to partially deran-
domizeMATIME[S(S(nO(1))O(1))O(1)] for infinitely many input lengths, putting the class inside of i.o.-
NTIME[2n]/n [IKW02] (recall thatS(S(nO(1))O(1))O(1) ≤ 2n

o(1)
). Assumption (b) implies thatNEXP has

S(nO(1))O(1) circuits, henceTIME[2S(n
O(1))O(1)

] ⊆ MATIME[S(S(nO(1))O(1))O(1)] [BFNW93, MVW99].
It also follows from assumption (b) that i.o.-NTIME[2n]/n hasO(S(n)) size circuits on infinitely many in-
put lengths. Putting these containments together, it follows thatTIME[2S(n)

O(1)
] hasO(S(n)) size circuits

on infinitely many input lengths. This is false by direct diagonalization: for all large enoughn there is a
functionf onn variables with circuit complexity greater thanS(n)2, and the lexicographically firstf can
be found in2O(S(n)3) time and simulated on a given input.

Combining Theorem5.3and Lemma5.1, we immediately obtain the following implication betweenACC

circuits forNTIME[2n] andACC circuits which encode witnesses forNEXP.

Corollary 5.2 If NTIME[2n] hasS(n)-sizeACC circuits, then every language inNEXP has universal wit-
nessACC circuits ofS(S(S(nc)c)c)c for somec depending on the language.

One extra application ofS comes from Theorem5.3 which produces universal witness circuits; the
other comes from Lemma5.1 which converts those circuits toACC. Definef : N → N to besub-third-
exponentialif for every k, f(f(f(nk)k)k)k ≤ 2n

o(1)
. Examples of sub-third-exponential functions are

f(n) = npoly(log n) andf(n) = 22
poly(log log n)

.

Theorem 5.4 NTIME[2n] does not have sub-third-exponential sizeACC circuits.

The argument is the same as Theorem1.1, except we apply Corollary5.2: if NTIME[2n] has such
circuits, then Corollary5.2 says thatNEXP has universal witness circuits which areACC and have subex-
ponential size. This implies that SUCCINCT 3SAT instances have subexponential sizeACC circuits that
encode their satisfying assignments, which is enough to establish the contradiction in Theorem1.1.

Theorem 5.5 Let g : N → N have the property that there is a sub-third-exponential function f satisfying
g(f(n)) ≥ 2n. ThenNTIME[g(n)] does not have polynomial sizeACC circuits.

If such circuits did exist, then by padding,NTIME[2n] ⊆ NTIME[g(f(n))] would haveACC circuits
of sizef(n)O(1) for some sub-third-exponentialf , contradicting Theorem5.4. (Raisingf to a constant
power is still a sub-third-exponential function.) It follows that the polynomial size lower bound can be ex-

tended down to grotesque classes such asNTIME[22
2
√

log log n

] ( NTIME[2n], sincef(n) = 2(logn)
log logn

=

22
(log logn)2

is sub-third-exponential, andg(f(n)) ≥ 2n for functions likeg(n) = 22
2
√

log logn

.

Finally, it is also straightforward to extend the lower bounds to polysizeACC circuits of slightly non-
constant depth, as theACC SAT algorithm still beats exhaustive search on polynomial size circuits of depth
o(log log n) with constant moduli. The details can be found by studying Theorem4.1 or by reading the
paper [Wan11].

6 Conclusion

This paper demonstrates that the research program of proving circuit lower bounds via satisfiability
algorithms is a viable one. Further work will surely improvethe results. Three natural next steps are:
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replaceACC with TC0 circuits in the lower bounds, or replaceNEXP with EXP, or extend the exponential
lower bounds fromENP to NEXP.

