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A fertile area of recent research has demonstrated concrete polynomial time lower bounds for natural hard problems
on restricted computational models. Among these problems are Satisfiability, Vertex Cover, Hamilton Path, MOD6-SAT,
Majority-of-Majority-SAT, and Tautologies, to name a few. The proofs of these lower bounds follow a proof-by-contradiction
strategy that we call resource-trading or alternation-trading. An important open problem is to determine how powerful such
proofs can possibly be.
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theorem proving. We prove that the search for better lower bounds can often be turned into a problem of solving a large series
of linear programming instances. Implementing a small-scale theorem prover based on these results, we extract new human-
readable time lower bounds for several problems and identify patterns that allow for further generalization. The framework
can also be used to prove concrete limitations on the current techniques.
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1. INTRODUCTION
This work is concerned with proving new limitations on computers by exploiting their capabilities.
Many known lower bounds for natural problems use a type of algorithmic argument that we call a
resource-trading proof. Informally, such a proof uses four basic steps:

(1) Assume a hard problem Π can be solved in nc time with resources R. (Let’s abbreviate the
class of such problems as R[nc].) We wish to obtain a contradiction. For example, R[nc] may be
DTISP[nc,poly(logn)], the set of problems solvable in nc time and poly(logn) space (simulta-
neously), and Π may be the SAT problem.

(2) Prove a Speedup Lemma that “trades time for resources”. Informally, such a lemma proves that
the class R[t] is contained in a class S[o(t)], for a more powerful resource S and time bound
t. For example, S[t] may be the class of problems solvable by alternating machines in time t.
Nepomnjascii [Nepomnjascii 1970] showed that every poly(logn) space algorithm running in nk

time can be simulated by a Σk machine (using k alternations) that runs in only O(n ·poly(logn))
time.

(3) Prove a Slowdown Lemma that “trades resources for time”, where S[t] is shown to be in R[td ],
for a small constant d ≥ 1. This typically uses the assumption that Π ∈ R[nc]. For example,
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if SAT has an nc time, poly(logn) space algorithm, then (by a strong form of the Cook-Levin
theorem) it follows that every language accepted by a nondeterministic time-t algorithm can be
perfectly simulated by a deterministic algorithm running in tc+o(1) time and poly(log t) space,
for all polynomials t(n). Consequently, every Σk machine running in t time has an equivalent
deterministic algorithm running in tck+o(1) time and poly(log t) space.

(4) Combine (2) and (3) to show C [t] ⊆ C [t1−ε ], for some ε > 0 and complexity class
C [t], implying a contradiction with a hierarchy theorem for C . For example, if SAT has
an nc time, poly(logn) space algorithm, then Σ2TIME[t] ⊆ DTISP[tc2+o(1),poly(log t)] ⊆
Π2TIME[tc2/2+o(1)], where the first inclusion holds by (3) and the second holds by (2). If c2 < 2,
then we have derived Σ2TIME[t]⊆Π2TIME[o(t)], which contradicts the known time hierarchy
for alternating machines. This argument is precisely the n

√
2−o(1) lower bound of Lipton and

Viglas [Lipton and Viglas 1999].

A detailed description of this style of argument can be found in Section 3. The basic strategy has
been applied in many lower bound settings, dating back to the 70’s. A partial list includes:

Time Versus Space. Hopcroft, Paul, and Valiant [Hopcroft et al. 1977] proved that SPACE[n] *
DTIME[o(n logn)] for multitape Turing machines, by proving the “speedup lemma” that
DTIME[t] ⊆ SPACE[t/ log t] and invoking diagonalization. Their result was also extended to more
general models [Paul and Reischuk 1981; Halpern et al. 1986].

Determinism vs Nondeterminism for Multitape Turing Machines. A celebrated result of Paul-
Pippenger-Szemeredi-Trotter [Paul et al. 1983] is that NTIME[n] 6= DTIME[n] for multitape
Turing machines. The key component in the proof is the “speedup lemma” that DTIME[t] ⊆
Σ4TIME[t/ log∗ t] for multitape TMs.

Small-Bounded Algorithms. In this setting, the computational model is a random access ma-
chine using small workspace (n/(logn)c, n1−ε , and no(1) are typical values). Non-trivial time lower
bounds have been proved for NP-complete problems and problems higher in the polynomial hi-
erarchy [Kanan 1984; Fortnow 1997; Lipton and Viglas 1999; Fortnow and van Melkebeek 2000;
Fortnow et al. 2005; Williams 2006; Williams 2008]. The best known time lower bound for solving
SAT with no(1) space algorithms is n2cos(π/7)−o(1) ≥ n1.801 [Williams 2008]. This bound also holds
for the MODm-SAT problem, for any composite m that is not a prime power. For nondeterminis-
tic algorithms using no(1) space, the best known time lower bound for solving the coNP complete
TAUTOLOGY problem was n

√
2−o(1) [Fortnow and van Melkebeek 2000].

Probabilistic and Quantum Space-Bounded Algorithms. Allender et al. [Allender et al. 2001]
showed that Maj-Maj-SAT requires n1+Ω(1) time to solve on unbounded error machines that use
n1−ε space, for ε > 0. Diehl and Van Melkebeek [Diehl and van Melkebeek 2006] proved that
for k ≥ 2, k-QBF requires Ω(nk−o(1)) time with randomized two-sided error algorithms using no(1)

space. Viola [Viola 2007] has shown that 3-QBF requires n1+δ time on Turing machines with a
random access input tape and two-way read-write access to a random bit tape, for some δ > 0.
Van Melkebeek and Watson [van Melkebeek and Watson 2007] have shown time lower bounds for
Maj-Maj-SAT with quantum algorithms.

General Multidimensional Turing Machines. This model has read-only random access to its in-
put, an no(1) read-write store, and read-write access to a d-dimensional tape for a fixed d ≥ 1. This
model generalizes several others, and is the most powerful (and physically realistic) model known
where we still know non-trivial time lower bounds for SAT. Multidimensional TMs have been stud-
ied for many years; for instance, [Loui 1980; Paul and Reischuk 1981; Grigor’ev 1982; Kannan
1983; Maass and Schorr 1987; Liskiewicz and Lorys 1990; Dietzfelbinger and Hühne 1999; van

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.



Alternation-Trading Proofs, Linear Programming, and Lower Bounds A:3

Melkebeek 2005; Williams 2006] proved lower bounds in this model, and the previous best bound
for SAT was essentially Ω(n

√
(d+2)/(d+1)) time in the d-dimensional case.

Resource-trading proofs have been traditionally ad hoc in their design, making it hard to build
intuition about them. Each argument has its own “custom-built” speedup and slowdown lemma, and
in each setting, these lemmas are applied in rather non-trivial ways. One gets a sense that the space
of all possible proofs might be difficult to systematically study.

1.1. Main Results
We introduce a methodology for reasoning about resource-trading proofs that is also practically
implementable for finding short proofs of time lower bounds. We argue that for almost all known
resource-trading lower bounds, the proofs can be reformulated in a way that the search for new
lower bounds becomes a feasible problem that computers can help attack.1 Informally, we show
that the “hard work” in these proofs can be replaced by a series of linear programming problems.
This approach not only aids us practically in the search for new lower bounds, but also allows us to
understand the limits of what can be proved with slowdown and speedup lemmas.

We apply our methodology to several settings in which lower bounds have been previously ob-
tained. In all cases, the resource being “traded” is alternations, so for the purposes of this work
we call the proofs alternation-trading. We formalize the components used in prior work and their
relevant properties, with the following results.

Deterministic Time-Space Lower Bounds for SAT and Beyond. Aided by results of a com-
puter program, we show that any SAT algorithm running in t(n) time and s(n) space must sat-
isfy t(n) · s(n) ≥ nφ−o(1) infinitely often, where φ ≈ 1.618 · · · is the golden ratio, and for specific
choices of t(n) and s(n), we can prove better lower bounds. Previously, the best known result was
t(n) · s(n) ≥ n1.573 [Fortnow et al. 2005]. It has been conjectured that the current framework of
alternation-trading proofs sufficed to prove an n2−o(1) time lower bound for SAT, against algorithms
using no(1) space.2 We prove that it will be impossible to obtain n2 with alternation-trading proofs,
formalizing a folklore conjecture. A computer search over proofs of small length strongly suggests
that the best known n2cos(π/7)−o(1) lower bound [Williams 2008] is already optimal for the frame-
work. Recent work of the author with Buss [Buss and Williams 2012] has in fact confirmed this
conjecture, showing that the 2cos(π/7) exponent is the best possible for alternation-trading proofs.
We also prove lower bounds on the problem of determining validity of quantified Boolean formulas
with at most k quantifier blocks (also known as QBFk), showing that QBFk requires Ω(nk+1−δk)

time for no(1) space algorithms, where δk < 0.2 and limk→∞ δk = 0.

Nondeterministic Time-Space Lower Bounds for Tautologies. Adapting our approach to this prob-
lem, a computer program found a very short proof improving upon Fortnow and Van Melke-
beek’s lower bound. Longer proofs suggested an interesting pattern. Joint work with Diehl and
Van Melkebeek on these observations resulted in an n41/3−o(1) ≥ n1.587 time lower bound [Diehl et
al. 2011].Computer search suggests that the 41/3 exponent is best possible for alternation-trading
proofs. We can prove that it is not possible to obtain an nφ time lower bound, where φ = 1.618 . . .
is the golden ratio. This is somewhat surprising, since we have known for some time [Fortnow and
van Melkebeek 2000] that an nφ lower bound is provable for deterministic algorithms.

Lower Bounds for Multidimensional Turing Machines. Here, the method uncovers particular be-
havior in the best lower bound proofs, regardless of the dimension of the tapes. Studying computer

1We note that combinatorial arguments such as Santhanam’s time-space lower bound for SAT on multitape Turing ma-
chines [Santhanam 2001] do not fall under the alternation-trading paradigm, but they are already known to have different
limitations.
2The author could not find an explicit reference for this conjecture, but he has received several referee reports in the past that
state it. Also see Lipton-Viglas [Lipton and Viglas 1999] in FOCS’99.
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search results, an Ω(nrd ) time lower bound is formally proved for the d-dimensional case, where
rd ≥ 1 is the root of a particular quintic pd(x) with coefficients depending on d. For example,
r1 ≈ 1.3009, r2 ≈ 1.1887, and r3 ≈ 1.1372. Again, computer search suggests this is best possible,
and we prove that it is impossible to push the time lower bound for d-dimensional TMs to n1+1/(d+1)

with the current tools we have.
These limitations hold for other NP and coNP-hard problems as well; the only property required

is that every set in NTIME[n] (respectively, coNTIME[n]) has sufficiently efficient reductions to the
problem. Furthermore, this approach is not limited to the above, and can be applied to the league of
lower bounds discussed in Van Melkebeek’s surveys [van Melkebeek 2004; van Melkebeek 2006].
We have chosen to present the above cases because in our opinion they are among the most inter-
esting, and the results already illustrate a diversity of structure in alternation-trading proofs. This
work promotes a new methodology for proving lower bounds, where prospective lower-bounders
formalize their proof rules, write a program to test ideas and generate short proofs, then study the
results and extrapolate new results.

1.2. Brief Intuition
Intuitively, the key insight behind our formulation is to separate the discrete choices in an
alternation-trading proof from the real-valued choices, showing that the number of discrete choices
can be made somewhat small, and the remaining real-valued choices can be posed as efficiently
solvable subproblems. The discrete choices consist of the sequence of lemmas to apply in each
step, and which complexity class C [t] to use in the proof by contradiction. We show how to reduce
all alternation-trading proofs into a normal form which greatly reduces the number of necessary
discrete choices, without loss of generality. Real-valued choices come from selecting t, as well as
parameters arising from rule applications. We prove that once the discrete choices are made, the re-
maining real-valued problem can be expressed as an instance of linear programming. This makes it
possible to search for new proofs via computer, and it provides an efficient mechanism for reasoning
rigorously about alternation-trading proofs.

One cannot easily search over all possible proofs, as the number of discrete choices is still ∼
2n/n3/2 for proofs of n lines (proportional to the nth Catalan number). Nevertheless it is still feasible
to search over all 20+ line proofs. These searches reveal regular patterns, indicating that certain
strategies will be most successful in proving lower bounds; in each case we study, the resulting
strategies are different. Following the strategies, we establish new lower bound proofs. The patterns
also suggest how to prove limitations on the proof system.

1.3. Outline of the Paper
The rest of the paper is structured as follows. Section 2 and 3 present some necessary background
on the alternation-trading paradigm. Section 4 focuses on time-space lower bounds for SAT: we
formalize alternationg-trading proofs in this setting (Section 4.1), show how to reduce the optimal
setting of parameters to an instance of linear programming (Section 4.2), present the results of
our theorem-proving program, highlighting the best short lower bound proofs (Section 4.3), prove
limitations on achieving large lower bounds within the framework (Section 4.4), and prove new
time-space tradeoff lower bounds based on the empirical results (Section 4.5). A similar pattern is
followed in Sections 5, 6, and 7, but for time-space lower bounds on quantified Boolean formulas
with a fixed number of alternations, nondeterministic time-space lower bounds for Tautologies,
and deterministic time lower bounds for multidimensional Turing machines, respectively. Section 8
concludes the paper.

2. PRELIMINARIES
We assume basic familiarity with Complexity Theory, especially with the concept of alterna-
tion [Chandra et al. 1981]. We use big-Ω notation in the infinitely often sense, so statements like
“SAT is not in O(nc) time” are equivalent to “SAT requires Ω(nc) time.” All functions are assumed
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constructible within the appropriate bounds. Our default computational model is the random access
machine (RAM), broadly construed: particular variants do not affect the results. In Section 7, we
also consider a general d-dimensional Turing machine model, which has an input tape that is read-
only with random access, a small storage of no(1) bits that is read-write with random access, and an
unbounded d-dimensional tape that is read-write with sequential (two-way) access.

DTISP[t(n),s(n)] is the class of languages accepted by a RAM running in t(n) time and s(n)
space, simultaneously. For convenience, we set DTS[t(n)] := DTISP[t(n)1+o(1),no(1)] to omit neg-
ligible o(1) factors.

In order to properly formalize alternation-trading proofs, we introduce notation for alternating
complexity classes which include input constraints between alternations. These constraints are crit-
ical for the formalism. (Several lower bounds rely on the fact that these input lengths can be small
in certain interesting cases.)

Let us start with an example of the notation, then give a general definition. Let a > 0 and b,c≥ 1.
Define

(∃ nc)bDTS[na]

to be the class of languages recognized by a machine which, on an input x of length n, writes an
nc+o(1) bit string y nondeterministically, takes at most nb+o(1) time to copy nb+o(1) bits z from the
pair 〈x,y〉, then feeds z as input to a machine M running in na+o(1) time and no(1) space. Note the
runtime of M is measured with respect to the initial input length n, not the latter input length nb+o(1)

of z.
We generalize this definition as follows. For i = 1, . . . ,k, let Qi ∈ {∃,∀} and ai > 0, bi ≥ 1. Define

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1 DTISP[nc,ne]

to be the class of languages recognized by a machine M that, on input x of length n, has the following
general behavior on input x:

Set z0 := x.
For i = 1, . . . ,k,

If Qi = ∃, switch to existential mode.
If Qi = ∀, switch to universal mode.
Guess an nai+o(1) bit string y (universally or existentially).
Using at most nbi+1+o(1) time, copy at most nbi+1+o(1) bits zi from the pair 〈zi−1,y〉.

End for
Run an nc+o(1) time, ne+o(1) space machine on the input zk, and output its decision.

When an input constraint bi is unspecified, its default value is max{ai,1}. We say that the existen-
tial and universal modes of an alternating computation are quantifier blocks, to reflect the complexity
class notation. It is crucial to observe that the time bound in the ith quantifier block is measured with
respect to n, the input to the first quantifier block.

Notice that by simple properties of nondeterminism and conondeterminism, we can com-
bine adjacent quantifier blocks that are of the same type, e.g., (∃ na)a(∃ nb)bDTS[nc] =

(∃ nmax{a,b})bDTS[nc]. This useful property is exploited in alternation-trading proofs.

3. A SHORT INTRODUCTION TO ALTERNATION-TRADING PROOFS
In this section, we give a brief overview of the tools that have been used in prior work to prove time-
space tradeoff lower bounds within the alternation-trading paradigm. We focus on deterministic
time lower bounds for satisfiability for algorithms using no(1) space, as this setting has received the
most attention and the other relevant lower bound problems use analogous tools.

