Stanford University — CS154: Automata and Complexity Handout 3
Luca Trevisan and Ryan Williams 2/7/2012

Notes on Rice’s Theorem

Consider any kind of software testing problem. Its description will typ-
ically start as “For a given program decide whether the function it com-
putes is ...”. In the setting of Turing machines, we often encounter natural
problems of the form “Decide if the language recognized by a given Turing
machine (M) ... .” Rice’s theorem proves in one clean sweep that all these
problems are undecidable. That is, whenever we have a decision problem
in which we are given a Turing machine and we are asked to determine a
property of the language recognized by the machine, that decision problem
is always undecidable. The only exceptions will be the trivial properties
that are always true or always false.

We use the following notation. If M is a Turing machine with input
alphabet X, then L(M) C ¥* is the language recognized by M, that is, the
set of strings that are accepted by M.

Theorem 1 Let C be a set of languages. Consider the language Le defined
as follows
Le ={(M) | L(M) € C} .

Then either Le is empty, or it contains the descriptions of all Turing ma-
chines, or it is undecidable.

To make sense of the statement of the theorem, think of a property of
languages that you would like to test. For example the property of being
regular. Then define C to be the set of all languages with that property.
(In the example, C would be the set of regular languages.) Now, L¢ is the
language of (representations of) Turing machines that recognize languages
having the property. (In the example, Le would be the language of Turing
machines that recognize regular languages.) The theorem says that unless
every Turing machine recognizes a language with the property (not true for
regular languages) and unless no Turing machine recognizes a language with
the property (not true for regular languages), then L¢ is undecidable. (So it
is undecidable to tell whether a given Turing machine recognizes a regular
language or not.)

Think of all the corollaries that you can infer from Rice’s Theorem. It is
undecidable to determine whether a given Turing machine accepts a finite



or infinite number of inputs. It is undecidable to determine whether a given
Turing machine accepts only (representations of) prime numbers, and so on.

PROOF: Suppose towards a contradiction that for same class C the language
L¢ is not empty, it does not contain the descriptions of all Turing machines,
and it is decidable. Then L; is also not empty, not containing all Turing
machines, and decidable.

Suppose that ) & C, otherwise apply the argument below to C instead of
C.

Let M;, be a machine such that (M;,) is in L¢.

We will show that the Acceptance problem is decidable, and so we will
reach a contradiction.

Given an input ((M),w) for the Acceptance problem, we constract a new
Turing machine M, that does the following: on input x, M, first simulates
the behaviour of M on input w and

e If M on input w loops, then so does M,,;
e If M on input w rejects, then so does M,,;

e If M on input w accepts, then M,, continues with a simulation of Mj,
on input z.

In summary:

e If M accepts w, then M, behaves like M;,, and M,, accepts an input
x if and only if M;, does. In other words, L(M,,) = L(M;,) € C and
so (My,) € Lc;

e if M does not accept w, then M,, does not accept any input, and
L(M,) =0 & C, which implies (M,,) & Lc.

We have proved that ((M),w) € A if and only if (M,,) € L¢, and so A
would be decidable if Le were decidable. We have reached a contradiction.
O