The results of Section3 and Lemma5.1 show that one only has to find a very minor improvement in
algorithms forTC0 satisfiability in order to establish non-uniformTC0 lower bounds forNEXP. The author
sees no serious impediment to the existence of such an algorithm; he can only report that the algorithms
tried so far do not work. The evaluation lemma forSYM+ circuits is key to theACC SAT algorithm, and
it would be very interesting to find similar lemmas forTC0 or NC1. It is plausible that the characterization
of NC1 as bounded-width branching programs [Bar89] could be applied to prove an analogous evaluation
lemma for Boolean formulas, which would lead to nontrivial depth lower bounds forNEXP. (Note that
permutation branching programs of width4 can be simulated inACC [BT88], while width 5 capturesNC1.)
Along the lines of the author’s prior work [Wil10], Oded Goldreich and Or Meir (personal communication)
have observed that the consequence of Theorem3.2 holds even when we replaceC-CIRCUIT SAT with
the problem:given ann-inputS(n)-sizeC-circuit, approximate its probability of acceptance on a uniform
random input to within a1/6 additive factor. It is widely believed that this problem can be solved in
polynomial timefor any reasonableC, so the hypothesis appears easier to satisfy.

It should be possible to extend the superpolynomial lower bound forACC down to the classQuasiNP =

NTIME[nlogO(1) n]. This paper comes fairly close to proving this result. The only step missing is a proof of
the implication: “ifQuasiNP has polynomial-sizeACC circuits, then there are polynomial-sizeACC circuits
that encode witnesses toQuasiNP languages.” A couple of lemmas rely only onP having non-uniform
ACC circuits, so they could be potentially applied in proofs of even stronger lower bounds. At any rate, the
prospects for future circuit lower bounds look very promising.
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gates. InProceedings of IEEE Symposium on Foundations of Computer Science, 709–718, 2006.

[CW09] A. Chattopadhyay and A. Wigderson. Linear systems over composite moduli. InProceedings of
IEEE Symposium on Foundations of Computer Science, 43–52, 2009.

[Coo88] S. A. Cook. Short propositional formulas representnondeterministic computations.Inf. Process.
Lett.26(5):269–270, 1988.

22



[Cop82] D. Coppersmith. Rapid multiplication of rectangular matrices.SIAM J. Computing11(3):467–471,
1982.

[Cop97] D. Coppersmith. Rectangular matrix multiplication revisited.J. Complexity13(1):42–49, 1997.

[DH08] E. Dantsin and E. A. Hirsch. Worst-case upper bounds.In Handbook of Satisfiability, A. Biere, M.
Heule, H. van Maaren and T. Walsh (eds.), 341–362, 2008.

[FLvMV05] L. Fortnow, R. Lipton, D. van Melkebeek, and A. Viglas. Time-space lower bounds for satisfi-
ability. JACM52(6):835–865, 2005.

[FSS81] M. Furst, J. Saxe, and M. Sipser. Parity, circuits, and the polynomial time hierarchy.Mathematical
Systems Theory17:13–27, 1984. Also in FOCS’81.

[GO94] I. Gohberg and V. Olshevsky. Fast algorithms with preprocessing for matrix-vector multiplication
problems.J. Complexity10(4):411–427, 1994.

[GS89] Y. Gurevich and S. Shelah. Nearly linear time.Logic at Botik ’89, Springer-Verlag LNCS 363,
108–118, 1989.

[Gre95] F. Green. Lower bounds for depth-three circuits with equals and mod-gates. InProceedings of
STACS, Springer LNCS 900:71–82, 1995.
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A Appendix: Proof of Lemma 4.1

Reminder of Lemma4.1 Letm andd be fixed constants. There is an algorithm and functionf : N×N → N

such that given anACC circuit with MODm gates of depthd and sizes, the algorithm outputs an equivalent
SYM+ circuit of sO(logf(d,m) s) size. The algorithm takes at mostsO(logf(d,m) s) time.

Furthermore, given the number of ANDs in the circuit that evaluate to1, the symmetric function itself
can be evaluated insO(logf(d,m) s) time.

There is absolutely nothing new in the proof below. The algorithm is described as a series ofsO(logf(d,m) s)

time transformations, closely following Allender and Gore[AG94] in the appropriate places. We just need
to point out that the relevant transformations are still efficiently computable when the algorithm is given an
arbitrary input circuit.

Proof. Let C be the given circuit. Note that by increasing the size ofC from s to sO(d), we may always
assume at any point in the algorithm thatC is a tree (i.e., all gates have fan-out 1).