It is known that satisfiability of Boolean formulas in conjunctive normal form (SAT) is a complete
problem under tight reductions for a somewhat small nondeterministic time complexity class. The
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class Nondeterministic Quasi-linear Time is defined as

NQL :=
⋃
c≥0

NTIME[n · (logn)c] = NTIME[n · poly(logn)].

THEOREM 3.1 ([COOK 1988; SCHNORR 1978; TOURLAKIS 2001; FORTNOW ET AL. 2005]).
SAT is NQL-complete, under reductions in quasi-linear time and O(logn) space simultaneously,

in the random access machine model. Moreover, each bit of the reduction can be computed in
O(poly(logn)) time and O(logn) space.

This theorem has the following consequences. Let C [t(n)] represent a time t(n) complexity class
under one of the three computational models:

— deterministic RAM using time t and to(1) space,
— co-nondeterministic RAM using time t and to(1) space,
— d-dimensional Turing machine using time t (as defined in the Preliminaries).

Theorem 3.1 implies that if NTIME[n]* C [t], then SAT /∈ C [t], modulo polylogarithmic factors.

COROLLARY 3.2. If NTIME[n] * C [t(n)], then there is a k > 0 such that SAT /∈
C [t(n)/(log t(n))k].

Hence we want to prove NTIME[n] * C [nc] for a large constant c > 1. For the purposes of time
lower bounds for small space algorithms, we work with C [nc] = DTS[nc] = DTISP[nc+o(1),no(1)].
Van Melkebeek and Raz [van Melkebeek 2005] observed that a similar corollary holds for any
problem Π such that SAT reduces to Π under logtime-computable quasi-linear reductions (e.g.,
VERTEX COVER, HAMILTON PATH, 3-SAT, and MAX-2-SAT). It follows that, given a time lower
bound for NTIME[n], similars time lower bounds hold for these specific problems as well.

Speedups, Slowdowns, and Contradictions. Now that our goal is to prove NTIME[n]* DTS[nc],
how can we prove such a separation? In an alternation-trading proof, we assume that NTIME[n] ⊆
DTS[nc] and attempt to establish a contradiction, by applying two lemmas in such a way that a time
hierarchy is violated. One lemma (called the “speedup lemma”) takes a DTS[t] class and places it in
an alternating class with runtime o(t); the other (called the “slowdown lemma”) takes an alternating
class with runtime t and places it in a class with one less alternation and runtime approximately
O(tc).

LEMMA 3.3 (SPEEDUP LEMMA). Let a,e,x satisfy a ≥ 1, 0 ≤ e ≤ a− x, and 0 ≤ x ≤ a− 1.
Then (in the notation of Section 2)

DTISP[na,ne]⊆ (Q1 nx+e)max{1,x+e}(Q2 logn)max{1,e}DTISP[na−x,ne],

for Qi ∈ {∃,∀} where Q1 6= Q2. In particular,

DTS[na]⊆ (Q1 nx)max{1,x}(Q2 logn)1DTS[na−x].

The Speedup Lemma dates back to work of Nepomnjascii [Nepomnjascii 1970] and Kan-
nan [Kanan 1984]. We include its proof for completeness.

PROOF. Let M be a random access machine using na time and ne space. To get a simulation of
M of type

(∃ nx+e)max{1,x+e}(∀ logn)max{1,e}DTISP[na−x,ne],

the simulation N on an input x existentially guesses a sequence of configurations C1, . . . ,Cnx of
M(x). Next, N appends the initial configuration of M(x) to the beginning of the sequence and the
(WLOG, unique) accepting configuration to the end of the sequence. Then N universally guesses an
i∈ {0, . . . ,nx}, and copies Ci and Ci+1 over to a special register z, in O(ne) time. Finally N simulates
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M using only x and z as input; it simulates M(x) starting from configuration Ci and accepts if and
only if Ci+1 is reached within na−x steps.

It is easy to see that the simulation is correct. Note that the input constraints on the quantifier
blocks are satisfied: after the first quantifier block, the input kept has length n+nx+e+o(1), and after
the universal guess of i, the input kept is only x, Ci, and Ci+1, which together have size n+ 2ne ≤
nmax{1,e}+o(1).

Note that in the above alternating simulation, the input to the final DTISP computation is linear in
n+ne, regardless of the choice of x. This is a subtle property that is exploited heavily in alternation-
trading proofs. The Slowdown Lemma is the following folklore result:

LEMMA 3.4 (SLOWDOWN LEMMA). Let a ≥ 1, e ≥ 0, a′ ≥ 0, and b ≥ 1. If NTIME[n] ⊆
DTISP[nc,ne], then for both Q ∈ {∃,∀},

(Q na′)bDTIME[na]⊆ DTISP[nc·max{a,a′,b},ne·max{a,a′,b}].

In particular, if NTIME[n]⊆ DTS[nc], then

(Q na′)bDTIME[na]⊆ DTS[nc·max{a,a′,b}].

PROOF. Let L be a language in the class (Q na′)bDTIME[na], and let A be a RAM of the appro-
priate type that recognizes L. On an input x of length n, A guesses a string y of length na′+o(1), then
feeds an nb+o(1) bit string z to A′(z), where A′ is a deterministic algorithm that runs in O(na) time.
Since NTIME[n]⊆ DTISP[nc,ne] and DTISP is closed under complement, by padding we have

NTIME[p(n)]∪ coNTIME[p(n)]⊆ DTISP[p(n)c, p(n)e]

for all polynomials p(n)≥ n. Therefore A can be simulated with a deterministic algorithm B. As the
total runtime of A is na′+o(1)+nb+o(1)+O(na), B runs in nc·max{a,a′,b}+o(1) time and ne·max{a,a′,b}+o(1)

space.

The final component of an alternation-trading proof is a time hierarchy theorem, the most general
of which is the following, provable by a simple diagonalization argument.

THEOREM 3.5 (ALTERNATING TIME HIERARCHY). For k≥ 0, for all Qi ∈{∃,∀}, ai > a′i≥ 1,
and bi ≥ b′i ≥ 1,

(Q1 na1)b2 · · ·bk (Qk nak)bk+1 DTS[nak+1 ]* (R1 na′1)b′2 · · ·b′k (Rk na′k)b′k+1 DTS[na′k+1 ],

where Ri ∈ {∃,∀} and Ri 6= Qi.

Remark 3.6. Are alternation-trading proofs subject to the usual complexity barriers?3 The Slow-
down Lemma relativizes, but the Speedup Lemma does not relativize in most oracle models, for the
simple reason that the original (simulated) machine runs for longer time than the host (simulating)
machine, and can therefore ask longer queries. This is typically the case. For example, the proof
that NTIME[n] 6= DTIME[n] is non-relativizing, because a powerful enough oracle can render the
two classes equal. Moreover, alternation-trading proofs do not seem to fit in the “natural proofs”
framework either. Natural proofs require that the underlying proof can be used to test whether a
given Boolean function is hard, and that test must give a “hard” verdict on a significant fraction
of the possible functions. Alternation-trading proofs do not fit this mold: they are only concerned
with proving lower bounds for complete problems of a very specific kind. Therefore, we consider
alternation-trading proofs to be in that rare class of non-relativizing and non-naturalizing lower
bounds (but acknowledge that our belief is not unanimously held).

3Background on the known barriers in complexity theory can be found in Arora and Barak ([Arora and Barak 2009], Chapter
23).
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Two Instructive Examples. In order to understand alternation-trading proofs, it is necessary to
consider some examples. The art behind their construction consists of finding the proper sequence
of rules to apply, and the right settings of the parameter x in the Speedup Lemma.

(1) In FOCS’99, Lipton and Viglas proved that SAT cannot be solved by algorithms running in
n
√

2−ε time and no(1) space, for all ε > 0. Their proof can be summarized as follows: by Theo-
rem 3.1, the assumption that there is such a SAT algorithm implies that NTIME[n] ⊆ DTS[nc]
with c2 < 2. Then

(∃ n2/c2
)(∀ n2/c2

)DTS[n2/c2
] ⊆ (∃ n2/c2

)DTS[n2/c] (Slowdown Lemma)

⊆ DTS[n2] (Slowdown Lemma)
⊆ (∀ n)(∃ logn)DTS[n] (Speedup Lemma, with x = 1).

But (∃ n2/c2
)(∀ n2/c2

)DTS[n2/c2
]⊆ (∀ n)(∃ logn)DTS[n] contradicts Theorem 3.5. In fact, one

can show that if c2 = 2, we still have a contradiction with NTIME[n] ⊆ DTS[nc], so the ε can
be removed from the previous statement and state that SAT cannot be solved in n

√
2 time and

no(1) exactly.4
(2) Improving on the previous example, one can show SAT /∈DTS[n1.6004]. If NTIME[n]⊆DTS[nc]

and
√

2≤ c < 2, then by applying the Speedup and Slowdown Lemmas appropriately, one can
derive:

DTS[nc2/2+2] ⊆ (∃ nc2/2)(∀ logn)DTS[n2]

⊆ (∃ nc2/2)(∀ logn)(∀ n)(∃ logn)DTS[n]

= (∃ nc2/2)(∀ n)(∃ logn)DTS[n]

⊆ (∃ nc2/2)(∀ n)DTS[nc]

⊆ (∃ nc2/2)DTS[nc2
]

⊆ (∃ nc2/2)(∃ nc2/2)(∀ logn)DTS[nc2/2]

= (∃ nc2/2)(∀ logn)DTS[nc2/2]

⊆ (∃ nc2/2)DTS[nc3/2]

⊆ DTS[nc4/2]

When c2/2+2 > c4/2 (which happens if c < 1.6004), we have DTS[na]⊆ DTS[na′ ] for some
a > a′. Notice that we do not know if DTS[na]* DTS[na′ ] when a > a′, as the space bounds on
both sides of the inequality are the same. However one can still show by a translation argument
(along the lines of Lemma 4.3, proved in the next section) that either DTS[na] * DTS[na′ ] or
NTIME[n]* DTS[nc], concluding the proof.

The above proof was found by a computer program. By “found”, we mean that the program
applied the Speedup and Slowdown Lemmas in precisely the same order and discovered the same
parameter settings, having only minimum knowledge of these Lemmas along with a way to check
the validity of the parameters. Moreover, the program verified that the above is the best possible
alternation-trading proof that applies the Speedup and Slowdown Lemmas for at most 7 times. In
the next section, we give a formal definition of “alternation-trading proof” and show what can be
done with it.

4Suppose NTIME[n] ⊆ DTS[nc] and Σ2TIME[n] ⊆ Π2TIME[n1+o(1)]. The first assumption, along with the Speedup and
Slowdown Lemmas, implies that for every k there’s a K satisfying Σ2TIME[nk]⊆NTIME[nkc]⊆ΣKTIME[n]. But the sec-
ond assumption implies that ΣKTIME[n] = Σ2TIME[n1+o(1)]. Hence Σ2TIME[nk]⊆Σ2TIME[n1+o(1)], which contradicts
the time hierarchy for Σ2TIME. Note that a more generic version of this argument is given in Lemma 4.3.
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4. TIME-SPACE LOWER BOUNDS FOR SAT
We start by describing our framework for alternation-trading proofs in the case of time-space lower
bounds for NTIME[n] problems, such as SAT. We shall describe the approach in some detail here;
the other lower bound settings discussed in the paper will assume knowledge of this section.

Alternation-trading proofs apply a sequence of “speedup” and “slowdown” lemmas in some order,
with the goal of reaching a contradiction by a time hierarchy theorem. We formalize alternation-
trading proofs for DTS classes as follows:

Definition 4.1. Let c > 1. An alternation-trading proof for c is a list of complexity classes of
the form:

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1 DTS[nak+1 ], (1)

where k ≥ 0, Qi ∈ {∃,∀}, Qi 6= Qi+1, ai ≥ 0, and bi ≥ 1, for all i. (When k = 0, the class is deter-
ministic.) The items of the list are called lines of the proof. Each line is obtained from the previous
line by applying either a speedup rule or a slowdown rule. More precisely, if the ith line is

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1 DTS[nak+1 ],
then the (i+1)st line has one of four possible forms:

— (Speedup Rule 0) (Qk nx)max{x,1}(Qk+1 n0)1DTS[nak+1−x], for k = 0 and 0≤ x≤ ak+1−1.
— (Speedup Rule 1) (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak,x})max{x,bk+1}(Qk+1 n0)bk+1 DTS[nak+1−x],

for k > 0 and 0≤ x≤ ak+1−1.
— (Speedup Rule 2) (Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nx)max{x,bk+1}(Qk+2 n0)bk+1 DTS[nak+1−x],

for k > 0 and 0≤ x≤ ak+1−1.
— (Slowdown Rule) (Q1 na1)b2(Q2 na2) · · ·bk−1 (Qk−1 nak−1)bk DTS[nc·max{ak+1,ak,bk,bk+1}], for k >

0.5

An alternation-trading proof shows the implication (NTIME[n] ⊆ DTS[nc] =⇒ A1 ⊆ A2) if its
first line is A1 and its last line is A2.

The definition comes directly from the statements of the Speedup Lemma (Lemma 3.3) and Slow-
down Lemma (Lemma 3.4) for space-bounded computations. (Note the n0 in the Speedup Lemma
corresponds to logn ≤ no(1), which is negligible. Polylogarithmic and no(1) factors do not affect
any of the elements in these proofs: the speedup, slowdown, time hierarchies, and reduction to SAT
are unaffected by no(1) factors.) Speedup Rules 0, 1, and 2 are easily verified to be syntactic for-
mulations of the Speedup Lemma, where the DTS part of the sped-up computation only reads two
guessed configurations. For instance, Speedup Rule 1 holds, since

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1 DTS[nak+1 ]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk nx)max{bk+1,x}(Qk+1 n0)bk+1 DTS[nak+1 ]

⊆ (Q1 na1)b2(Q2 na2) · · ·bk (Qk nmax{ak,x})max{bk+1,x}(Qk+1 n0)bk+1 DTS[nak+1 ].

Rule 2 is akin to Rule 1, except that it uses opposite quantifiers in its invocation of the Speedup
Lemma. The Slowdown Rule works analogously to Lemma 3.4. It follows that alternation-trading
proofs are sound.

Note Speedup Rules 0 and 2 add two quantifier blocks, Speedup Rule 1 adds only one quantifier,
and all three rules introduce a parameter x.

4.1. Normal Form for Alternation-Trading Proofs
We now introduce a normal form for alternation-trading proofs. Define any class of the form (1) to
be simple. We show that any lower bound provable with complementary simple classes can also be

5Strictly speaking, it is redundant to put bk in the maximum here, as bk is always dominated by the other values. We put it in
the rule for the sake of completeness.
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established with a normal form proof. This greatly reduces the degrees of freedom in a proof, as we
no longer have to worry about which complementary simple classes to choose for the contradiction.

Define classes A1 and A2 to be complementary if A1 is the class of complements of languages
in A2. Every known (model-independent) time-space lower bound for SAT shows “NTIME[n] ⊆
DTS[nc] implies A1 ⊆ A2”, for some complementary simple classes A1 and A2, contradicting a time
hierarchy theorem (in particular, Theorem 3.5). A similar claim holds for nondeterministic time-
space lower bounds against tautologies (which prove NTIME[n]⊆ coNTS[nc] implies A1 ⊆ A2), for
d-dimensional machine lower bounds solving SAT (which prove NTIME[n]⊆DTIMEd [nc] implies
A1 ⊆ A2), and other related problems such as those described in the Introduction.

Definition 4.2. Let c≥ 1. An alternation-trading proof for c is in normal form if (a) the first and
last lines are DTS[na] and DTS[na′ ] respectively, for some a ≥ a′, and (b) no other lines are DTS
classes.

Next we show that a normal form proof for c implies that NTIME[n] * DTS[nc], and that any
alternation-trading proof of NTIME[n]* DTS[nc] can be rewritten in normal form.

LEMMA 4.3. Let c≥ 1. If there is an alternation-trading proof for c in normal form having at
least two lines, then NTIME[n]* DTS[nc].

PROOF. Let P be an alternation-trading proof for c in normal form. We consider two cases.
Suppose a> a′. In this case, NTIME[n]⊆DTS[nc] implies DTS[na]⊆DTS[na−δ ] for some δ > 0.

