CS 154

More on Reductions, Rice’s Theorem
Reducing One Problem to Another

\(f : \Sigma^* \rightarrow \Sigma^* \) is a **computable function** if there is a Turing machine \(M \) that halts with just \(f(w) \) written on its tape, for every input \(w \).

A language \(A \) is **mapping reducible** to language \(B \), written as \(A \leq_m B \), if there is a computable \(f : \Sigma^* \rightarrow \Sigma^* \) such that for every \(w \),

\[w \in A \iff f(w) \in B \]

\(f \) is called a mapping reduction (or many-one reduction) from \(A \) to \(B \).
Let $f : \Sigma^* \rightarrow \Sigma^*$ be a **computable function** such that $w \in A \iff f(w) \in B$

Say: “A is mapping reducible to B”
Write: $A \leq_m B$
Examples

\(A_{\text{DFA}} = \{ (D, w) \mid D \text{ encodes a DFA over some } \Sigma, \text{ and } D \text{ accepts } w \in \Sigma^* \} \)

\(A_{\text{NFA}} = \{ (N, w) \mid N \text{ encodes an NFA, } D \text{ accepts } w \} \)

Theorem: \(A_{\text{DFA}} \leq_m A_{\text{NFA}} \)

Every DFA can be trivially written as an NFA. So one mapping reduction \(f \) from \(A_{\text{DFA}} \) to \(A_{\text{NFA}} \) is:
\[
f(D,w) := \text{Construct NFA } N \text{ which is equivalent to } D
\]
Output \((N,w) \)

Theorem: \(A_{\text{NFA}} \leq_m A_{\text{DFA}} \)

\[
f(N,w) := \text{Use the subset construction to convert NFA } N \text{ into an equivalent DFA } D. \text{ Output } (D,w)
\]
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
Theorem: \(A_{TM} \leq_m HALT_{TM} \)

Define

\[f(z) := \text{Decode } z \text{ into a pair } (M, w) \]

Construct \(M' \) with the specification:

“\(M'(w) = \text{Simulate } M \text{ on } w. \)

if \(M(w) \) accepts then \text{accept}

else \text{loop forever}”

Output \((M', w) \)

We have \(z \in A_{TM} \iff (M', w) \in HALT_{TM} \)
Theorem: $A_{TM} \leq_m \text{HALT}_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg\text{HALT}_{TM}$

Corollary: $\neg\text{HALT}_{TM}$ is unrecognizable!

Proof: If $\neg\text{HALT}_{TM}$ were recognizable, then $\neg A_{TM}$ would be recognizable...
Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$

Proof: Define the computable function:

$$f(z) := \text{Decode } z \text{ into a pair } (M, w)$$

Construct M' with the specification:

"$M'(w) = \text{Simulate } M \text{ on } w.$

If $M(w)$ halts then accept

else loop forever"

Output (M', w)

Observe $(M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM}$
Corollary: $\text{HALT}_{TM} \equiv_{m} \text{A}_{TM}$

Yo, T.M.! I can give you the magical power to either compute the halting problem, or the acceptance problem. Which do you want?

Wow, hm, so hard to choose...

I can’t decide!
The Emptiness Problem for TMs

\[\text{EMPTY}_{\text{TM}} = \{ \text{M} \mid \text{M is a TM such that } L(\text{M}) = \emptyset \} \]

Given a program, does it reject or loop on every input?

Theorem: \(\text{EMPTY}_{\text{TM}} \) is *not recognizable*

Proof: Show that \(\neg A_{\text{TM}} \leq_m \text{EMPTY}_{\text{TM}} \)

\[f(z) := \text{Decode } z \text{ into a pair } (\text{M}, \ w). \]

Output a TM \(\text{M}' \) with the behavior:

“\(\text{M}'(x) := \text{if } (x = w) \text{ then output answer of } M(w), \text{ else reject} \)”

\[z \notin A_{\text{TM}} \iff \text{M doesn’t accept w} \]

\[\iff L(\text{M}') = \emptyset \iff \text{M}' \in \text{EMPTY}_{\text{TM}} \]

\[\iff f(z) \in \text{EMPTY}_{\text{TM}} \]
The Emptiness Problem for Other Stuff

\[\text{EMPTY}_{\text{DFA}} = \{ M \mid M \text{ is a DFA such that } L(M) = \emptyset \} \]

Given a DFA, does it reject every input?