Transformation 1. Let s be the size ofC. We transformC into a probabilistic circuitC ′ that has
poly(log s) probabilistic inputs, such thatC ′ has constant depth,sO(1) size,C ′ has no OR or MODm gates
for any compositem, andC ′ has AND gates of fan-in at most poly(log s). (The circuitC ′ is said to accept
an inputx if it outputs1 on the majority of settings to the probabilistic inputs.)

First, note that one can replace NOT gates by MODm gates (for anym), and one can replace the AND and
OR gates by fixed-depth probabilistic circuits with having only MODm gates and AND gates of poly(log s)
fan-in. In fact, all of the AND and OR gates can share thesameset of poly(log s) probabilistic inputs. This
is a standard trick that goes back to Valiant and Vazirani [VV86] (also found in an alternative proof of Toda’s
theorem [KVVY93]) that can be performed insO(1) time.

The MODm gates for compositem are eliminated as follows. Letpe11 · · · pekk be the factorization of
m. Sincem divides a numberx iff peii dividesx for all i, every MODm gate can be replaced by an AND
of MODp

ei
i

gates. (Note the factorization ofm can be computed in at mostO(
√
mpoly(logm)) time.

Assuming for example thatm ≤ s andm has at most poly(log s) distinct primes, this does not factor into
the final running time, and does not create ANDs of large fan-in.) Observe thatpe divides a numberx iff for
all i = 0, . . . , e − 1, p divides

(

x
pi

)

. Using this fact, a MODpe gate can be replaced with a constant-fan-in
AND of MODp gates of constant-fan-in ANDs, as follows. A MODpe gate witht inputs is replaced with an
AND of fan-in e, where the inputs are MODp gates. For alli = 0, . . . , e − 1, theith MODp gate has fan-in
( t
pi

)

, one for every subset of thet inputs that has cardinalitypi. For all j = 1, . . . ,
( t
pi

)

, theith MODp gate

has itsjth input connected to an AND of thepi-subset oft inputs corresponding to integerj. All of this can
be computed withintO(pe) time, and hencesO(1) time.

Transformation 2. We have a probabilistic circuitC ′ with poly(log s) probabilistic inputs, constant depth,
sO(1) size, no OR or MODm gates for any compositem, and AND gates of fan-in at most poly(log s). Now
we produce aC ′′ with no probabilistic inputs and all of the above propertiesexcept that the output gate is
now a MAJORITY gate (which outputs the majority value of its inputs). This is easy to do, by enumerating
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through all possible values of the poly(log s) inputs, making a new copy ofC ′ for every valuation, and
taking the MAJORITY of all these copies. Certainly the new circuit C ′′ has sizesO(poly(log s)) and the
transformation can be performed in this much time.

Transformation 3. Now we have a circuitC ′′ has sizesO(poly(log s)) size, a MAJORITY gate at the output,
no OR or MODm gates for any compositem, and AND gates of fan-in at most poly(log s). We produce
another constant-depthC ′′′ where all these polylog fan-in AND gates are at the bottom: noMODp gates are
below them inC ′′′.

Take any AND gateg with f = poly(log s) fan-in. Without loss of generality,g has MODp gates
h1, . . . , hf as input for some fixed primep, by inserting “dummy” MODp gates in the appropriate places,
and all MODp gates have the same fan-inf ′ ≤ sO(poly(log s)), by inserting “dummy” zeroes in the inputs.
We want to show that this AND of MODp gates can be rewritten as a MODp of ANDs.

Let xij represent thejth input to the MODp gatehi. Allender and Gore [AG94] show that this AND of
MODp can be rewritten as:

f
∧

i=1

u
v∑

j

xij ≡ 0 mod p

}
~ =

f
∑

k=1

(p− 1)k−1
∑

{i1,...,ik}⊆[f ]

∑

〈j1,1,...,j1,p−1〉∈[f ′]p−1

...
〈jk,1,...,jk,p−1〉∈[f

′]p−1

k
∏

t=1

p−1
∏

ℓ=1

xit jit,ℓ
mod p, (4)

whereJP K = 1 if the predicateP is true, and0 otherwise.

The right-hand side can be represented with a MODp gate with fan-in at most

O

(

f
∑

k=1

(

f

k

)

(f ′)k(p−1)

)

≤ sO(poly(log s)),

which is connected to ANDs of fan-in at mostf · (p− 1). The transformation takessO(poly(log s)) time.