By translation, DTS[na]⊆ DTS[na−δ ] implies

DTS[na2/(a−δ )]⊆ DTS[na]⊆ DTS[na−δ ],

and DTS[na·(a/(a−δ ))i
] ⊆ DTS[na−δ ] for all i ≥ 0. Since δ > 0, this implies DTS[nL] ⊆ DTS[na−δ ]

for all L≥ a−δ . Therefore, if NTIME[n]⊆ DTS[nc] then for all L≥ a,

NTIME[nL]⊆ DTS[nLc]⊆ DTS[na−δ ]⊆ coNTIME[na−δ ],

a contradiction to the time hierarchy (Theorem 3.5).
Suppose a = a′. Let A be a line in P with a positive number of alternations. (Such a line must exist

since P has at least two lines.) The proof P proves that NTIME[n] ⊆ DTS[nc] implies DTS[na] ⊆
A⊆ DTS[na′ ], so A = DTS[na].

Since DTS[na] is closed under complement and A = DTS[na], we have

A = A′, (2)

where A′ is the complement of A. Without loss of generality, assume the first quantifier block of A
is existential. Then for some sufficiently small δ ∈ (0,1], we have

A′ = (∀ nδ )A′ and A = (∃ nδ )A. (3)

Now consider the class DTS[nδd k
δ
e] ⊇ DTS[nk], for arbitrary k ≥ 1. By the Speedup Lemma

(Lemma 3.3) and the fact that DTS[na]⊆ A′ for some a > 0,

DTS[nk]⊆ DTS[nδd k
δ
e]⊆ (∃ nδ )(∀ nδ ) · · ·(∃ nδ )(∀ nδ )︸ ︷︷ ︸

dk/δe

A′.

By repeatedly applying equations (2) and (3) and using the fact that δ < 1, we derive

(∃ nδ )(∀ nδ ) · · ·(∃ nδ )(∀ nδ )A′ = (∃ nδ )(∀ nδ ) · · ·(∃ nδ )A′

= (∃ nδ )(∀ nδ ) · · ·(∃ nδ )A

= (∃ nδ )(∀ nδ ) · · ·A
= · · ·= (∃ nδ )(∀ nδ )A′ = (∃ nδ )A′ = (∃ nδ )A = A.
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Therefore DTS[nk] ⊆ A, for every k ≥ 1. Assuming NTIME[n] ⊆ DTS[nc], we have NP ⊆⋃
k≥1 DTS[nk]. Hence

NP⊆
⋃
k≥1

DTS[nk]⊆ A = DTS[na]⊆ coNTIME[na],

contradicting the time hierarchy (Theorem 3.5). Therefore NTIME[n] * DTS[nc] in this case as
well.

THEOREM 4.4. Let A1 and A2 be complementary. If there is an alternation-trading proof P for
c that shows (NTIME[n]⊆DTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof for c, of length
at most that of P.

PROOF. Consider an alternation-trading proof P for c, written as

P = A1,C1, . . . ,Ck,A2.

Define the dual proof P’ by

P′ = A2,¬C1, . . . ,¬Ck,A1,

where the notation ¬C denotes the unique complementary simple class for C, i.e. every ‘∀’ in C is
replaced with ‘∃’, and vice-versa. Note that P′ is an alternation-trading proof if and only if P is one.

Since the quantifiers of the first and last line of P are different, note that there must be a line
Ci = DTS[na] for some a.

— Suppose there is only one deterministic class in P; call it Ci. Then

P′′ =Ci,Ci+1, . . .Ck,A2,¬C1, . . . ,¬Ci

is also an alternation-trading proof, obtained by piecing together the appropriate lines from P and
P′. However, Ci = ¬Ci, since DTS[na] is closed under complement. Hence P′′ is in normal form:
its first and last lines are DTS classes, and no intermediate class is a DTS class.

— Suppose there are k ≥ 2 different DTS classes in P. Write P as

P = A1, . . . ,DTS[na1 ], . . . ,DTS[na2 ], . . . , . . . ,DTS[nak ], . . . ,A2.

There are two cases:
- If there is an i ∈ [k] satisfying ai ≥ ai+1, we are done: let P′′ to be the sequence of lines from

DTS[nai ] and DTS[nai+1 ], and this is in normal form.
- If ai < ai+1 for every i, then set P′′ = DTS[nak ], . . . ,A2, . . . ,DTS[na1 ], where the classes in

the first “. . .” in P′′ are taken directly from P, and the classes in the second “. . .” in P′′ are
obtained by taking the lines A2, . . . ,DTS[na1 ] in P′. P′′ is in normal form since ak > a1.

For the remainder of this section, we assume that all alternation-trading proofs under discussion
are in normal form. The important consequence of Lemma 4.3 and Theorem 4.4 is that we greatly
simplify the space of lower bound proofs we have to consider. For example, using normal form
proofs, we can show that every application of Speedup Rule 2 can always be replaced by applications
of Speedup Rule 1. For this reason we just refer to the Speedup Rule, depending on which of Rule
0 or Rule 1 applies. This further simplifies the kinds of proofs we have to study.

LEMMA 4.5. For every alternation-trading proof that NTIME[n]⊆DTS[nc] =⇒A1⊆A2, there
is another alternation-trading proof of the same implication that does not use Speedup Rule 2.

PROOF. Consider a proof P that applies Speedup Rule 2 at some line. The previous line has the
form

B = (Q1 na1)b2 · · ·bk (Qk nak)bk+1 DTS[nak+1 ]
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and the next line has the form

A = (Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 nx′)max{x′,bk+1}(Qk+2 n0)bk+1 DTS[nak+1−x′ ],

for some x′ ∈ [0,ak+1− 1]. Starting at the line B, let us apply Speedup Rule 1 instead, with x = 0.
This yields the class

B1 = (Q1 na1)b2 · · ·bk (Qk nmax{ak,0})max{bk+1,0}(Qk+1 n0)bk+1 DTS[nak+1−0]

= (Q1 na1)b2 · · ·bk (Qk nak)bk+1(Qk+1 n0)bk+1 DTS[nak+1 ].

Applying Speedup Rule 1 with x = x′, we obtain the class

(Q1 na1)b2(Q2 na2) · · ·bk (Qk nak)bk+1(Qk+1 nmax{x′,0})max{x′,bk+1}(Qk+2 n0)bk+1 DTS[nak+1−x′ ],

which is precisely the class A obtained above.

Proof Annotations. Different lower bound proofs can result in quite different sequences of
speedups and slowdown rule applications. A proof annotation represents such a sequence.

Definition 4.6. A proof annotation for an alternation-trading proof of ` lines is the (`− 1)-bit
vector A where for all i= 1, . . . , `−1, A[i] = 1 (respectively, A[i] = 0) if the ith line applies a Speedup
Rule (respectively, a Slowdown Rule).

An (`−1)-bit proof annotation corresponds to a “strategy” for an `-line proof. For a normal form
alternation-trading proof with ` lines, it is not hard to show that its annotation A must have A[1] = 1,
A[`−2] = 0, and A[`−1] = 0.

The number of possible normal form proof annotations is closely related to the number of well-
balanced strings over parentheses. Recall that the kth Catalan number is C(k) = 1

k+1

(2k
k

)
. A well-

known fact states that the number of well-balanced strings of length 2k is C(k).

PROPOSITION 4.7. Let ` > 3 be even. The number of possible annotations for normal form
proofs of ` lines is C(`/2−1).

PROOF. For clarity, let us denote the left-parenthesis character by L, and the right-parenthesis
by R. We claim that the set of normal form annotations with ` lines can be put in one-to-one corre-
spondence with strings of balanced parentheses of the form LxR, where x is an non-empty balanced
parentheses string of length `−2. Therefore, there is a one-to-one correspondence between normal
form annotations of ` lines and well-parenthesized strings of length `−2, which will establish the
proposition.

Each normal form annotation A of ` lines begins with A[1] = 1, ends with A[`−2] = A[`−1] = 0,
and has the property that for all i = 2, . . . , `−1,

i

∑
j=1

A[ j]≥

(
i

∑
j=1

(1−A[ j])

)
−1. (4)

That is, the sum of all ones among A[1], . . . ,A[i] is at least the sum of all zeroes among A[1], . . . ,A[i],
minus one. Furthermore, the sum of all ones in A equals the sum of all zeroes in A minus one.
(This follows from the facts: a normal form proof must have a nonzero number of quantifiers on
each line, for all lines other than the first and the last; two quantifiers are introduced with the first
speedup; one quantifier is introduced in every subsequent speedup; one quantifier is removed with
each slowdown.)

We can map A to a string of parentheses B, by defining a map µ(0) = R, µ(1) = L, and setting

B = L µ(A[1])µ(A[2]) · · ·µ(A[`−2])R.

Note that B is a string of length `. We now claim that B is well-balanced. Let B[i] denote the ith
character in B. By the inequality (4) and the fact that A[`−1] = 0, we have that for all i = 1, . . . , `,
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the sum of all L’s among B[1], . . . ,B[i] is at least the sum of all R’s among B[1], . . . ,B[i], and the
total number of L’s among B[1], . . . ,B[`] equals the total number of R’s among B[1], . . . ,B[`]. This is
exactly the (iterative) definition of a well-balanced parenthesis string.

Therefore, normal form annotations with ` lines are in one-to-one correspondence with strings of
balanced parentheses of length ` of the form LxR. The number of these strings is C(`/2−1).

Proposition 4.7 implies that the number of possible annotations for proofs of ` lines is Θ(2`/`3/2).
Note that an annotation does not determine a proof entirely, as there are other parameters to set.
(The problem of determining optimal values for these parameters is tackled in the next section.) To
illustrate the annotation concept, we give four examples.

— Lipton-Viglas’ n
√

2 lower bound [Lipton and Viglas 1999] (from the Introduction) has the anno-
tation [1,0,0].

— The n1.6004 bound of the Short Introduction (Section 3) corresponds to [1,1,0,0,1,0,0].
— The nφ bound of Fortnow-Van Melkebeek [Fortnow and van Melkebeek 2000] is an inductive

proof, corresponding to an infinite sequence of annotations. In normal form, the sequence is:
[1,0,0], [1,1,0,0,0], [1,1,1,0,0,0,0], . . .

— The n2cos(π/7) bound [Williams 2008] has two stages of induction. Let A = 1,0, . . . ,1,0,0, where
the ‘. . .’ contain any number of repetitions of the pattern 1,0. The sequence of annotations is [A],
[1,A,A], [1,1,A,A,A], [1,1,1,A,A,A,A], . . .
That is, the proof performs many speedups, then a sequence of many slowdown-speedup alterna-
tions, then two consecutive slowdowns, repeating this until all the quantifiers have been removed.

4.2. Translation To Linear Programming
Given a (normal form) proof annotation, how can we determine the best proof possible with it?
That is, how do we determine the largest time lower bound that can be obtained by following the
annotation? For a fixed annotation, the runtimes of the first and last DTS classes of the proof are
free parameters, and each application of a Speedup Rule also introduces a parameter xi. We now
show how to reduce an annotation A and c > 1 to a linear program that is feasible if and only if
there is an alternation-trading proof of NTIME[n]* DTS[nc] with annotation A. More precisely, the
problem of setting parameters can be viewed as an arithmetic circuit evaluation where the circuit
has max gates, addition gates, and input gates that multiply their input by c. Such circuits can be
evaluated using a linear program (cf. [Derman 1972]) that minimizes the sum of the gate values.

Let A be an annotation of `− 1 bits, and let m be the maximum number of quantifier blocks in
a line of A; note m is easily computed in linear time. The target LP has variables ai, j, bi, j, and xi,
for all i = 0, . . . , `− 1 and j = 1, . . . ,m. The variables ai, j represent the runtime exponent of the
jth quantifier block in the class on the ith line (where the innermost quantifier block is considered
“first”, the next innermost is considered “second”, and so on), bi, j is the input exponent to the jth
quantifier block of the class on the ith line, and for all lines i that use a Speedup Rule, xi is the choice
of x in the Speedup Rule. For example:

— If the kth line of a proof is DTS[na], the corresponding constraints are
ak,1 = a, bk,1 = 1, (∀k > 0) ak,i = bk,i = 0.

— If the kth line of a proof is (∀ na′′)b′(∃ na′)bDTS[na], then the constraints are
ak,0 = a, bk,1 = b, ak,1 = a′, bk,1 = b′, ak,2 = a′′, bk,2 = 1, (∀k > 2) ak,i = bk,i = 0.

The objective is to minimize ∑i, j(ai, j +bi, j)+∑i xi. The LP constraints depend on the lines of the
annotation, as follows.

Initial Constraints. For the 0th and (`−1)th lines we have a0,1 ≥ a`−1,1, as well as

a0,1≥ 1, b0,1 = 1, (∀ k> 1) a0,k = b0,k = 0, and a`−1,1≥ 1, b`−1,1 = 1, (∀k> 1) a`−1,k = b`−1,k = 0,

representing DTS[na0,1 ] and DTS[na`−1,0 ], respectively.
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The first line of a proof always applies Speedup Rule 1, having the form
(Q1nx)max{x,1}(Q2 n0)1DTS[na−x]. So the constraints for the 1st line are:

a1,1 = a0,1− x1, b1,1 = 1, a1,2 = 0, b1,2 ≥ x1, b1,2 ≥ 1, a1,3 = x3, b1,3 = 1,
(∀ k : 4≤ k ≤ m) a1,k = b1,k = 0.

The below constraint sets simulate the Speedup and Slowdown Rules:

Speedup Rule Constraints. For the ith line where i > 1 and A[i] = 1, the constraints are

ai,1 ≥ 1, ai,1 ≥ ai−1,1− xi, bi,1 = bi−1,1, ai,2 = 0, bi,2 ≥ xi, bi,2 ≥ bi−1,1, ai,3 ≥ ai−1,2,
ai,3 ≥ xi, bi,3 = bi−1,2, (∀ k : 4≤ k ≤ m) ai,k = ai−1,k−1,bi,k = bi−1,k−1.

These constraints express that · · · b2(Q2 na2)b1 DTS[na1 ] in the (i−1)th line is replaced with

· · · b2(Q2 nmax{a2,x})max{x,b1}(Q1 n0)b1 DTS[nmax{a1−x,1}]

in the ith line, where Q1 is opposite to Q2.

Slowdown Rule Constraints. For the ith line where A[i] = 0, the constraints are

ai,1 ≥ c ·ai−1,1, ai,1 ≥ c ·ai−1,2, ai,1 ≥ c ·bi−1,1, ai,1 ≥ c ·bi−1,2, bi,1 = bi−1,2
(∀ k : 2≤ k ≤ m−1) ai,k = ai−1,k+1, bi,k = bi−1,k+1, ai,m = bi,m = 0.

These express the replacement of · · · b2(Q1na2)b1 DTS[na1 ] in the (i−1)th line with

· · · b2 DTS[nc·max{a1,a2,b1,b2}]

in the ith line.
This concludes the description of the LP. To find the largest c that still yields a feasible LP, we can

simply binary search for it. The following theorem summarizes the above discussion, along with the
fact that linear programming on n variables, poly(n) constraints, and n-bit coefficients can be solved
in poly(n) time.

THEOREM 4.8. Given a proof annotation of n lines, the best possible lower bound proof follow-
ing the annotation can be determined up to n digits of precision, in poly(n) time.

4.3. Empirical Results
Following the above formulation, we wrote a computer program that given a proof annotation gen-
erates the relevant linear programming instance, solves it, then prints the resulting SAT time-space
lower bound proof in human-readable form. For proof annotations exceeding 100 lines, we used
lp solve to solve the corresponding linear program.6

To search for proof annotations, we wrote routines for exhaustive search and uniform random
generation of annotations. To perform the sampling, we adapted a simple method for producing
random well-balanced strings, given by Arnold and Sleep [Arnold and Sleep 1980]. We also wrote
heuristic search programs that derive new proofs from old ones. One program starts with a queue of
annotations, pulls the head of the queue, and tries all ways to add at most four bits to the annotation.
If the resulting lower bound from the new annotation increases, the new annotation is added to the
tail of the queue. This simple strategy generated all the optimal lower bounds that were found by
exhaustive search, and more.7 (By “optimal”, we mean “optimal with respect to the length of the
proof.”)

Using up to 20 digits of precision, we verified all the previously known lower bounds, such as
the n2cos(π/7) bound. In some cases, we found shorter-length lower bound proofs than previously

6The lp solve package is an open source simplex-based linear programming solver, available to download at
http://lpsolve.sourceforge.net/.
7Our Maple code can be found at http://www.stanford.edu/rrwill/LB.* where * can be txt (text file) or mws (Maple
worksheet).

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.