Theorem: \(\text{EMPTY}_{\text{DFA}} \) is decidable

Why?

\[\text{EMPTY}_{\text{NFA}} = \{ M \mid M \text{ is a NFA such that } L(M) = \emptyset \} \]

\[\text{EMPTY}_{\text{REX}} = \{ R \mid M \text{ is a regexp such that } L(M) = \emptyset \} \]
The Equivalence Problem

$EQ_{TM} = \{(M, N) \mid M, N \text{ are TMs and } L(M) = L(N)\}$

Do two programs compute the same function?

Theorem: EQ_{TM} is *unrecognizable*

Proof: Reduce $EMPTY_{TM}$ to EQ_{TM}

Let M_{\emptyset} be a TM that always loops forever, so $L(M_{\emptyset}) = \emptyset$

Define $f(M) := (M, M_{\emptyset})$

$M \in EMPTY_{TM} \iff L(M) = L(M_{\emptyset}) \iff (M, M_{\emptyset}) \in EQ_{TM}$
Moral: Analyzing Programs is Really, Really Hard.

How can we more easily tell when some “program analysis” problem is undecidable?
Problem 1 Undecidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input} \}

Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}
Problem 1 Undecidable

$L' = \{ (M, w) \mid M \text{ is a TM that on input } w, \text{ tries to move its head past the left end of the input } \}$

Proof: Reduce A_{TM} to L'

On input (M, w), make a TM N that shifts w over one cell, marks a special symbol $\$\$ on the leftmost cell, then simulates $M(w)$ on the tape. If M’s head moves to the cell with $\$\$ but has not yet accepted, N moves the head back to the right. If M accepts, N tries to move its head past the $\$\$.

(M, w) is in A_{TM} if and only if (N, w) is in L'
Problem 2 Decidable

\{ (M, w) \mid M \text{ is a TM that on input } w, \text{ moves its head left at least once, at some point} \}

On input \((M, w) \), run \(M \) on \(w \) for
\[|Q| + |w| + 1 \]
steps,
where \(|Q| = \text{ number of states of } M \).

Accept If M’s head moved left at all
Reject Otherwise

(Why does this work?)
Problem 3

REVERSE = \{ M \mid M \text{ is a TM with the property: for all } w, M(w) \text{ accepts} \iff M(w^R) \text{ accepts}\}.

Decidable or not?

REVERSE is undecidable.
Rice’s Theorem

Let $P : \{\text{Turing Machines}\} \to \{0,1\}$. (Think of 0=false, 1=true) Suppose P satisfies:

1. **(Nontrivial)** There are TMs M_{YES} and M_{NO} where $P(M_{\text{YES}}) = 1$ and $P(M_{\text{NO}}) = 0$

2. **(Semantic)** For all TMs M_1 and M_2,
 If $L(M_1) = L(M_2)$ then $P(M_1) = P(M_2)$

Then, $L = \{M \mid P(M) = 1\}$ is undecidable.

A Huge Hammer for Undecidability!
Some Examples and Non-Examples

Semantic Properties \(P(M) \)
- \(M \) accepts 0
- for all \(w \), \(M(w) \) accepts iff \(M(w^R) \) accepts
- \(L(M) = \{0\} \)
- \(L(M) \) is empty
- \(L(M) = \Sigma^* \)
- \(M \) accepts 154 strings

Not Semantic!
- \(M \) halts and rejects 0
- \(M \) tries to move its head off the left end of the tape, on input 0
- \(M \) never moves its head left on input 0
- \(M \) has exactly 154 states
- \(M \) halts on all inputs

\[L = \{M \mid P(M) \text{ is true}\} \]
is undecidable

There are \(M_1 \) and \(M_2 \) such that \(L(M_1) = L(M_2) \) and \(P(M_1) \neq P(M_2) \)
Rice’s Theorem: If P is nontrivial and semantic, then \(L = \{ M \mid P(M) = 1 \} \) is undecidable.