Transformation 4. We have aC ′′′ of sO(poly(log s)) size with AND gates of polylog fan-in connected to the
inputs, a MAJORITY at the output, and MODpi gates in between, wherepi is a prime dividingm = O(1).
We now show how to expressC ′′′ as a symmetric function ofsO(poly(log s)) AND gates, completing the proof.

To do this, we prove that if you have a circuitD which has a symmetric function at the output, ANDs
at the bottom, and depth-d subcircuits of MODpi ’s in between, then this can be turned into an equivalent
D′ with quasi-polynomial size, a symmetric function at the top, ANDs at the bottom, and depth-(d − 1)
subcircuits of MODpi ’s. That is, the topmost layer of MODpi ’s can be “consumed” by choosing a different
symmetric function.

We may assume without loss of generality that allf gates with input to the symmetric functionF :
[f ] → {0, 1} are MODp gates, for a fixed primep, and all of the MODp gates have the same fan-inf ′ (by
adding dummy wires and gates where necessary). Letxij be thejth input to theith MODp gate. Note that
the function we want to simulate isH(x1,1, . . . , xf,f ′) = F (

∑f
i=1 MODp(xi,1, . . . , xi,f ′)). We will replace

H with a symmetric functionF ′ of ANDs of polylogarithmic fan-in. Then, applying Transformation 3 to
these ANDs, the resulting circuit can be converted into one which has the ANDs at the bottom and only a
quasi-polynomial increase in size.

Define

G(x1,1, . . . , xf,f ′) := F

(

f
∑

i=1

MODp(xi,1, . . . , xi,f ′) mod pk

)
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wherek is the smallest integer exceedinglogp f . Thenpk > f , so it is clear thatG(x1,1, . . . , xf,f ′) =
H(x1,1, . . . , xf,f ′) when allxi,j are in{0, 1}. We shall show how to implementG as a symmetric function
F ′ of ANDs.

We use themodulus amplifying polynomialsof Beigel and Tarui [BT94]. Define

Pk(x) = (−1)k(x− 1)k

(

k−1
∑

i=0

(

k + i− 1

i

)

xi

)

+ 1.

This polynomial has the property that for allx ≥ 0 andp ≥ 1,

x = 0 mod p =⇒ Pk(x) = 0 mod pk,

x = 1 mod p =⇒ Pk(x) = 1 mod pk.

DefiningQk(x) = 1−Pk(x
p−1) and appealing to Fermat’s little theorem, it follows thatQk(x) = 1 mod pk

if p dividesx, and is equal to0 mod pk otherwise. ThereforeQk(
∑f ′

i=1 yi) = MODp(y1, . . . , yf ′) mod pk,
and

G(x1,1, . . . , xf,f ′) = F





f
∑

i=1

Qk





f ′
∑

j=1

xi,j



 mod pk



 .

Note that eachQk(
∑f ′

j=1 xi,j) is a symmetric multivariate polynomial of degree at mostk(p − 1). Hence

Qk can be expanded into a sum of at most(f · f ′)O(k(p−1)) ≤ sO(poly(log s)) terms. Each term is a product
of poly(log s) variables and a coefficientc that is represented inO(k log k) ≤ poly(log s) bits and easily
computed. The product of variables can be directly represented by an AND. Multiplication by the coefficient
c can be simulated by taking the sum ofc copies of the relevant monomials (ANDs).

Therefore the sum of allf of these sums of monomials can be efficiently expressed as a single sum
modulopk of sO(poly(log s)) AND gates, where each AND has fan-ink(p − 1) ≤ poly(log s). Finally, we
take the symmetric functionF ′ to be: compute the sumv of the outputs of all the AND gates created,
then outputF (v mod pk). Observe that a symmetric function composed with a sum modulo pk is still a
symmetric function.