Alternation-Trading Proofs, Linear Programming, and Lower Bounds A:15

known, but no lower bound greater than n2cos(π/7). To check if the choice of parameters in the
2cos(π/7) ≈ 1.8019 lower bound proof were tight, we tested a LP corresponding to a 300-line
annotation for our proof of the 1.8019 bound, and found that it was feasible for c = 1.8017 but
infeasible for 1.8018; moreover, its choice of parameters corresponded precisely to those of previous
work [Williams 2008]. For all even k = 2, . . . ,26, we exhaustively searched over all valid proof
annotations with k lines. The best lower bounds found for each length k are given in the below
table. For k > 26 we have not exhaustively searched all proofs, but instead used a heuristic search
as described above; these rows of the table are marked with an asterisk.8

k Optimal Proof Annotation(s) With k Lines L.B. Exponent
4 [1,0,0] 1.4142
6 [1,0,1,0,0] 1.5213

[1,1,0,0,0]
8 [1,1,0,0,1,0,0] 1.6004
10 [1,1,0,0,1,0,1,0,0] 1.6333

[1,1,0,1,0,0,1,0,0]
[1,1,1,0,0,0,1,0,0]

12 [1,1,1,0,0,1,0,0,1,0,0] 1.6635
14 [1,1,1,0,0,1,0,0,1,0,1,0,0] 1.6871
16 [1,1,1,0,0,1,0,1,0,0,1,0,1,0,0] 1.6996

[1,1,1,0,1,0,0,1,0,0,1,0,1,0,0]
[1,1,1,1,0,0,0,1,0,0,1,0,1,0,0]

18 [1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0] 1.7121
20 [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,0] 1.7232
22 [1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.7322
24 [1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.7378

[1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0]
[1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0]

26 [1,1,1,1,1,0,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.7437
28* [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.7491
30* [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,0] 1.7537
32* [1,1,1,1,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0] 1.7577
34* [1,1,1,1,1,0,0,1,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0] 1.7606

[1,1,1,1,1,0,1,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]
[1,1,1,1,1,1,0,0,0,1,0,0,1,0,1,0,0,1,0,1,0,1,0,0,1,0,1,0,1,0,1,0,0]

The proofs produced by the annotations in the table have strong similarities to those in the
2cos(π/7) lower bound. For example, the best 14-line proof (proving an Ω(n1.6871) lower bound)
looks like:

0, DTS[n^5.275587925]
1, (E n^1.853485593)(A n^1.)DTS[n^3.422102331]
2, (E n^1.853485593)(A n^1.422102331)(E n^1.)DTS[n^2.]
3, (E n^1.853485593)(A n^1.422102331)(E n^1.)(A n^1.)DTS[n^1.]
4, (E n^1.853485593)(A n^1.422102331)(E n^1.)DTS[n^1.687100000]
5, (E n^1.853485593)(A n^1.422102331)DTS[n^2.846306408]
6, (E n^1.853485593)(A n^1.423153204)(E n^1.)DTS[n^1.423153204]
7, (E n^1.853485593)(A n^1.423153204)DTS[n^2.401001771]
8, (E n^1.853485593)DTS[n^4.050730087]
9, (E n^1.853485593)(A n^1.)DTS[n^2.197244494]
10, (E n^1.853485593)DTS[n^3.706971186]
11, (E n^1.853485593)(A n^1.)DTS[n^1.853485593]
12, (E n^1.853485593)DTS[n^3.127015544]
13, DTS[n^5.275587925]

8Note: we did not formally verify that (for example) the three normal form annotations with 10 lines actually yield the
exact same lower bound exponent, nor did we verify this for any of the other annotations that yield approximately the same
exponent.
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It is clear that there is a strong correlation between later rows of the table and earlier ones. For
example, there is a tie for best annotation at 10, 16, 24, and 34 lines, among three annotations that
differ only in three bits. To further understand what is happening, let us introduce some abbrevia-
tions. Where an annotation contains the string (1 0)k 0, we put the symbol k, for k ≥ 1. Where an
annotation contains the string 11000, we just put 0. The following table emerges:

#Lines Best Proof Annotation(s) L.B. ∆

4 1 1.4142 0
6 2 1.5213 0.1071

0
8 1 2 1.6004 0.0791
10 1 1 2 1.633315 0.032915

1 2 1
1 0 1

12 1 1 1 1 1 1.6635 0.0302
14 1 1 1 1 2 1.6871 0.0236
16 1 1 1 2 2 1.699676 0.012576

1 1 2 1 2
1 1 0 1 2

18 1 1 1 1 1 1 2 1.7121 0.0125
20 1 1 1 1 1 2 2 1.7232 0.0111
22 1 1 1 1 1 2 3 1.7322 0.0090
24 1 1 1 1 2 2 3 1.737851 0.005651

1 1 1 2 1 2 3
1 1 1 0 1 2 3

26 1 1 1 1 1 1 1 2 3 1.7437 0.005849
28* 1 1 1 1 1 1 2 2 3 1.7491 0.0054
30* 1 1 1 1 1 1 2 3 3 1.7537 0.0046
32* 1 1 1 1 1 1 2 3 4 1.7577 0.0040
34* 1 1 1 1 1 2 2 3 4 1.760632 0.002932

1 1 1 1 2 1 2 3 4
1 1 1 1 0 1 2 3 4

(Here, the ∆ of a row is the difference between the exponent of that row and the exponent of the
previous row.) For an optimal annotation that ends with a non-zero k, a longer optimal annotation
can be obtained by adding either a k or k+1 to the end, and a 1 at the beginning. (There are of course
some restrictions– there are no more than three consecutive 1’s, no more than two consecutive
2’s, etc.) This table suggests that we examine proof annotations of the form 1 · · · 1 0 1 2 3 4 · · ·.
Unfortunately these annotations do not lead to an improvement over the 2cos(π/7) exponent. To
illustrate, for the 424 line proof annotation denoted by

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 · · · 17 18 19,

experiments with lp solve revealed that the optimal exponent is only in the interval
[1.80175,1.8018). These results point strongly to the idea that there is no alternation-trading proof
that NTIME[n]* DTS[nc], for any c > 2cos(π/7)≈ 1.8019. We are led to:

CONJECTURE 4.9. There is no alternation-trading proof that NTIME[n] * DTS[nc], for any
c > 2cos(π/7).

This conjecture was recently settled by Sam Buss and the author [Buss and Williams 2012].

4.4. Provable Limit on Alternation-Trading Proofs
The proof of Conjecture 4.9 is rather technical, building substantially on the work of the present pa-
per. In brief, the proof of Conjecture 4.9 performs a series of reductions on the rules of alternation-
trading proofs, simplifying the rules further and further (introducing some new rules which capture
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countably many applications of the original rules), until a proof system is reached that can be com-
pletely analyzed. It is much easier to prove a partial result along these lines:

THEOREM 4.10. There is no alternation-trading proof that NTIME[n]* DTS[n2].

In their paper showing that SAT cannot be solved in O(nφ ) time and no(1) space, Fortnow et
al. [Fortnow et al. 2005] write that “some complexity theorists feel that improving the golden ratio
exponent beyond 2 would require a breakthrough.” The below is a simple formal proof of this
sentiment.

Proof of Theorem 4.10. (Sketch) Suppose there is such a proof, and let A be a minimum length
annotation in normal form for it. We claim that A can be made shorter, yet the resulting LP is still
feasible if the original LP was feasible.

First we observe that every normal form annotation contains a sequence 1,0. Recall that in the
proof of Proposition 4.7, we showed that normal form annotations can be put in 1-1 correspondence
with strings of balanced parentheses of the form (x), where x is an non-empty balanced parentheses
string. The first speedup in a proof corresponds to ((, as it introduces two quantifiers, all other
speedup applications correspond to a (, and a slowdown correponds to a ). Since there is always
an adjacent parentheses pair () in any string of balanced parentheses, there must also be some
occurrence of 1,0 in a valid proof annotation. If this 1,0 can be removed from A without changing
the feasibility of the underlying linear program, the claim is proved.

The two lines in the proof corresponding to the sequence 1,0 (including the previous line) have
the form:

· · ·bk−1 (Qk−1 nak−1)bk(Qk nak)bk+1 DTS[nak+1 ] (5)

· · ·bk−1 (Qk−1 nak−1)bk(Qk nmax{x,ak})max{x,bk+1}(Qk+1 logn0)bk+1 DTS[nak+1−x] (6)

· · ·bk−1 (Qk−1 nak−1)bk(Qk nmax{x,ak})max{x,bk+1}DTS[nmax{c(ak+1−x),cx,cbk+1}] (7)

Every parameter in the class (7) is at least the corresponding parameter in the class (5), except
for possibly the runtime of the DTS computation. Hence if ak+1 ≤ c(ak+1− x), or ak+1 ≤ cx, or
ak+1 ≤ cbk+1, then 1,0 could be removed without changing the feasibility of the LP. However, if
both ak+1 > c(ak+1−x) and ak+1 > cx, then 2ak+1 > c(ak+1−x)+cx, which implies a contradiction
for c≥ 2. 2

4.5. Generalization to Arbitrary Sublinear Space Bounds
While studying the output of the theorem prover did not yield an improved time lower bound, it did
provide enough insight to prove a new lower boundon the time-space product of any SAT algorithm.

Using Lemma 3.3 in its full generality, it is possible to adapt our linear programming formulation
to prove time lower bounds for SAT for any fixed space bound nδ , where δ ∈ (0,1). This introduces
a new variable δ in the LP formulation. Table I gives time-space pairs for which our theorem prover
has shown that no SAT algorithm can satisfy both time and space requirements simultaneously.

Based on this table, it is natural to conjecture that the time-space product for any algorithm
solving SAT is at least Ω(n1.75).9

In what follows, we prove a weaker time space product lower bound of Ω(n1.618), and show how
one can extend this proof to yield stronger results for specific time and space bounds. The previously
best known bound on the time-space product was Ω(n1.573) [Fortnow et al. 2005]. While the proof
annotations in the below are analogous to the 2cos(π/7) bound (as suggested by the experiments),

9An earlier version of the paper conjectured (and unfortunately claimed) that the time-space product for all time and space
bounds was at least n1.801. Subsequent work with Sam Buss has since demonstrated that proving that conjecture would
require new techniques [Buss and Williams 2012]. This subsequent work also gives a new way of automatically proving
time-space lower bounds, which further improve the tradeoffs in the above table.
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Table I. SAT
Time-Space
Lower Bounds

Time Space
n1.06 n.9

n1.14 n.75

n1.24 n.666

n1.32 n.5

n1.44 n.333

n1.51 n.25

n1.65 n.1

n1.75 n.05

the parameter settings in the below proof rely a great deal on our study of the theorem prover’s
output.

THEOREM 4.11. Let t(n) and s(n) be bounded above by polynomials. Any algorithm solving
SAT in time t and space s requires t · s = Ω(nφ−ε) for all ε > 0.

PROOF. Suppose SAT is solved in time t = nc and space s = nd , with c+ d ≤ φ = 1.618 · · · ,
where φ is the golden ratio. Of course we must have c≥ 1, and so d ≤ 1−φ < 1. By Theorem 3.1,
it follows that NTIME[n]⊆ DTISP[nc+o(1),nd+o(1)].

In this setting, we will introduce a new parameter e ∈ [0,2−φ ] representing the space exponent
of the initial DTISP computation. To obtain a contradiction, the parameter e will need to exceed
the final space exponent obtained in the proof derivation, in order to yield a contradiction. More
precisely, we will give a proof of the form

DTISP[nC,ne]⊆ ·· · ⊆ DTISP[nD,ne′ ],

where C,D,e′ are rational functions of c and d; to obtain a contradiction we will require that both
C > D and e > e′.

Define the sequences

c1 := 2− e−d, ck+1 := 1− e+
ck

c
,

and

d1 := d, dk+1 :=
d
c
· ck.

Suppose for the moment that ck ≤ c(1− e)/(c−1) for all k. By induction on k, it is easy to see that
in this case, the sequences {ck} and {dk} are monotone nondecreasing: For {ck}, we observe

ck+1 ≥ ck ⇐⇒ 1− e+ ck/c≥ ck ⇐⇒
c(1− e)

c−1
≥ ck.

For {dk}, we have

dk+1 ≥ dk ⇐⇒ d · ck+1 ≥ cdk = d · ck.

Since c1 ≥ c, we have ck ≥ c for all k. Since the sequences are monotone nondecreasing, it follows
that the sequence {ck} converges to

c∞ = c(1− e)/(c−1).

(Supposing instead there is a k such that ck > c(1− e)/(c−1), then we also have ck ≥ c, and we
can use that value of ck in the below, which will only improve the argument.)

We will prove that, for all k,

DTISP[nck ,ne]⊆ (∃ n1+o(1))(∀ logn)DTISP[n1+o(1),nd+o(1)]. (8)
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and conclude that for all c′ < c∞ = c(1− e)/(c−1),

DTISP[nc′ ,ne]⊆ (∃ n1+o(1))(∀ logn)DTISP[n1+o(1),nd+o(1)]. (9)

By the Speedup Lemma,

DTISP[nc1 ,ne+o(1)] = DTISP[n2−e−d ,ne+o(1)]⊆ (∃ n1+o(1))(∀ logn)DTISP[n,ne+o(1)].

For the inductive step, we have the following (subtle) series of inclusions:

DTISP[nck+1 ,ne] ⊆ (∃ n1+o(1))(∀ logn)DTISP[nck+1−(1−e),ne] (Speedup)

= (∃ n1+o(1))(∀ logn)DTISP[nck/c,ne] (def. of ck+1, & ck ≥ c)

⊆ (∃ n1+o(1))DTISP[nck+o(1),ndk+o(1)] (Slowdown & def. of dk)

⊆ (∃ n1+o(1))(∀ logn)DTISP[n1+o(1),nd+o(1)] (by induction).

For all sufficiently small ε > 0, let k be such that ck > c(1− e)/(c−1)− ε . For sufficiently large
time functions t, we have

DTISP[tc(1−e)/(c−1)−ε , te+o(1)]⊆ (∃ t1+o(1))(∀ log t)DTISP[t1+o(1), td+o(1)]

⊆ NTIME[tc+o(1)]⊆ DTISP[tc2+o(1), tcd ],

where the first inclusion follows from the assumption NTIME[n] ⊆ DTISP[nc+o(1),nd+o(1)], the
second from (9), and the third from Slowdown. Therefore if c and d satisfy

c(1− e)/(c−1)− ε > c2, e > cd

then we have a contradiction to the time-space hierarchy. Adding the two equations together, we
obtain

e+
c(1− e)

c−1
− ε > c(c+d)

=⇒ e
c
+

1− e
c−1

− ε

c
> c+d.

Simplifying the LHS, we have
c− e

c(c−1)
> c+d +O(ε),

and it is evident that the LHS is less than 1/(c− 1) for e > 0. Therefore we have a contradiction
when (c+d)(c−1)< 1. Recalling that φ is the smallest positive root of the equation x(x−1) = 1,
we observe that c+d < φ implies

(c+d)(c−1)< (c+d)(c+d−1)< 1−δ

for some fixed δ > 0, contradicting the necessary condition.

The above proof uses annotations of the form

[1,1,0,1,0,1,0, . . . ,1,0,0],

similar to the nφ time and no(1) space lower bound of Fortnow et al. [Fortnow et al. 2005]. However,
the best lower bound proofs found by experiment actually have annotations analogous to that of the
2cos(π/7) lower bound, of the form

[1,1, . . . ,1,1,0,1,0, . . . ,1,0,0,1,0,1,0, . . . ,1,0,0, · · · ,1,1,0,1,0, . . . ,1,0,0].
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Unfortunately, the actual setting of parameters becomes vastly more complex, yielding systems
of polynomial inequalities. As subsequent work has already improved these arguments (and the
underlying automated lower bound framework), we will only provide the “next stage of induction”
here, considering proofs with annotations of the form

[1,1,1,0,1,0,1,0, . . . ,1,0,0,1,0,1,0,1,0, . . . ,1,0,0].

To this end, we use the same strategy as in Theorem 4.11, letting e > 0 be a small parameter and
defining the sequence {ck} just as before. From the proof of Theorem 4.11, we know we can assume
that c2 ≥ ck for all k (otherwise, we obtain a contradiction). However, the kth derivation becomes:

DTISP[nck+(c2/ck)−e,ne] ⊆ (∃ nc2/ck)(∀ logn)DTISP[nck ,ne] (Speedup)

⊆ (∃ nc2/ck)(∀ logn)(∀ n)(∃ logn)DTISP[n1+o(1),ne] (Speedup)

⊆ (∃ nc2/ck)(∀ logn)(∀ n)DTISP[nc+o(1),nd ] (Slowdown)

⊆ (∃ nc2/ck)DTISP[nc2+o(1),nd ] (Slowdown, & c≤ ck)

⊆ (∃ nc2/ck)(∀ logn)DTISP[nc2/ck+o(1),ndc2/ck ] (Eq. (8))

⊆ (∃ nc2/ck)DTISP[nc3/ck+o(1),ndc2/ck ] (Slowdown)

⊆ DTISP[nc4/ck+o(1),ndc3/ck ] (Slowdown).