Proof: Either reduce \(A_{TM} \) or \(\neg A_{TM} \) to the language \(L \)
Define \(M_\emptyset \) to be a TM such that \(L(M_\emptyset) = \emptyset \)

Case 1: \(P(M_\emptyset) = 0 \)
Since P is nontrivial, there’s \(M_{YES} \) such that \(P(M_{YES}) = 1 \)

Reduction from \(A_{TM} \) to \(L \)
On input \((M,w) \), output:

“\(M_w(x) := \) If \(((M \text{ accepts } w) \land (M_{YES} \text{ accepts } x)) \) then ACCEPT, else REJECT”

If M accepts w, then \(L(M_w) = L(M_{YES}) \)
Since \(P(M_{YES}) = 1 \), we have \(P(M_w) = 1 \) and \(M_w \in L \)

If M does not accept w, then \(L(M_w) = L(M_\emptyset) = \emptyset \)
Since \(P(M_\emptyset) = 0 \), we have \(M_w \not\in L \)
Rice’s Theorem: If P is nontrivial and semantic, then $L = \{M \mid P(M) = 1\}$ is undecidable.

Proof: Either reduce A_{TM} or $\neg A_{TM}$ to the language L.

Define M_{\emptyset} to be a TM such that $L(M_{\emptyset}) = \emptyset$.

Case 2: $P(M_{\emptyset}) = 1$.

Since P is nontrivial, there’s M_{NO} such that $P(M_{NO}) = 0$.

Reduction from $\neg A_{TM}$ to L:

On input (M, w), output:

“$M_w(x) := \text{If } ((M \text{ accepts } w) \& (M_{NO} \text{ accepts } x)) \text{ then ACCEPT, else REJECT}”$

If M does not accept w, then $L(M_w) = L(M_{\emptyset}) = \emptyset$.

Since $P(M_{\emptyset}) = 1$, we have $M_w \in L$.

If M accepts w, then $L(M_w) = L(M_{NO})$.

Since $P(M_{NO}) = 0$, we have $M_w \not\in L$.
The Regularity Problem for Turing Machines

\[\text{REGULAR}_{\text{TM}} = \{ M \mid M \text{ is a TM and } L(M) \text{ is regular} \} \]

Given a program, is it equivalent to some DFA?

Theorem: \(\text{REGULAR}_{\text{TM}} \) is *not recognizable*

Proof: Use Rice’s Theorem!

\[P(M) := \text{“L(M) is regular” is nontrivial:} \]

- there’s an \(M_{\emptyset} \) which never halts: \(P(M_{\emptyset}) = 1 \)
- there’s an \(M' \) deciding \(\{0^n1^n | n \geq 0\} \): \(P(M') = 0 \)

\(P \) is also semantic:

If \(L(M) = L(M') \) then \(L(M) \) is regular iff \(L(M') \) is regular, so \(P(M) = 1 \) iff \(P(M') = 1 \), so \(P(M) = P(M') \)

By Rice’s Thm, we have \(\neg A_{\text{TM}} \leq_m \text{REGULAR}_{\text{TM}} \)
Recognizability via Logic

Def. A decidable predicate $R(x,y)$ is a proposition about the input strings x and y, such that some TM M implements R. That is,

for all x, y, $R(x,y)$ is TRUE \Rightarrow $M(x,y)$ accepts
$R(x,y)$ is FALSE \Rightarrow $M(x,y)$ rejects

Can think of R as a function from $\Sigma^* \times \Sigma^* \rightarrow \{T,F\}$

EXAMPLES: $R(x,y) = \text{“xy has at most 100 zeroes”}$
$R(N,y) = \text{“TM N halts on y in at most 99 steps”}$
Theorem: A language A is *recognizable* if and only if there is a decidable predicate $R(x, y)$ such that:

$$A = \{ x \mid \exists y \ R(x, y) \}$$

Proof:

(1) If $A = \{ x \mid \exists y \ R(x,y) \}$ then A is recognizable.

Define the TM $M(x)$: For all finite-length strings y, If $R(x,y)$ is true, accept.

Then, M accepts exactly those x s.t. $\exists y \ R(x,y)$ is true.

(2) If A is recognizable, then $A = \{ x \mid \exists y \ R(x,y) \}$

Suppose TM M recognizes A. Let $R(x,y)$ be TRUE iff M accepts x in $|y|$ steps. Then, M accepts $x \iff \exists y \ R(x,y)$.