In summary, for any constant depth circuit, all the above transformations take at most quasi-polynomial
time, increase the circuit size by only a quasi-polynomial amount, and the transformations are applied at
most a quasi-polynomial number of times. (Transformation 4is applied a constant number of times.) More-
over, the symmetric function generated at the end of the process takes no more time to evaluate than the time
it takes to build theSYM+ circuit. In more detail, the final symmetric function has theform

F (v) = MAJORITY((· · · ((v mod pk11 ) mod pk22 ) · · · mod p
kd′
d′ ),

for somed′ that depends on the constant depthd and constant modulusm. Here, MAJORITY outputs the
high-order bit of its input, and eachpkii is at most a constant factor larger than the size of the final circuit. �

B Appendix: Transforming to SYM
+ Without Negations

Suppose we are given a circuitC which is a SYM ofK = npoly(log s) ANDs of poly(log s) fan-in, where
the AND gates may have some negated variables as input. Here,we sketch how to transformC into a circuit
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C ′ which is a SYM ofK ′ = npoly(log s) ANDs of poly(log s) fan-in, where the ANDs are of variables only
(no negations).

The SYM of ANDs circuitC can be represented as a functiong : {0, ...,K} → {0, 1} composed with
a poly(log n)-degree polynomialh : {0, 1}n → {0, 1}. The functiong simulates the SYM gate, and the
function h sums up the total number of ANDs which are true on a given assignment. That is,h is a sum
of terms over all possible AND gates, where each term directly corresponds to the product of the literals in
some AND gate: each negated literal¬xi is multiplied as(1− xi), and each positive literalxi is multiplied
as justxi. Hence, a term evaluates to1 on a0− 1 assignment if and only if the corresponding AND outputs
true.

We can expand the polynomialh into a sum of products of variables inO(npoly(logn)) time, sinceh is a
sum ofnpoly(logn) products, each product being a poly(log n)-degree polynomial. Call this new arithmetic
expressionh′, which has the form

h′(x1, . . . , xn) =
∑

S⊆[n]

cS ·
∏

i∈S

xi,

where eachcS is an integer in the interval[−K ′,K ′], and all butO(K ′) of the cS are zero (andK ′ =
npoly(logn)). Say that a subsetS ⊆ [n] is negativeif cS < 0, andpositiveif cS > 0.

It is easy to representh′ as a SYM of ANDs ofentirely non-negated variables(with a different SYM
function from before). The trick is to mildly expand the domain of the functiong so that it can keep track
of the contributions from negativeS and positiveS, separately. Letℓ be the smallest integer satisfying
2ℓ > K ′. Initially our new circuitC ′ has no AND gates. For everyS which is negative, add−cS AND
gates over the variables inS to the circuitC ′. For everyS which is positive, add2ℓ · cS AND gates over
the variables inS to the circuitC ′. Now consider the sum of all AND gates inC ′ on some assignment
(y1, . . . , yn) ∈ {0, 1}n. This sum has the form

AB

in binary, whereB is an ℓ-bit string andA − B (construingA andB as non-negative integers) equals
h(y1, . . . , yn). Hence we can redefine the functiong to be

g′(AB) = A−B.

This g, combined with the above description of AND gates, represents a SYM of ANDs of non-negated
variables that is equivalent to the original circuitC.

C Appendix: Coppersmith’s algorithm

Recall we are studying the following algorithm of Coppersmith:

Lemma C.1 (Coppersmith [Cop82]) For all sufficiently largeN , multiplication of anN×N .1 matrix with
anN .1 ×N matrix can be done inO(N2 log2 N) arithmetic operations.

Prima facie, it could be that Coppersmith’s algorithm is non-uniform, making it difficult to apply. For
the sake of completeness, here we verify using standard ideas that Coppersmith’s algorithm can indeed be
implemented to run (even on a multitape TM) inO(N2 · poly(logN)) time, on matrices over any field of
poly(N) elements. (As we work with0-1 matricesA′′ andB′′ in our application, it suffices for us to work
over a prime field of poly(N) elements.) We focus on the implementation details of his algorithm, without
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going very far into its correctness. The algorithm relies onsome of the older tools from the matrix multipli-
cation literature. More background on these tools can be found in the highly readable reference [Pan84].