A contradiction arises when c,d,e satisfy

e > dc3/ck, ck +(c2/ck)− e > c4/ck.

As argued in the proof of Theorem 4.11, we may assume that ck = (1−e)c/(c−1)−ε for arbitrarily
small ε > 0. This substitution reduces the system of polynomial inequalities to:

dc3(c−1)+O(ε)> ec(1− e), c4(c−1)2 +O(ε)> 2c2−3c2e+2c2e2 + c4−2c3 + ce− ce2.

However, this is still not enough to tractably analyze the tradeoff between c and d. The following
table arises from setting various values of d, then analytically solving to maximize c such that the
above system is satisfied, for some e. (The precise command executed in Maple was:

with(Optimization); d := x;
Maximize(c, {e >= d*c^3/(c*(1-e)/(c-1)-0.1e-5),
c*(1-e)/(c-1)-0.1e-5 + c^2/(c*(1-e)/(c-1)-0.1e-5) - e
>= c^4/(c*(1-e)/(c-1)-0.1e-5), c^2 >= c*(1-e)/(c-1),
e <= 2-c, c+d <= 2}, assume = nonnegative, initialpoint = [c = 1.7, e = 0]);

where x denotes the desired space bound.)

Time Space
n1.05 n.9

n1.13 n.75

n1.18 n.666

n1.28 n.5

n1.38 n.333

n1.46 n.25

n1.60 n.1

n1.66 n.05

As one can see, these values bring us slightly closer to those of Table I than the guarantee of
c+d < 1.618 from Theorem 4.11. More involved proof annotations (with much more complicated
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polynomial inequalities) yield even better tables, culminating in the time-space tradeoffs found by
computer, described by the author and Buss [Buss and Williams 2012].

5. TIME-SPACE LOWER BOUNDS FOR SOLVING QUANTIFIED BOOLEAN FORMULAS
We can generalize the lower bounds of the previous section to quantified Boolean formulas with
a fixed number of quantifier blocks (i.e., alternations). As first observed by Fortnow and Van
Melkebeek [Fortnow and van Melkebeek 2000], the alternation-trading scheme for lower bounds
against nondeterminism extends naturally to lower bounds against alternating computations. Since
AP=PSPACE [Chandra et al. 1981], it follows that ATIME[n]*DTISP[nk,no(1)] for every k≥ 1.10

So we already have a polynomial time lower bound for the most general version of the quantified
Boolean formula problem (QBF) in the small space setting.

How large can lower bounds for quantified Boolean formulas get, when the number of quantifier
blocks is a fixed constant? Define QBFk to be the problem of solving a QBF with k quantifier blocks
(i.e. deciding the truth of Σk and Πk sentences in first-order Boolean logic). Building on Fortnow
and Van Melkebeek [Fortnow and van Melkebeek 2000] who proved that QBFk cannot be solved in
O(nk−ε) time on no(1)-space machines, we prove time lower bounds for QBFk of the form nk+1−εk

on the same model, where {εk} is a decreasing sequence such that limk→∞ εk = 0.

THEOREM 5.1. For all k ≥ 1, QBFk cannot be solved in O(nc) time on no(1) space RAMs, for
all c satisfying c3/k− c2−2c+ k < 0.

Note this result generalizes the 2cos(π/7) lower bound for SAT. The remainder of this section
proves Theorem 5.1, which was inspired by some short proofs generated by our theorem prover. As
our argument closely follows that of other proofs in the paper, we keep the exposition at a more
informal level.

We use the fact that QBFk is “robustly complete” in the appropriate sense, then show
ΣkTIME[n] * DTS[nc] for certain c > k by proving a series of class containments. Let us recall
the completness result of Fortnow et al., which follows from Theorem 3.1:

THEOREM 5.2 (FORTNOW-LIPTON-VAN MELKEBEEK-VIGLAS [FORTNOW ET AL. 2005]).
For all k ≥ 1, QBFk is robustly complete for ΣkQL∪ΠkQL. In particular, there is a quasi-linear
reduction from an arbitrary language in the class to QBFk, where an arbitrary bit of the reduction
can be computed in polylogarithmic time.

We can modify the LP framework for SAT lower bounds to obtain a similar LP framework for
QBFk lower bounds: only the Slowdown Rule differs, as its application removes k quantifiers instead
of just one. Doing so, we wrote a program for QBFk time lower bounds, which produced proofs that
inspired the below development. (We omit the description of the linear programming formulation
here, as it is quite similar to that of the previous section.)

The main tool we use is the following.

THEOREM 5.3 (CONDITIONAL SPEEDUP FOR THE POLYNOMIAL-TIME HIERARCHY). If
ΣkTIME[n] ⊆ DTS[nc] for some c satisfying k < c < k+ 1, then for all d satisfying c ≤ d < c

c−k ,
DTS[nd ]⊆ Σk+1TIME[n1+o(1)]∩Πk+1TIME[n1+o(1)].

PROOF. Similar to the proof of the Conditional Speedup Theorem in [Williams 2008].
We show that DTS[nd ] ⊆ Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)] implies DTS[n1+dk/c] ⊆
Σk+1TIME[n1+o(1)] ∩ Πk+1TIME[n1+o(1)]. This process converges when d = 1 + dk/c, or d =
c/(c− k).

The Speedup Lemma (Lemma 3.3) implies that

DTS[n1+dk/c]⊆ (∃ n)(∀ logn)DTS[ndk/c].

10Otherwise, SPACE[n]⊆ ATIME[n2]⊆ SPACE[no(1)], contradicting the space hierarchy theorem.
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Applying speedup for k−1 times,

DTS[n1+dk/c]⊆ (∃ n)(∀ logn)(∀ nd/c) · · ·(Q nd/c)︸ ︷︷ ︸
k−1

(¬Q logn)DTS[nd/c]

for some Q ∈ {∃,∀}, where ¬Q is opposite to Q. Since ΣkTIME[n]⊆ DTS[nc],

(∃ n)(∀ nd/c) · · ·(Q nd/c)(¬Q logn)︸ ︷︷ ︸
k

DTS[nd/c]⊆ (∃ n)DTS[nd ].

Finally, since DTS[nd ]⊆ Σk+1TIME[n1+o(1)]∩Πk+1TIME[n1+o(1)],

(∃ n)DTS[nd ]⊆ Σk+1TIME[n1+o(1)].

An analogous argument implies DTS[n1+dk/c]⊆ Πk+1TIME[n1+o(1)].

THEOREM 5.4. If ΣkTIME[n]⊆DTS[nc], then for all `≥ 1 and d satisfying c≤ d < c/(c−k),

DTS[nd+∑
`
i=1

(
c2
dk

)i

]⊆ Σk+1TIME[n
(

c2
dk

)`
+o(1)

]∩Πk+1TIME[n
(

c2
dk

)`
+o(1)

].

PROOF. Induction on `. The case `= 0 is immediate, by the previous theorem. For the inductive

step, suppose DTS[nd+∑
`
i=1

(
c2
dk

)i

]⊆ Σk+1TIME[n
(

c2
dk

)`
+o(1)

]. First, the Speedup Lemma implies

DTS[nd+∑
`+1
i=1

(
c2
dk

)i

]⊆ (∃ n
(

c2
dk

)`+1

)(∀ logn)DTS[nd+∑
`
i=1

(
c2
dk

)i

],

where the input to the DTS part has length n+ 2no(1). By the induction hypothesis, the above is
contained in

(∃ n
(

c2
dk

)`+1

)(∀ logn)Πk+1TIME[n
(

c2
dk

)`
+o(1)

].

Applying ΣkTIME[n]⊆DTS[nc] to the Σk part of the Πk+1TIME class, the above class is contained
in

∃ n
(

c2
dk

)`+1

)(∀ logn)(∀ n
(

c2
dk

)`
)DTS[nc

(
c2
dk

)`
].

If c < k, then there is no d satisfying c ≤ d < c/(c− k), so there is nothing to prove. If c ≥ k, the
above class is contained in

(∃ n
(

c2
dk

)`+1

)(∀ logn)(∀ n
(

c2
dk

)`
)ΠkTIME[n

c
k ·
(

c2
dk

)`
+o(1)

] = (∃ n
(

c2
dk

)`+1

)ΠkTIME[n
c
k ·
(

c2
dk

)`
+o(1)

].

Note ( c2

dk )
`+1 ≤ c

k · (
c2

dk )
`, because d ≥ c. Invoking the assumption ΣkTIME[n] ⊆ DTS[nc] again

results in the class

(∃ n
(

c2
dk

)`+1

)DTS[n
c2
k ·
(

c2
dk

)`
].

Finally, since d( c2

dk )
`+1 = c2

k · (
c2

dk )
`, Theorem 5.3 applies, and the above class is in

(∃ n
(

c2
dk

)`+1

)Σk+1TIME[n
c2
dk ·
(

c2
dk

)`
+o(1)

] = Σk+1TIME[n
(

c2
dk

)`+1
+o(1)

].

An analogous argument proves the containment for Πk+1TIME[n
(

c2
dk

)`+1
+o(1)

].

Finally, we prove Theorem 5.1. Let K` = d +∑
`
i=1

(
c2

dk

)i
, for ` ≥ 1. We claim (the proof is not

hard) that (
c2

dk

)`

≤ K`

(
1− dk

c2 − ε`

)
,
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Problem Time Lower Bound Exponent
SAT n1.801

QBF2 n2.903

QBF3 n3.942

QBF4 n4.962

QBF10 n10.991

QBF100 n100.999902

Table II.

for a small constant ε` > 0 satisfying lim`→∞ ε` = 0. Applying the above theorems, we deduce the
chain:

Σk+1TIME[nK` ] ⊆ (∃ nK`)DTS[ncK` ]

⊆ (∃ nK`)ΣkTIME[n(c/k)K` ]⊆ DTS[n(c
2/k)K` ]⊆ Πk+1TIME[n(c

2/k)K`

(
1− dk

c2−ε`

)
].

For sufficiently large `, a contradiction is reached when

c2/k(1− (dk)/(c2))< 1, (10)

i.e., when c2/k−d−1 < 0. Recalling that d < c/(c− k), we let d = c/(c− k)− ε for an arbitrarily
small ε > 0. Then (10) becomes c2/k−c/(c−k)+ε−1 < 0. Rearranging, we reach a contradiction
when

c3/k− c2−2c+ k+ ε(c− k)< 0. (11)

For any c such that c3/k− c2− 2c+ k < 0, we can choose ε small enough that condition (11) still
holds, and a contradiction is reached.

Table II summarizes the concrete lower bounds. As the evidence suggests, at least one root of
the polynomial pk(c) = c3/k− c2−2c+ k gradually approaches k+1 as k increases unboundedly;
hence the lower bound exponent for QBFk approaches k+1.

PROPOSITION 5.5. limk→∞ pk(k+1)= 0. In particular, for all k, pk(k+1−1/k)< 0 and pk(k+
1)> 0.

PROOF. Algebraic manipulation gives pk(k+ 1) = 1/k > 0 and pk(k+ 1− 1/k) = 3/k3− 1−
1/k−1/k2−1/k4 <−1/k4 < 0, for all k ≥ 1.

6. NONDETERMINISTIC TIME-SPACE LOWER BOUNDS FOR TAUTOLOGIES
The problem of proving nondeterministic time-space lower bounds for coNP has also been studied
in the literature. Fortnow and Van Melkebeek [Fortnow and van Melkebeek 2000] proved that TAU-
TOLOGY cannot be solved in n

√
2−o(1) time on a nondeterministic no(1) space RAM. However, since

their initial result, no further improvements had been found. We show how to extend the approach
of the previous section to this problem, and find that the best proof annotations look quite different.
Here the approach turns out to be successful in finding new proofs.

6.1. The Framework and Linear Programming Translation

Similar to the class DTS, set NTS[na] := NTISP[na,no(1)] and coNTS[na] := coNTISP[na,no(1)] for
brevity. As in Section 3, there are Speedup and Slowdown rules that are applied in some way that
contradicts a time hierarchy, although the rules are somewhat different here. In the following, let Q
be a string of quantifier blocks, so Q = (Q1 na1)b2 · · ·(Qk−1 nak−1).

LEMMA 6.1. (Speedup) For b≥ 1, a≥ 1, x≥ 0, and s≥ 0,

QbNTISP[na,ns]⊆ Qb(∃ nx+s)max{b,x+s}(∀ logn)max{b,s}NTISP[na−x,ns].
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In particular for s = o(1) we have NTS[na]⊆ (∃ nx)max{1,x}(∀ logn)1NTS[na−x].

PROOF. The proof is analogous to Lemma 3.3 (the Speedup Lemma for DTISP).

LEMMA 6.2. (Slowdown) If TAUTOLOGY is in NTS[nc] then

(1) Qb(∃ nak)bk+1 NTS[nak+1 ]⊆ QbcoNTS[nc·max{ak,ak+1,bk+1,b}],
(2) Qb(∀ nak)bk+1 coNTS[nak+1 ]⊆ QbNTS[nc·max{ak,ak+1,bk+1,b}],
(3) Qb(∃ nak)bk+1 coNTS[nak+1 ]⊆ Qb(∃ nak)bk+1 NTS[nc·max{ak+1,bk+1}], and
(4) Qb(∀ nak)bk+1 NTS[nak+1 ]⊆ Qb(∀ nak)bk+1 coNTS[nc·max{ak+1,bk+1}].

The proofs are omitted, as they follow analogously to the Slowdown Lemma for DTISP. To obtain
contradictions, one uses the alternating time hierarchy (Theorem 3.5) just as in the deterministic
case. The above lemmas immediately lead to a natural definition of alternation-trading proof that
coNTIME[n]⊆ NTS[nc] =⇒ A1 ⊆ A2, for classes A1 and A2. Similar to Lemma 4.3, which showed
that NTIME[n]⊆ DTS[nc] implies DTS[na]* DTS[na′ ] for a > a′, we can prove:

LEMMA 6.3. If coNTIME[n] ⊆ NTS[nc] for some c, then NTS[na] * coNTS[na′ ] for all a >
a′ ≥ 1.

The proof is completely analogous to the first case of the proof of Lemma 4.3.

PROOF. Suppose that coNTIME[n]⊆ NTS[nc] and NTS[na]⊆ coNTS[na′ ] for some a > a′ ≥ 1.
We wish to prove a contradiction. Let δ = a− a′, so that NTS[na] ⊆ coNTS[na−δ ]. By comple-
menting machines, we also have coNTS[na] ⊆ NTS[na−δ ]. By a translation/padding argument,
NTS[na]⊆ coNTS[na−δ ] implies

NTS[na2/(a−δ )]⊆ coNTS[na]⊆ NTS[na−δ ]

and coNTS[na2/(a−δ )]⊆ coNTS[na−δ ] as well. Repeating this padding for an arbitrary finite number
of times, we obtain

NTS[na·(a/(a−δ ))i
]⊆ coNTS[na−δ ] for all even i≥ 0, and

NTS[na·(a/(a−δ ))i
]⊆ NTS[na−δ ] for all odd i≥ 1.

Since δ > 0, this implies NTS[nL]⊆NTS[na−δ ] for all odd L≥ a−δ . Therefore, if coNTIME[n]⊆
NTS[nc] then for all odd L≥ a,

coNTIME[nL]⊆ NTS[nLc]⊆ NTS[na−δ ]⊆ NTIME[na−δ ],

a contradiction to the time hierarchy (Theorem 3.5).

Lemma 6.3 motivates a definition of normal form proof for coNTIME[n] * NTS[nc], and in an
analogous way we can prove that any alternation-trading proof can be converted into normal form.

Definition 6.4. Let c≥ 1. An alternation-trading proof that (coNTIME[n]⊆ NTS[nc] =⇒ A1 ⊆
A2) is in normal form if (1) A1 = NTS[na], A2 = coNTS[na′ ], for some a≥ a′, and (2) no other lines
are NTS or coNTS classes.