Coppersmith’s algorithm follows a paradigm introduced by Schönhage [Sch81]. For example, suppose
we wish to multiply two matricesA′′ andB′′. First wepreprocessA′′ andB′′ in some efficient way; in our
first example, we devise highly structured matricesA,A′, B,B′ so thatA′′ · B′′ = A′ · A · B · B′. The
matricesA andB are sparse “partial” matrices with particular structure intheir nonzeroes, andA′ andB′

are explicit matrices of scalar constants which are independent ofA′′ andB′′. Next, we recursively apply
a constant-sized matrix multiplication algorithm to multiply A andB essentially optimally. (Recall that
Strassen’s algorithm has an analogous form; such algorithms are known to be efficiently implementable on
a multitape TM.) Finally, wepostprocessthe resulting productC to obtain our desired productA′′ · B′′; in
the first example, this means computingA′ · C · B′. Using the explicit structure ofA′ andB′, these matrix
products are also done nearly optimally. Our aim is to verifythat each step of this process can be efficiently
computed, for Coppersmith’s full matrix multiplication algorithm.

Coppersmith begins withA′′ of dimensions24M/5×
( M
4M/5

)

24M/5 andB′′ of dimensions
( M
4M/5

)

24M/5×
2M/5 whereM ≈ logN , and obtains anO(5Mpoly(M)) algorithm for their multiplication. Later, he
symmetrizes the construction to get the algorithm for the desired dimensions. In this first construction, the
structured matricesA′ andB′ have dimensions24M/5×2M and2M×2M/5, respectively. Coppersmith needs
that all24M/5 × 24M/5 submatrices ofA′ and2M/5 × 2M/5 submatrices ofB′ are non-singular. Following
Schönhage, this can be accomplished by pickingA′ andB′ to be rectangular Vandermonde matrices. More
precisely, thei, j entry ofA′ is (αj)

i−1, whereα1, α2, . . . are distinct elements of the field;B′ is defined
analogously. Such matrices have the additional advantagesthat they can be succinctly described (with2M

field elements), and linear algebra with them can be done veryefficiently, as described below.

The matricesA andB have dimensions2M×3M and3M×2M , respectively. Although these dimensions
are large, the matrices are stored in a sparse representation, and they have structure in their nonzeroes. In
more detail,A has onlyO(5M ) nonzeroes,B has onlyO(4M ) nonzeroes, and there is an optimal algorithm
for multiplying 2×3 (with 5 nonzeroes) and3×2 matrices (with 4 nonzeroes) that can be recursively applied
to multiply A andB optimally, inO(5M · poly(M)) operations. (In particular, the2 × 3 and3 × 2 matrix
multiplication is an “approximate” algorithm, which can berecursively applied to larger matrices using
O(M)-degree univariate polynomials over the field; operations on such polynomials increase the overall
time by only a poly(M) factor.) TheseA andB are constructed by multiplying each of the

( M
4M/5

)

24M/5

columns inA′′ and
( M
4M/5

)

24M/5 rows inB′′ by inverses of Vandermonde matrices and their transposes (the

inverses of appropriate24M/5×24M/5 submatrices ofA′ and2M/5×2M/5 submatrices ofB′, respectively).
Due to the structure of inverse Vandermonde matrices and their transposes,n × n matrices of this form
can be multiplied withn-vectors inO(n · poly(log n)) operations with explicit algorithms (for references,
cf. [CKY89, GO94]).6 Hence the inverse of a submatrix ofA′ can be multiplied with an arbitrary vector in
O(24M/5 · poly(M)) operations. It follows that constructingA andB takes onlyO(

( M
4M/5

)

24M/5 · 24M/5 ·
poly(M)) time. Since5M ≈

( M
4M/5

)

44M/5 (within poly(M) factors), this quantity isO(5M · poly(M)).

By construction (using an efficient correspondence betweencolumns ofA′′ and columns ofA′ with
24M/5 nonzeroes), we haveA′′ · B′′ = A′ · (A · B) · B′. After A andB are constructed, the constant-sized
algorithm for2 × 3 and3 × 2 mentioned above can be applied in the usual recursive way to multiply the

6In general, operations on Vandermonde matrices, their transposes, their inverses, and the transposes of inverses can be reduced
to fast multipoint computations on univariate polynomials. For example, multiplying ann× n Vandermonde matrix with a vector
is equivalent to evaluating a polynomial (with coefficientsgiven by the vector) on then elements that comprise the Vandermonde
matrix, which takesO(n log n) operations. This translates toO(n · poly(log n)) time on multitape TMs over small fields.

30



sparseA andB in O(5M · poly(M)) time; call this matrixZ. Then using the Vandermonde structure ofA′

andB′, the productZ ′ = A′ · Z can be done ino(5M · poly(M)) operations, and the final productZ ′ · B′

can be done ino(5M · poly(M)) operations. All in all, we have an algorithm for multiplyingmatrices of
dimensions24M/5 ×

(

M
4M/5

)

24M/5 and
(

M
4M/5

)

24M/5 × 2M/5 that is explicit and usesO(5M · poly(M))

operations. Call this ALGORITHM 1. Observe ALGORITHM 1 also works when the entries ofA′′ andB′′

are themselves matrices over the field. (The running time will surely increase in proportion to the sizes of
the underlying matrices, but the bound on the number ofoperations on the entriesremains the same.)

We can extract more algorithms from the above construction by exploiting the symmetries of bilinear
algorithms. The underlying2 × 3 and3 × 2 matrix multiplication algorithm with5 products is a bilinear
algorithm, meaning that it can be expressed in the so-calledtrilinear form

∑

ijk

AikBkjCji + p(x) =
5
∑

ℓ=1

(
∑

ij

αijAij) · (
∑

ij

βijBij) · (
∑

ij

γijCij) (5)

whereαij , βij , andγij are constant-degree polynomials inx over the field, andp(x) is a polynomial with
constant coefficient0. Such an algorithm can be converted into one with no polynomials and minimal extra
overhead (as described in Coppersmith’s paper). Typicallyone thinks ofAik andBkj as entries in the input
matrices, andCji as indeterminates, so the LHS of (5) corresponds to a polynomial whoseCji coefficient is
the ij entry of the matrix product. Note thetransposeof the third matrixC corresponds to the final matrix
product. The RHS corresponds to the special matrix multiplication algorithm with only5 products. For
example, Strassen’s famous 7-multiplication algorithm can be expressed in the form of (5) as follows:

∑

i,j,k=0,1

AikBkjCji = (A00 +A11)(B00 +B11)(C00 + C11) (6)

+(A10 +A11)B00(C01 − C11) +A00(B01 −B11)(C10 +C11)

+(A10 −A00)(B00 +B01)C11 + (A00 +A01)B11(C10 − C00)

+A11(B10 −B00)(C00 + C01) + (A01 −A11)(B10 +B11)C00.

The LHS of (5) and (6) represents the trace of the product of three matricesA, B, andC (where theij entry
of matrixX is Xij). It is well known that every bilinear algorithm naturally expresses multiple algorithms
through this trace representation. Since

tr(ABC) = tr(BCA) = tr(CAB) = tr((ABC)T ) = tr((BCA)T ) = tr((CAB)T ),

if we think ofA as a symbolic matrix and consider (5), we obtain a new algorithm for computing a matrixA
when givenB andC. Similarly, we get an algorithm for computing aB when givenA andC, and analogous
statements hold for computingAT , BT , andCT . So the aforementioned algorithm for multiplying a sparse
2×3 and sparse3×2 yields several other algorithms. In particular (the case ofcomputingBT fromAT and
C) we obtain an algorithm for computing 4 entries in a3× 2 matrix which is the product of a3× 2 matrix
(with 5 nonzeroes) and a2× 2 matrix.

Using the identitytr(ABC) = tr((BCA)T ) = tr(ATCTBT ), we can treatBT as symbolic and let
AT andCT correspond to input matrices in (5). Applying the resulting algorithm recursively, a very similar
preprocessing and postprocessing can be used to multiply

( M
4M/5

)

24M/5×24M/5 and24M/5×2M/5 matrices

using an algorithm that runs inO(5M · poly(M)) time over a small field.
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In more detail, recall in ALGORITHM 1 the matricesA′′ andB′′ were decomposed to satisfyA′′ ·B′′ =
A′ ·A ·B ·B′. The trace identity tells us

tr(A′′B′′ · C) = tr(A′A ·BB′ · C) = tr(B ·B′CA′ ·A) = tr(AT · (A′)TCT (B′)T · BT ).