Example. To get a feeling for how these ingredients interact, let us consider a small example
proof. If TAUTOLOGY ∈ NTS[nc] then coNTIME[n]⊆ NTS[nc+o(1)] by Theorem 3.1, so

NTS[n2]⊆ (∃ n)1(∀ logn)1NTS[n]

by Lemma 6.1 (NTISP Speedup). Applying Lemma 6.2 (NTISP Slowdown) thrice,

(∃ n)1(∀ logn)1NTS[n]⊆ (∃ n)1(∀ logn)1coNTS[nc]⊆ (∃ n)1NTS[nc2
]⊆ coNTS[nc3

].
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When c < 3√2 ≈ 1.25, we derive NTS[na] ⊆ coNTS[na′ ] for some a > a′, which contradicts
Lemma 6.3. Note that this lower bound looks rather similar to the

√
2 lower bound from Section 3,

but we must apply three slowdowns rather than just two.

LEMMA 6.5. Let c ≥ 1. If there is an alternation-trading proof that (coNTIME[n] ⊆
NTS[nc] =⇒ A1 ⊆ A2) in normal form, and the proof has at least two lines, then coNTIME[n] *
NTS[nc].

PROOF. (Sketch) We follow the proof of Lemma 4.3 very closely. Let NTS[na] and coNTS[na′ ]
be the first and last classes of a normal-form proof. If a > a′, then Lemma 6.3 already applies
(analogously to the first case of Lemma 4.3). If a = a′, then NTS[na] = coNTS[na], and we argue
analogously to the second case of Theorem 4.3: there must be some class A in the normal form
proof such that A contains a positive number of alternations (guessing at least nδ bits for some
δ > 0), A = NTS[na] = coNTS[na] = A′, where A′ is the complementary class to A, and we have
A′ = (∀ nδ )A′ and A = (∃ nδ )A. By Lemma 6.1, we have for every k that

NTS[nk]⊆ NTS[nδd k
δ
e]⊆ (∃ nδ )(∀ nδ ) · · ·(∃ nδ )(∀ nδ )︸ ︷︷ ︸

O(k/δ )

A′.

But the RHS is just the class A, as argued in Lemma 4.3. Therefore by padding,

NTIME[na+1]⊆ coNTS[n(a+1)c] = NTS[n(a+1)c]⊆ A = coNTS[na]⊆ coNTIME[na]

which contradicts the time hierarchy theorem.

THEOREM 6.6. Let A1 and A2 be simple and complementary. If there is an alternation-trading
proof P that (coNTIME[n] ⊆ NTS[nc] =⇒ A1 ⊆ A2), then there is a normal form proof for c, of
length at most that of P.

The proof of Theorem 6.6 is analogous to that of Theorem 4.4. One can also define proof annota-
tions for this setting. The vectors corresponding to valid annotations change due to differences in the
rules. For example, note [1,0,0,0], [1,1,0,0,0,0,0], and [1,0,1,0,0,0,0] are valid annotations for
this setting, the first being the annotation for the above example. From the Speedup and Slowdown
Lemmas given above, observe that the operations on exponents are again max, +, and multipli-
cation by c. Hence the translation of annotations to linear programming follows a similar strategy
as before: we define variables ai, j, bi, j, xi for all lines i and possible quantifier blocks j, replace
components of the form max{a,a′}= a′′ with a′′ ≥ a, a′′ ≥ a′, then minimize ∑ai, j +bi, j + xi.

6.2. Empirical Results
Although the proof rules used in the “TAUTOLOGY versus NTISP” lower bound problem look
extremely similar to those in the “SAT versus DTISP” problem, the structure of good lower bound
proofs for “TAUTOLOGY versus NTISP” turns out to be quite different. Below is a table of results
found by exhaustive search over valid annotations.11

11In this lower bound setting, there are no valid proof annotations of length 3, 4, 6, 7, 9, 10, 12, 13, etc. This is tedious to
prove, so we omit it.
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k Optimal Proof Annotation(s) With k Lines Time L.B. Exponent
5 [1, 0, 0, 0] 1.323
8 [1, 1, 0, 0, 0, 0, 0] 1.380

[1, 0, 1, 0, 0, 0, 0]
11 [1, 1, 0, 0, 0, 1, 0, 0, 0, 0] 1.419
14 [1, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0] 1.433

[1, 1, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0]
[1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]

17 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0] 1.445
[1, 1, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

20 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0] 1.455
[1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]
[1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0]

23 [1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0] 1.465

For example, the best 11-line proof is:

0, NTS[n^4.788956584]
1, (E n^2.369956583)(A n^1.)NTS[n^2.419]
2, (E n^2.369956583)(A n^1.)(E n^1.419)(A n^1.)NTS[n^1.]
3, (E n^2.369956583)(A n^1.)(E n^1.419)(A n^1.)coNTS[n^1.419]
4, (E n^2.369956583)(A n^1.)(E n^1.419)NTS[n^2.013561000]
5, (E n^2.369956583)(A n^1.)coNTS[n^2.857243059]
6, (E n^2.369956583)(A n^2.378351877)(E n^1.)coNTS[n^1.181167036]
7, (E n^2.369956583)(A n^2.378351877)(E n^1.)NTS[n^1.676076023]
8, (E n^2.369956583)(A n^2.378351877)coNTS[n^2.378351877]
9, (E n^2.369956583)NTS[n^3.374881314]
10, coNTS[n^4.788956584]

Notice how larger annotations are composed of smaller ones: for example,
[1,1,1,0,0,0,0,0,1,0,0,0,0] is [1,A7,A4,0], where A4 and A7 are optimal annotations for
four and seven lines.12 In particular, observe that three optimal annotations from the table have a
distinctive pattern, namely

A= [1,0,0,0], Â= [1,1,0,0,0,1,0,0,0,0], and ˆ̂A= [1,1,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0].

The key observation is that Â = [1,A,A,0] and ˆ̂A = [1, Â, Â,0]. This pattern suggests that we look
for a proof by induction, where we start with a speedup, apply an induction hypothesis twice, then
apply a slowdown. For example, the next annotation in the pattern would be

[1, ˆ̂A, ˆ̂A,0] = [1,1,1,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,
1,1,1,0,0,0,1,0,0,0,0,1,1,0,0,0,1,0,0,0,0,0,0],

a 47-line annotation that gives a 1.49 exponent. A heuristic search found the above 47-line annota-
tion, and no other annotations found (with at most 47 lines) attained a lower bound of that quality.
For many line numbers `, heuristic search found a large number of `-line proof annotations that
achieve the same lower bound. For example, there are eight such annotations of 26 lines. Each opti-
mal annotation found could be written as a concatenation of smaller optimal annotations along with
an additional 1 and 0.

12Of course, we are slightly abusing notation here, as A4 and A7 are themselves vectors. When v is a k-bit vector and we
write (for example) w = [0,v,1], we mean that w = [0,v[1], . . . ,v[k],1].
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6.3. Interpreting The Results
Generalizing from the results above, we arrive at the following result (joint with Diehl and Van
Melkebeek):

THEOREM 6.7 ([DIEHL ET AL. 2011]). TAUTOLOGY requires n
3√4−o(1) time for nondeter-

ministic algorithms using no(1) space.

Our proof here differs from the treatment in [Diehl et al. 2011], in that we closely mimic the
proofs generated by the theorem prover. For a given constant c ≥ 1, define the sequence x1 := 1,
x2 := c, xk := c3(xk−1)

2/(∑k−1
i=1 xi).

Proof of Theorem 6.7. Suppose coNTIME[n] ⊆ NTS[nc]. We will prove that c < 41/3 entails a
contradiction. We make the following claim:

CLAIM 1. For all k ≥ 2, c2xk ≥ ∑
k
i=1 xi and NTS[n∑

k
i=1 xi ]⊆ (∃ nxk)(∀ nxk)coNTS[nxk ].

Our proof of Claim 1 is by induction on k. We can think of the proof as proceeding in stages,
starting with stage k = 2. At the beginning of stage k, we may assume that c2x` ≥ ∑

`
i=1 xi for all

` < k, and that

NTS[n∑
`
i=1 xi ]⊆ (∃ nx`)(∀ nx`)coNTS[nx` ].

(Note that c2x1 ≥ x1, so these assumptions are valid at stage 2.) At the end of stage k, we either
derive a contradiction to the assumption coNTIME[n] ⊆ NTS[nc], or conclude that c2xk ≥ ∑

k
i=1 xi

and

NTS[n∑
k
i=1 xi ]⊆ (∃ nxk)(∀ nxk)coNTS[nxk ].

When k = 2, we can already derive

NTS[nc+1]⊆ (∃ nc)(∀ logn)NTS[n]⊆ (∃ nc)(∀ logn)coNTS[nc].

So we can derive (via Lemma 6.2) the inclusion

NTS[nc+1]⊆ (∃ nc)(∀ logn)coNTS[nc]⊆ (∃ nc)NTS[nc2
]⊆ coNTS[nc3

],

which contradicts Lemma 6.3 if c3 = c2x2 < x1+x2 = 1+c. (Note that c3≥ 1+c implies c≥ 1.324.)
Hence c2x2 ≥ x1 + x2.

Observe that c2xk ≥ ∑
k
i=1 xi implies that xk+1 ≥ 1. (We may assume by induction that xk ≥ 1.) At

the beginning of stage k+1 we have c2xk ≥ ∑
k
i=1 xi, and we derive the sequence of inclusions

NTS[n∑
k+1
i=1 xi ] ⊆ (∃ nxk+1)(∀ logn)1 NTS[n∑

k
i=1 xi ] (Speedup)

⊆ (∃ nxk+1)(∀ logn)1(∃ nxk)(∀ nxk)coNTS[nxk ] (by Induction Hypothesis / Stage k)

⊆ (∃ nxk+1)(∀ logn)1(∃ nxk)NTS[ncxk ] (Slowdown)

⊆ (∃ nxk+1)(∀ logn)1coNTS[nc2xk ] (Slowdown)

⊆ (∃ nxk+1)(∀ logn)1(∀ nc2(xk)
2/(∑i xi))(∃ nc2(xk)

2/(∑i xi))NTS[nc2(xk)
2/(∑i xi)]

(by Induction Hypothesis / Stage k, and c2xk ≥
k

∑
i=1

xi)

⊆ (∃ nxk+1)(∀ logn)1(∀ nc2(xk)
2/(∑i xi))coNTS[nc3(xk)

2/(∑i xi)] (Slowdown)
⊆ (∃ nxk+1)(∀ nxk+1)coNTS[nxk+1 ].

(Note that this induction indeed applies the induction hypothesis twice, as suggested by experi-
ments.)
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At this point, if c2xk+1 < ∑
k+1
i=1 xi, then we may derive

NTS[n∑
k+1
i=1 xi ]⊆ (∃ nxk+1)(∀ nxk+1)coNTS[nxk+1 ]⊆ (∃ nxk+1)(∀ nxk+1)coNTS[nxk+1 ]⊆ coNTS[nc2xk+1 ].

(12)
Therefore c2xk < ∑

k
i=1 xi implies that NTS[na+δ ]⊆ coNTS[na] for some a≥ 1 and δ > 0, which is

a contradiction by Lemma 6.3. This concludes stage k, and the proof of Claim 1.
Now define the sequence sk := (∑k

i=1 xi)/xk = 1+∑
k−1
i=1 xi/xk. Because c2xk ≥ ∑

k
i=1 xi for all k,

we must have c2 ≥ sk for all k.

CLAIM 2. For all k > 2, sk = 1+(sk−1)
2/c3, and {sk} is increasing when c < 41/3.

The proof is by induction on k. When k = 3, s2 = 1+1/c and s3 = 1+(1+c)/c5 +(1+c)/c4 =

1+(1+1/c)2/c3 = 1+(s2)
2/c3. It is easy to algebraically verify that for c < 41/3 we have s2 < s3.

Assuming Claim 2 is true for k−1, we derive

sk = 1+
k−1

∑
i=1

xi/xk = 1+
k−1

∑
i=1

xi ·

(
k−1

∑
i=1

xi

)
/
(
c3 · (xk−1)

2)= 1+
(∑k−1

i=1 xi)
2

c3(xk−1)2 = 1+(sk−1)
2/c3.

Now suppose that sk ≤ sk−1. Then by the induction hypothesis, we have sk−1−1− (sk−1)
2/c3 ≥ 0.

But when c< 41/3, differential calculus tells us that x−1−x2/c3 < 0, for all x > 0. Hence sk > sk−1,
and the proof of Claim 2 is complete.

Finally, the increasing sequence {sk} is either unbounded, or it has a limit point. The first case
cannot hold, as we have that c2 ≥ sk for all k, and c is a fixed constant. In the latter case, {sk}
converges to the limit point s∞ = 1+ s2

∞/c3. The polynomial p(x) = 1+ x2/c3− x has roots x =

c3/2 · (1±
√

1−4/c3). When c < 41/3, these roots are imaginary, therefore s∞ would be imaginary,
a contradiction. This concludes the proof. 2

An exhaustive computer search over proof annotations leads us to conjecture:

CONJECTURE 6.8. There is no alternation trading proof that coNTIME[n] * NTS[nc], for any
c > 3√4.

While this conjecture is still open, some interesting limitation can be proved. Namely, unlike the
case of time lower bounds for SAT, we can show that no golden ratio lower bound can be achieved
via alternation-trading proofs.

THEOREM 6.9. There is no alternation trading proof that coNTIME[n] * NTS[nc], for any
c≥ φ ≈ 1.618.

PROOF. (Sketch) Suppose there is a proof that coNTIME[n] * NTS[nc] with c ≥ φ , and let A
be a normal form annotation for it, of minimum length. First, observe that every valid annotation
contains the sequence 1,0,0 in it, for if every occurrence of 1,0 was followed by a 1, the proof could
not possibly be in normal form. (In particular, when a speedup rule and slowdown rule are applied
to a simple class A, the resulting class A′ has more quantifiers than A, in this setting.) Therefore
1,0,0 must occur somewhere in the proof.

Next, we show that any subsequence 1,0,0 can be removed from A, and the resulting LP will still
be feasible for the constant c. This implies a contradiction.

Consider the four lines in a prospective proof corresponding to the sequence 1,0,0, where we
include the line before the three rules are applied. The first line is one of four possibilities:

· · ·b′ (∃ na′)bNTS[na], · · ·b′ (∀ na′)bcoNTS[na], · · ·b′ (∃ na′)bcoNTS[na], or · · ·b′ (∀ na′)bNTS[na].

The first two cases are symmetric to each other, as are the last two cases, so it suffices for us to
consider · · ·b′ (∃ na′)bNTS[na] and · · ·b′ (∃ na′)bcoNTS[na].
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In the first case, the four lines have the form

· · ·b′ (∃ na′)bNTS[na] (13)

· · ·b′ (∃ nmax{a′,x})max{b,x}(∀ logn)bNTS[na−x] (14)

· · ·b′ (∃ nmax{a′,x})max{b,x}(∀ logn)bcoNTS[nmax{c(a−x),cb}] (15)

· · ·b′ (∃ nmax{a′,x})max{b,x}NTS[nmax{c2(a−x),c2b,cx}] (16)

Observe that each parameter in class (16) is at least the corresponding parameter in class (13),
except for possibly the runtime of the NTS computation. However, if any one of a ≤ c2(a− x),
a ≤ c2b, or a ≤ cx hold, then the above lines can be removed from the proof, and the optimal
assignment to the parameters would only be larger. So suppose a > c2(a− x), a > c2b, and a > cx.
Then c2a < a + c2x < a + ca, implying that c2 < (1 + c), or c(c− 1) < 1. For c ≥ φ , this is a
contradiction.

One can argue similarly for the second case. There the four lines have the form:

· · ·b′ (∃ na′)bcoNTS[na] (17)

· · ·b′ (∃ na′)b(∀ nx)max{x,b}(∃ logn)bcoNTS[na−x] (18)

· · ·b′ (∃ na′)b(∀ nx)max{x,b}(∃ logn)bNTS[nmax{c(a−x),cb}] (19)

(∃ na′)b(∀ nx)max{x,b}coNTS[nmax{c2(a−x),c2b,cx}] (20)

Using an argument similar to the above, class (20) contains class (17) when c ≥ φ , so removing
the above lines can only improve the optimum setting of the parameters.

7. LOWER BOUNDS FOR MULTIDIMENSIONAL TURING MACHINES
Our final case study considers lower bounds for a multidimensional machine model, which sub-
sumes both the small-space random access model and off-line one-tape Turing machine models.
The LP-based approach yields new lower bounds here as well. To recall, the machine model has
a read-only/random-access input tape, a read-write/random access storage of no(1) bits, and a d-
dimensional tape that is read-write with sequential (two-way) access. This “hybrid” one-tape model
holds importance in this area, since it is the most powerful deterministic model we know for which
one can still prove an n1+Ω(1) lower bound for solving satisfiability.