This suggests the following algorithm for multiplying
( M
4M/5

)

24M/5 × 24M/5 and24M/5 × 2M/5 matrices.

GivenA′′ andC ′′ of the appropriate dimensions, preprocessC ′′ into the2M×2M matrixD = B′ ·(C ′′)T ·A′,
and useA′ as before to preprocessA′′ into a sparse3M × 2M matrixAT having

(

M
4M/5

)

44M/5 ≈ 5M nonze-

roes. Both steps can be done efficiently using the Vandermonde structure ofA′ andB′. Next, multiplyAT

andDT , following the bilinear algorithm for computing a3 × 2 (with 4 nonzeroes) from a3 × 2 (with 5
nonzeroes) and a2 × 2, in O(5Mpoly(M)) time. The multiplication results in a3M × 2M matrixB with
O(4M ) nonzeroes, which can be efficiently transformed to the output matrix using the inverses of submatri-
ces ofB′. (This postprocessing step is analogous to the preprocessing ofB′′ in ALGORITHM 1.) Notice we
have analogous preprocessing, multiplication, and postprocessing steps, albeit the steps are “out of order”
from before. (Before, multiplication of the result matrixC by A′ andB′ occurred in postprocessing; now it
occurs in preprocessing, asC is now part of the input.) Call this construction ALGORITHM 2.

Next, we may “tensorize” the two algorithms in a standard way. This consists of dividing the input ma-
trices into blocks, executing ALGORITHM 1 on the blocks themselves, and calling ALGORITHM 2 when the
product of two blocks is needed. As both of these algorithms are explicit and efficient, their “tensorization”
is also explicit and efficient. ALGORITHM 1 multiplies24M/5 ×

( M
4M/5

)

24M/5 and
( M
4M/5

)

24M/5 × 2M/5

matrices, and ALGORITHM 2 multiplies
( M
4M/5

)

24M/5×24M/5 and24M/5×2M/5. Hence their tensorization
multiplies matrices of dimensions
(

24M/5 ·
(

M

4M/5

)

24M/5

)

×
((

M

4M/5

)

24M/5 · 24M/5

)

and

((

M

4M/5

)

24M/5 · 24M/5

)

×
(

2M/5 · 2M/5
)

,

and the algorithm runs inO(52M ·poly(M)) time. Since
( M
4M/5

)

44M/5 ≈ 5M , this means we are multiplying

5M×5M and5M×22M/5 in O(52Mpoly(M)) time. Call this ALGORITHM 3. This is the algorithm obtained
by Coppersmith.

Finally, using the symmetry of ALGORITHM 3 itself, we can obtain an algorithm for multiplying a
5M × 22M/5 matrix with a22M/5 × 5M matrix inO(52Mpoly(M)) time. ALGORITHM 3 is also a bilinear
algorithm that can be interpreted as an efficient way to compute tr(ABC) whereA is 5M × 5M , B is
5M × 22M/5, andC is 22M/5 × 5M . In the above version of ALGORITHM 3, we have treatedA andB as
input, andC as symbolic. TreatingB andC as input yields an algorithm for multiplying5M × 22M/5 and
22M/5 × 5M in O(52Mpoly(M)) time. This algorithm also has a preprocessing step, a product of partial
matrices, then a postprocessing step, which involve multiplications with Vandermonde-style matrices, their
transposes, their inverses, and their inverse transposes.The important point is that this transformation does
not fundamentally change the algorithm: just as ALGORITHM 2 is a “reordering” of ALGORITHM 1, this
transformation of ALGORITHM 3 only reorganizes these efficiently computable operations. It follows the
final algorithm will also be efficiently computable. (Of course, it is possible in principle to describe this
algorithm directly as a preprocessing-multiplication-postprocessing procedure, but it is quite messy.) Let
N = 5M . We have arrived at the following.

Corollary C.1 For all sufficiently largeN , two 0-1 matrices of dimensionsN ×N .1 andN .1 ×N can be
multiplied over the integers inO(N2 · poly(logN)) time.
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