7.1. The Framework and Linear Programming Translation
Define DTIMEd [t(n)] to be the class of languages recognized by d-dimensional one-tape machines
in O(t(n)) time. Lower bound proofs for these machines have different structure from the first two:
one speedup rule simulates a d-dimensional machine by a nondeterministic (or co-nondeterministic)
machine with a small space bound. More precisely, let Q represent a string of quantifier blocks, so
Q = (Q1 na1)b2 · · ·(Qk nak−1). The class QbDTIMEd [t(n)] consists of languages recognized by a
machine which first takes k stages of guessing and writing nai+o(1) bits onto a write-once random-
access storage (saving only nbi of these bits for the next stage). Once these k stages are completed,
the machine then feeds nb+o(1) bits of content of the random-access storage (as well as the original
input of length n) as input to a d-dimensional one-tape machine, which runs in time t(n).

LEMMA 7.1 (DTIMEd TO DTISP). Let Qk+1 ∈ {∃,∀}. Then for all 0 < s≤ a and b≥ 1,
QbDTIMEd [na]⊆ Qb(Qk+1na−s)max{a−s,b}DTISP[na,nds].

We can think of this as a “speedup lemma” where we have the added bonus of getting a DTISP
class in the simulation of DTIMEd . The proof of Lemma 7.1 guesses a short crossing sequence
that divides the O(na) cells of tape used by a na-time machine into ns blocks, each of which can
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be simulated in O(nds) space (see [Maass and Schorr 1987; van Melkebeek 2005]). We include a
sketch of it for completeness.

PROOF. (Sketch) We prove the case where d = 1; the general case is similar. Let M be a machine
where the final DTIMEd part runs in na time and x be an input of nb length. For simplicity, we
assume the two-way tape is infinite in one direction, and the tape has cells numbered 0,1,2, . . ..

We use a standard extension of the notion of crossing sequences. Define the snapshot of M(x) at
timestep j to be a tuple containing the state of M, the content of the no(1) storage, the input head
position, and the two-way tape head position. Note that a snapshot takes no(1) bits to represent. The
snapshot sequence {sk} of M(x) is the list of all snapshots of M(x) in increasing order of timesteps.
For a cell i of M’s two-way tape, define the crossing sequence for i on M(x) to be the subsequence
of the snapshot sequence of M(x) containing only those sk where either:

— the two-way tape head position is i in sk−1, and the two-way tape head position is i+1 in sk, or
— the two way-tape position is i+1 in sk−1, and it is i in sk.

That is, the crossing sequence for i represents all the information that is passed between cells i and
i+1 during the computation.

Define CS(x) to be the set of all crossing sequences for M(x) on its sequential tape. Notice each
element of a crossing sequence has no(1) size.

For every i = 1, . . . ,ns, define CS(x, i) to be the subset of crossing sequences from CS(x) ranging
over the cells numbered i+ k · ns, for k = 0,1, . . . ,na−s− 1. That is, each CS(x, i) contains a list
of O(na−s) crossing sequences, where there are at least ns cells between the sequences. Observe
that the collection {CS(x, i)} is a partition of CS(x): the union of all CS(x, i) equals CS(x), and
CS(x, i)∩CS(x, j) =∅ for i 6= j.

The total sum of the lengths of all crossing sequences for M(x) is at most na (the total number of
steps in the computation). Therefore there exists a j so that the total length of all crossing sequences
in CS(x, j) is at most na−s. If we guess CS(x, j) upfront, then the computation of M(x) reduces to an
na+o(1) time and ns+o(1) space computation, by checking that the computation between the crossing
sequences of CS(x, j) is a valid and accepting computation. Note that the guess can be existential
or universal: if it is universal then we work with crossing sequences of the complement machine M,
and verify that M(x) does not accept, no matter which offset and na−s subset of crossing sequences
that we try.

Let us sketch the case of arbitrary d ≥ 2. Cells can be indexed by d-tuples of integers. Crossing
sequences for a given cell k = (i1, . . . , id) still make sense (keeping in mind that there are multiple
cells in which the tape head can reach cell j). Analogously to the 1-dimensional case, we can define
a partition of the set of all crossing sequences into nds parts, where each part breaks the tape into
blocks of O(nds) cells – more precisely, they are O(ns)×·· ·×O(ns)︸ ︷︷ ︸

d

cubes of cells. As before, the

total sum of the lengths of all crossing sequences is na, and a counting argument shows that at
least one part contains sequences with total length na−s. The space usage for simulation increases
to nds+o(1) because each block now has O(nds) cells.

Lemma 7.1 lets us apply the Speedup Lemma for space-bounded machines (Lemma 3.3) in our
lower bound arguments for DTIMEd . We also need another Slowdown Lemma that lets us convert
DTISP computations with nondeterministic bits back into DTIMEd computations. Again, let Q be
a string of quantifier blocks.

LEMMA 7.2 (SLOWDOWN FOR DTIMEd). Suppose NTIME[n] ⊆ DTIMEd [nc]. Then for
ai,bi ≥ 1, and all e≥ 0,

Qbk(Qk+1 nak)bk+1 DTIMEd [nak+1 ]⊆ Qbk DTIMEd [nc·max{bk,bk+1,ak,ak+1}], and
Qbk(Qk+1 nak)bk+1 DTISP[nak+1 ,ne]⊆ Qbk DTIMEd [nc·max{bk,bk+1,ak,ak+1}].
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The proof directly follows that of earlier, similar results. We also use a time hierarchy theorem
analogous to the previous lower bound settings:

LEMMA 7.3. If NTIME[n]⊆DTIMEd [nc] for some c, then DTIMEd [na]* DTIMEd [na′ ] for all
a > a′ ≥ 1.

PROOF. Analogous to Lemma 4.3, which showed that NTIME[n]⊆DTS[nc] implies DTS[na]*
DTS[na′ ], and Lemma 6.3, which showed that NTIME[n] ⊆ coNTS[nc] implies NTS[na] *
coNTS[na′ ].

Example. In 1983, Kannan [Kannan 1983] proved that NTIME[n] * DTIME1[n
4
√

3/2], using a
weaker speedup lemma than the above. Reproducing his argument (but using the stronger speedup
of Lemma 7.1 and Lemma 3.3):

DTIME1[n3/2] ⊆ (∃ n)DTISP[n3/2,n1/2] by DTIME1 to DTISP (Lemma 7.1)

⊆ (∃ n)(∀ logn)DTISP[n,n1/2] by the Speedup Lemma for DTISP (Lemma 3.3)
⊆ (∃ n)DTIME1[nc] by the Slowdown Lemma for DTIMEd (Lemma 7.2)

⊆ DTIME1[nc2
] by Slowdown for DTIMEd

A contradiction follows from c <
√

3/2 and Lemma 7.3. But SAT ∈ DTIME1[nc] implies

NTIME[n] ⊆ DTIME1[nc+o(1)] (Theorem 3.1), so SAT cannot be solved in O(n
√

3/2−ε) time on
a one-dimensional Turing machine. This is the SAT lower bound proved by Van Melkebeek and
Raz [van Melkebeek 2005].

Corresponding notions of alternation-trading proofs, proof annotations, and normal-form proofs
can also be defined in this setting. The simple classes in this setting have the form

(Q1 na1)b2 · · ·bk (Qk nak)bk+1C

where C can be a DTISP class or a DTIMEd class. When C is DTISP, the Speedup and Slow-
down Rules from Section 4 apply; when C is a DTIMEd class, Lemma 7.1 and Lemma 7.2 are
the possible applicable rules. Just as in the SAT time-space tradeoffs setting, there are two possible
Speedup Rules for those classes with a DTISP phase: one rule introduces only a single quantifier,
and the other rule introduces two (see Speedup Rules 1 and 2 of Section 4). However, analogous
to Lemma 4.5, the Speedup Rule for DTISP which introduces two quantifiers can be shown to be
unnecessary.

Therefore, for every simple class in an alternation-trading proof, there are only two possible rules
to apply:

— Speedup via Lemma 3.3 when C is a DTISP class, or Lemma 7.1 (the DTIMEd to DTISP
Lemma) when C is a DTIMEd class, or

— Slowdown via Lemma 3.4 when C is a DTISP class, or Lemma 7.2 when C is a DTIMEd class.

Hence the proof annotations for this setting can still be construed as bit vectors, for the two pos-
sible rules applicable at each step of a proof. (To illustrate, the annotation for the above example is
[1,1,0,0].) Notice that the structure of valid proof annotations becomes more complex: for example,
when a class ends with DTISP and a Slowdown is applied, the new class has one less quantifier but
now ends with DTIMEd instead.

A normal form proof for c in this setting has DTIMEd [na] as its first class and DTIMEd [na′ ] as its
last class, where a′ ≤ a. Analogously to Lemma 4.3 (for DTS lower bounds) and Lemma 6.5 (for
NTS lower bounds), and building on Lemma 7.3, normal form proofs can be shown to entail lower
bounds:
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THEOREM 7.4. Let A1 and A2 be simple and complementary. If there is an alternation-trading
proof P that (NTIME[n] ⊆ DTIMEd [nc] =⇒ A1 ⊆ A2), then there is a normal form proof for c, of
length at most that of P.

The proof closely follows that of Theorems 4.4 and 6.6. Finally, the translation of proof annota-
tions to linear programming is also very similar, except that new variables si are introduced for the
space exponent of the DTISP class in line i (for all relevant i). The linear inequalities relating the si
variables to other variables are taken directly from the statements of Lemma 7.2 and Lemma 7.1.

7.2. Empirical Results
For 1-dimensional machines, a summary of lower bounds found by the LP-based theorem prover is
given in the below table. Unlike the previous two cases, the optimal bounds attained by short proofs
have non-monotonic behavior (with respect to length) at first. Perhaps surprisingly, the table looks
the same for the 2-dimensional and 3-dimensional cases, albeit with smaller lower bound exponents.

#Lines Best Proof Annotation(s) L.B.
5 [1, 1, 0, 0] 1.224
6 [1, 1, 0, 1, 0]
7 [1, 1, 1, 0, 0, 0] 1.201

8,9 [1, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 1, 0] 1.262
10 [1, 1, 1, 0, 0, 1, 1, 0, 0] 1.261

11, 12 [1, 1, 0, 1, 1, 0, 1, 1, 0, 0], [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.274
13 [1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0] 1.277

14, 15 [1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0],[1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.278
16, 17 [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0], [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0] 1.287

19 [1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.292
25 [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.297
28 [1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0] 1.298

A subset of the optimal annotations have the form

A = [1 (1 1 0)k 0 (1 1 0)` 0],

for integers k, `. In other words, the substring 0 0 occurs exactly twice, and in all optimal annotations
found, 0 0 occurs at most twice. Might it be that for longer proofs, there are optimal annotations with
three occurrences of 0 0? As before, we used a heuristic search to investigate. The search uncovered
more interesting annotations, but all of the best had the form of A above. For instance, the best 25
line proof was:

0, DTIME1[n^1.751958454]
1, (E n^1.)DTISP[n^1.751958454,n^.7519608720]
2, (E n^1.040108911)(A n^1.)DTISP[n^1.463810415,n^.7519608720]
3, (E n^1.040108911)(A n^1.)(E n^1.)DTISP[n^1.215771287,n^.7519608720]
4, (E n^1.040108911)(A n^1.)DTIME1[n^1.577881470]
5, (E n^1.040108911)(A n^1.)DTISP[n^1.577881470,n^.5778814720]
6, (E n^1.040108911)(A n^1.)(E n^1.)DTISP[n^1.155762944,n^.5778814720]
7, (E n^1.040108911)(A n^1.)DTIME1[n^1.5]
8, (E n^1.040108911)(A n^1.)DTISP[n^1.5,n^.5]
9, (E n^1.040108911)(A n^1.)(E n^1.)DTISP[n^1.,n^.5]
10, (E n^1.040108911)(A n^1.)DTIME1[n^1.297844000]
11, (E n^1.040108911)DTIME1[n^1.684399048]
12, (E n^1.040108909)DTISP[n^1.684399048,n^.6442901394]
13, (E n^1.040108909)(A n^1.)DTISP[n^1.288580278,n^.6442901394]
14, (E n^1.040108909)DTIME1[n^1.672376183]
15, (E n^1.040108909)DTISP[n^1.672376183,n^.6322672739]
16, (E n^1.040108909)(A n^1.)DTISP[n^1.264534548,n^.6322672739]
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17, (E n^1.040108909)DTIME1[n^1.641168576]
18, (E n^1.040108909)DTISP[n^1.641168576,n^.6010596669]
19, (E n^1.040108911)(A n^1.)DTISP[n^1.202119332,n^.6010596669]
20, (E n^1.040108911)DTIME1[n^1.560163362]
21, (E n^1.040108911)DTISP[n^1.560163362,n^.5200544533]
22, (E n^1.040108908)(A n^1.)DTISP[n^1.040108908,n^.5200544533]
23, (E n^1.040108908)DTIME1[n^1.349899105]
24, DTIME1[n^1.751958454]

The best annotation found (for all dimensions d) was the 66 line annotation

[1,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0,
1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,1,1,0,0],

which leads to proofs that NTIME[n] is not in any of DTIME1[n1.3009], DTIME2[n1.1875], and
DTIME3[n1.1343]. In fact, all the best annotations found had the form [1 1 1 (0 1 1)k 0 (0 1 1)` 0 0].

7.3. Interpreting The Results
The annotations suggest a proof where one has an inductive lemma capturing the (0 1 1)∗ behavior,
then applies the lemma twice to a proof of six more lines. This strategy leads to:

THEOREM 7.5. SAT /∈ DTIMEd [nc], for all c < rd where rd ≥ 1 is a root of

pd(x)= (2d+1)(d+1)2x5−2(d+1)(2d+1)x4−d2x3+2(d+1)x2−((2d+1)(d+1)2+1)x+d(d+1).

As corollaries, we have SAT /∈ DTIME1[n1.3009], SAT /∈ DTIME2[n1.1887], and SAT /∈
DTIME3[n1.1372]. Before we prove Theorem 7.5, we first give an inductive lemma. Let c ≥ 1, and
define the sequence

e1 :=
d +2
d +1

, ek+1 := 1+
ek

c(d +1)
.

PROPOSITION 7.6. If c < e1 = (d +2)/(d +1) then {ek} is increasing.

PROOF. By induction on k. If c < e1 = (d + 2)/(d + 1) = 1 + 1/(d + 1), then e2 = 1 +
(e1/c)/(d +1)> e1, and ek+1 = 1+(ek/c)/(d +1)> 1+(ek−1/c)/(d +1) = ek.

LEMMA 7.7. Let c < (d +2)/(d +1). If NTIME[n]⊆ DTIMEd [nc], then for all k,

DTIMEd [nek ]⊆ (∃ n)(∀ logn)DTISP[n,nd/(d+1)].

PROOF. When k = 1,

DTIMEd [nek ]⊆ (∃ n)DTISP[n(d+2)/(d+1),nd/(d+1)]⊆ (∃ n)(∀ logn)DTISP[n,nd/(d+1)],

by Lemma 7.1 (DTIMEd to DTISP) and Lemma 3.3 (DTISP Speedup), respectively.
For the inductive step,

DTIMEd [n
1+ ek

c(d+1) ] ⊆ (∃ n)DTISP[n1+ ek
c(d+1) ,n

dek
c(d+1) ] (DTIMEd to DTISP)

⊆ (∃ n)(∀ logn)DTISP[nek/c,n
dek

c(d+1) ] (Speedup)
⊆ (∃ n)DTIMEd [nek ] (DTIMEd Slowdown, and ek > c by Proposition 7.6)

⊆ (∃ n)(∃ n)(∀ logn)DTISP[n,nd/(d+1)] = (∃ n)(∀ logn)DTISP[n,nd/(d+1)],

where the last containment holds by induction.

Note the proof annotations for the derivations in the above lemma have the form (1 1 0)k−1 1 1,
as suggested by experiments.
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COROLLARY 7.8. Let c < (d +2)/(d +1). If NTIME[n]⊆ DTIMEd [nc] then for all ε > 0,

DTIMEd [n
1+ 1

c(d+1)−1−ε
]⊆ (∃ n)(∀ logn)DTISP[n,nd/(d+1)].

PROOF. For e < 1+ 1
c(d+1)−1 , we have e < 1+ e

c(d+1)−1 . The sequence ek = 1+ ek−1
c(d+1) , e1 =

(d+2)/(d+1) converges to η = 1+ 1
c(d+1)−1 for all c≥ 1. (Note that e = 1+e/(c(d+1)) implies

e = 1+ 1
c(d+1)−1 .)

Therefore, for any e∗ < η , by setting e = (d +1)/(d +2) and observing

DTIMEd [n(d+1)/(d+2)]⊆ (∃ n)(∀ logn)DTISP[n,nd/(d+1)]

(the base case of Lemma 7.7), one can apply Lemma 7.7 for a constant number of times, and infer
that the same containment holds for DTIMEd [ne∗ ].

Intuitively, the corollary says that as we make stronger assumptions about how quickly SAT can
be solved on a d-dimensional one-tape TM, then we can simulate more of the class DTIMEd [nO(1)]

in the class (∃ n)(∀ logn)DTISP[n,nd/(d+1)], when c < (d + 2)/(d + 1). We can now prove the
lower bound.

Proof of Theorem 7.5. Let a≥ 1 be a parameter and let c < (d +2)/(d +1). Assuming SAT is in
DTIMEd [nc], we will find a smaller setting of c which yields a contradiction. Then

DTIMEd [na] ⊆ (∃ n)DTISP[na,nd(a−1)] (DTIMEd to DTISP)

⊆ (∃ nx+d(a−1))x+d(a−1)(∀ logn)1DTISP[na−x,nd(a−1)] (Speedup)

where x is a parameter satisfying c≥ x+d(a−1)≥ 1. By Speedup, the above class is in

(∃ nx+d(a−1))x+d(a−1)(∀ n(1−d(a−1))+d(a−1))1(∃ logn)1DTISP[na−x−(1−d(a−1)),nd(a−1)]

= (∃ nx+d(a−1))x+d(a−1)(∀ n1)1(∃ logn)1DTISP[na−x−(1−d(a−1)),nd(a−1)]

⊆ (∃ nx+d(a−1))x+d(a−1)(∀ n1)1DTIMEd [nc(a−x−(1−d(a−1)))] (Slowdown),

assuming (for the moment) that 1−d(a−1)≥ 0. Suppose that a and x satisfy c(a− x− (1−d(a−
1))) = c((d+1)(a−1)−x)≥ 1+ 1

c(d+1)−1 −ε , for some ε > 0. Applying Corollary 7.8, the above
is contained in

(∃ nx+d(a−1))(∀ n)(∃ logn)DTISP[n1,nd/(d+1)]

⊆ (∃ nx+d(a−1))(∀ n)DTISP[nc,nd/(d+1)] (Slowdown)

⊆ (∃ nx+d(a−1))x+d(a−1)DTIMEd [nc2
], (Slowdown)

since c≥ x+d(a−1). Now suppose a and c satisfy c2/(x+d(a−1)) = 1+1/(c(d +1)−1)− ε .
Then Corollary 7.8 can be applied again, obtaining the class

(∃ nx+d(a−1))(∀ n)DTISP[n(x+d(a−1)),n(x+d(a−1))· d
d+1 ]

⊆ (∃ nx+d(a−1))DTIMEd [nc(x+d(a−1))] (Slowdown)

⊆ DTIMEd [nc2(x+d(a−1))]. (Slowdown).

Setting a = c2(x+d(a−1)) yields a contradiction with Lemma 7.4. Observe that a proof annotation
for the above has the form [1 (1 1 0)k 0 (1 1 0)` 0]. The analysis introduced three parameters (c, a,
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x) along with three equations to satisfy:

a = c2(x+d(a−1)), (21)

c((d +1)(a−1)− x) = 1+
1

c(d +1)−1
, (22)

c2

x+d(a−1)
= 1+

1
c(d +1)−1

. (23)

For the sake of completeness, let us sketch how this system is solved and how the polynomial pd(x)
arises. Equation (21) is a linear equation in a, so we can easily derive

a =
c2(d− x)
c2d−1

.

Substituting into equations (22) and (23), we have

c+ cx+ cd−2c3dx− c3x
c2d−1

= 1+
1

c(d +1)−1
(24)

and
c2(c2d−1)

d− x
= 1+

1
c(d +1)−1

. (25)

Noting that x is linear in equation (24), we obtain

x =
c(d +1)(d +1− cd)

(cd + c−1)(2c2d + c2−1)
.

Substituting into equation 25, we have

(2c2d + c2−1)c2(cd + c−1)
(2cd2 +3cd + c−d)

= 1+
1

c(d +1)−1
.

Multiplying denominators on both sides, then subtracting the RHS from both sides, we obtain

c · pd(c)
(2cd2 +3cd + c−d)(cd + c−1)

= 0,

where

pd(x)= (2d+1)(d+1)2x5−2(d+1)(2d+1)x4−d2x3+2(d+1)x2−((2d+1)(d+1)2+1)x+d(d+1).

For c > 1 and d ≥ 1, the denominator is nonzero and positive. Therefore, any c≥ 1 which is a root
of pd(x) will suffice. For any r < c, we can find a, x, and ε > 0 satisfying

r(d(a−1)− x) = 1+1/(r(d +1)−1)− ε,

a≥ r2(x+d(a−1)),

r2/(x+d(a−1)) = 1+1/(r(d +1)−1)− ε.

This completes the proof. 2

We again conjecture that the above lower bound is optimal for alternation-trading proofs. We
can show that no n1+1/(d+1) lower bound can be proved for d-dimensional TMs under the current
system of rules.

THEOREM 7.9. There is no alternation trading proof that SAT /∈ DTIMEd [nc], for any c≥ 1+
1/(d +1).
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PROOF. (Sketch) The proof is by minimal counterexample. Suppose there is an alternation-
trading proof that NTIME[n] * DTIMEd [nc] with c ≥ 1+ 1/(d + 1), and let A be a normal form
annotation. Let us first give a complete proof that A cannot be [1,1,0,0], by showing that this anno-
tation cannot yield c≥ 1+1/(d +1). The annotation [1,1,0,0] refers to a proof with the following
structure (where x,y≥ 0):

DTIMEd [na]

(∃ na−x)max{a−x,1}DTISP[na,ndx]

(∃ nmax{a−x,y+dx})max{a−x,y+dx,1}(∀ n0)1DTISP[na−y,ndx]

(∃ nmax{a−x,y+dx})max{a−x,y+dx,1}DTIMEd [nc·max{a−x,y+dx,1,a−y}]

DTIMEd [nc2·max{a−x,y+dx,1,a−y}]

Let a′ = c2 ·max{a− x,y+dx,1,a− y}. For convenience, let c′ = c2. In order for a≥ a′ (to yield a
lower bound, by Theorem 7.4), we must have

a≥ c′, (26)
a≥ c′(dx+ y), (27)
a≥ c′(a− x), (28)
a≥ c′(a− y). (29)

(28) and (29) imply

a≤ c′x/(c′−1) a≤ c′y/(c′−1). (30)

Combining with (27), we have dx+ y ≤ x/(c′− 1) and dx+ y ≤ y/(c′− 1), hence y ≤ x(1/(c′−
1)−d) and x ≤ y(1/(c′−1)−1)/d. That is, y/x ≤ (1/(c′−1)−d) and y/x ≥ d/(1/(c′−1)−1),
therefore

1
c′−1

−d ≥ d
1/(c′−1)−1

.

This condition directly implies that c′ ≤ (d +2)/(d +1), or c≤
√

1+1/(d +1)< 1+1/(d +1).
From here on, we may assume that |A|> 4, otherwise the only valid annotation is [1,1,0,0] which

we know does not yield a strong lower bound.
Now we prove that every sequence 0,1,0 in a normal form annotation can be replaced with just

0,0. After a slowdown, the deterministic portion of a class is DTIMEd , therefore 0,1,0 produces
the lines:

· · ·b′ (∃ na′)bDTIMEd [na]

· · ·b′ (∃ nmax{a′,a−s})max{b,a−s}DTISP[na,nds]

· · ·b′ DTIMEd [nmax{cb,ca−cs,ca′,ca,cds}].

But these lines give no improvement over applying the sequence 0,0 instead, since that would
replace the above with

· · ·b′ (∃ na′)bDTIMEd [na]

· · ·b′ DTIMEd [nmax{cb,ca,ca′}],

but max{cb,ca− cs,ca′,ca,cds} ≥max{cb,ca,ca′}.
Once we have removed all occurrences of 0,1,0, the proof annotations can be placed in 1-1 cor-

respondence with strings of balanced parentheses of the form (x), as in Theorem 4.10. Informally,
each ( corresponds to the addition of a new quantifier by some speedup rule, and each ) corresponds
to the removal of a quantifier, by a slowdown rule. More formally, after the first run of k 1’s in an

ACM Transactions on Computation Theory, Vol. V, No. N, Article A, Publication date: January YYYY.



Alternation-Trading Proofs, Linear Programming, and Lower Bounds A:37

annotation (which produces a line with k quantifier blocks, and hence k open parentheses in the
string), every subsequent run of k 1’s corresponds to only k−1 open parentheses (because the first
1 in a run corresponds to the switch from DTIMEd to DTISP, which does not add a new quantifier
if the class already has quantifiers), and every 0 corresponds to a closed parenthesis, removing one
quantifier.

Now we make the following claim:

CLAIM 3. After removing all occurrences of 0,1,0 in an annotation, there must be always be
an occurrence of the subsequence 1,1,0,0 in every valid annotation with at least four lines.

To prove the claim, we first show that the annotation must end with the sequence 0,0. The last bit
of the annotation must have a 0 (so that a DTIMEd class is reached). Assume (for a contradiction)
that the bit before that is 1 (a speedup). Then the corresponding class has a DTISP predicate and
only one quantifier, so the next-to-last class has the form

(∃ na′)bDTISP[na,ne].

But then the bit before this must have been 0; it could not be 1, because then we must have applied
the DTISP speedup rule and introduced at least two quantifiers. Hence the last three bits of the
annotation must be 0,1,0, which cannot be. Therefore the annotation must end with 0,0.

Now we argue for the existence of 1,1,0,0. There must be at least two 1’s in the first run of
1’s in the annotation, otherwise the annotation cannot be in normal form: it would reach the class
DTIMEd [na] before the last line. Hence there is a substring 1,1,0 indicating the end of the first run
of 1’s. There are three cases:

— If the next bit is a 0, then 1,1,0,0 has been found.
— If the next two bits are 1,0, then there is a subsequence 0,1,0, which cannot be.
— If the next two bits are 1,1, this signals the beginning of a new run of at least two 1’s; we continue

the argument with the sequence 1,1,0 at the end of this run of 1’s.

Because the end of the annotation has the sequence 0,0, we must eventually reach a substring
1,1,0,0. This concludes the proof of the claim.

Finally, we claim that if c≥ (d +2)/(d +1), then any sequence 1,1,0,0 in an annotation can be
replaced by either the sequence 1,0, or the sequence 0. There are two cases to consider.

Case 1. The line before the 1,1,0,0 sequence has the form:

Qb(Q1 na′)bDTISP[na,ne].

Then, the lines corresponding to 1,1,0,0 have the form:

Qb(Q1 na′)bDTISP[na,ne]

Qb(Q1 nmax{a′,x+e})max{b,x+e}(Q2 n0)max{b,1}DTISP[na−x,ne]

Qb(Q1 nmax{a′,x+e})max{b,x+e}(Q2 ny)max{b,y+e,1}(Q3 n0)max{b,1}DTISP[na−x−y,ne]

Qb(Q1 nmax{a′,x+e})max{b,x+e}(Q2 ny)max{b,y+e,1}DTIMEd [nc·max{b,y+e,1,a−x−y}]

Qb(Q1 nmax{a′,x+e})max{b,x+e}DTIMEd [nc2·max{b,y+e,1,x+e,a−x−y}]

In comparison, the string 1,0 would have the form:

Qb(Q1 na′)bDTISP[na,ne]

Qb(Q1 nmax{a′,x+e})max{b,x+e}(Q2 n0)max{b,1}DTISP[na−x,ne]

Qb(Q1 nmax{a′,x+e})max{b,x+e}DTIMEd [nc·max{b,1,x+e,a−x}]

Similar to previous proofs (Theorem 4.10 and 6.9), we infer that when
max{b,1,x+ e,a− x} ≤ c ·max{b,y+ e,1,x+ e,a− x− y}, (31)
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we can replace 1,1,0,0 with 1,0. If one of b, x+ e, or 1 is the maximum on the LHS, then for
any c≥ 1, the inequality (31) certainly holds. Now suppose a− x is the maximum on the LHS.
Letting y = 0, we see that c ·max{b,y+e,1,x+e,a−x−y} ≥ c(a−x)≥ a−x for every c≥ 1.
Hence, no matter what a′,a,b,e are, (31) holds for all c≥ 1.

Case 2. The line before the 1,1,0,0 sequence has the form:

Qb(Q1 na′)bDTIMEd [na].

Notice that, if the line has this form, then the previous rule must have been a slowdown, because
every application of a speedup rule results in a line with DTISP. This case is similar to the base
case above, where we considered the annotation [1,1,0,0] directly. The lines have the form:

Qb(Q1 na′)bDTIMEd [na]

Qb(Q1 nmax{a′,a−x})max{b,a−x}DTISP[na,ndx]

Qb(Q1 nmax{a′,a−x,y+dx})max{a−x,y+dx,b}(∀ n0)1DTISP[na−y,ndx]

Qb(Q1 nmax{a′,a−x,y+dx})max{a−x,y+dx,b}DTIMEd [nc·max{a−x,y+dx,b,a−y}]

QbDTIMEd [nc2·max{a′,a−x,y+dx,b,a−y}].

We want to show that c≥ (d +2)/(d +1) implies

c2 ·max{a′,a− x,y+dx,b,a− y} ≥ c ·max{a,a′,b}.
Then, we can always replace 1,1,0,0 by 0 without affecting the proof. Notice that if a′ and
b are the maximum on the RHS, then the inequality is trivially true, so suppose that a is the
maximum. Dividing both sides by c, the following inequalities are implied:

a≤ c, (32)
a≤ c(dx+ y), (33)
a≤ c(a− x), (34)
a≤ c(a− y). (35)

This is extremely similar to the system we solved for the annotation [1,1,0,0], except for two
points: (a) the directions of the inequalities are reversed, and (b) in the previous system, we had
the variable c′ = c2. By analogous reasoning, c ≥ (d + 2)/(d + 1) yields a feasible solution to
the system, hence 1,1,0,0 can be replaced by 0 in this case.

Therefore, if c≥ (d +2)/(d +1) is proved by an annotation, then that annotation can always be
made shorter, without affecting the lower bound proof. Hence every annotation can be reduced to
one of at most four lines, which we know does not suffice for the lower bound.

8. CONCLUSION
We introduced a methodology for reasoning about lower bounds in the alternation-trading frame-
work. This gives a general way to attack lower bound problems via computer, and lets us establish
limitations on known techniques. We now have a better understanding of what these techniques can
and cannot do, and a tool for addressing future problems. Previously, the problem of setting param-
eters to get a good lower bound was a highly technical exercise. Our work should reduce the load
on further research: once a new speedup or slowdown lemma is found, one only needs to find the
relevant linear programming formulation to begin understanding its power. We end with two open
problems.

(1) Establish tight limitations for alternation-trading proofs. That is, show that the best possible
alternation-trading proofs match the ones we have provided. The computer search results of
this paper have been met with skepticism; it is critical to verify these perceived limitations with
formal proof. As mentioned earlier, this open problem has been resolved in the case of DTISP
lower bounds on SAT [Buss and Williams 2012].
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(2) Discover ingredients that add signficantly to the framework. Here there are several possible
avenues. One is to find new separation results that lead to new contradictions. Another is to find
improved Speedup and/or Slowdown Lemmas. The Slowdown Lemmas appear to be “blandest”
of the ingredients: they are very elementary, and they relativize. For instance, there may be a
better Speedup Lemma that shows DTS is contained infinitely often in a faster alternating time
class, and we might use an almost-everywhere time hierarchy [Geske et al. 1991; Allender et al.
1993] to obtain a contradiction.
Secondly, combinatorial methods have led to several time-space lower bounds. For example,
Ajtai [Ajtai 2002] and Beame et al. [Beame et al. 2001] have proven time-space lower bounds
for branching programs; Gurevich and Shelah [Gurevich and Shelah 1988] gave a problem in
NTISP[n, logn] but not DTISP[n1+a,nb]) when b+2a < 1/2. Is it possible to incorporate these
combinatorial methods into the alternation-trading framework?
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