CS 154

Foundations of Math and Kolmogorov Complexity
Computability and the Foundations of Mathematics
A **formal system** describes a formal language for
- writing (finite) mathematical statements,
- has a definition of what statements are “true”
- has a definition of a proof of a statement

Example: Every TM M defines some formal system F
- $\{\text{Mathematical statements in } F\} = \Sigma^*$
 - String w represents the statement “M accepts w”
- $\{\text{True statements in } F\} = L(M)$
- A proof that “M accepts w” can be defined to be an accepting computation history for M on w
Interesting Formal Systems

Define a formal system \mathcal{F} to be *interesting* if:

1. Any mathematical statement about computation can be (computably) described as a statement of \mathcal{F}. Given (M, w), there is a (computable) $S_{M,w}$ in \mathcal{F} such that $S_{M,w}$ is true in \mathcal{F} if and only if M accepts w.

2. Proofs are “convincing” – a TM can check that a proof of a theorem is correct. *This set is decidable:* $\{(S, P) \mid P \text{ is a proof of } S \text{ in } \mathcal{F}\}$

3. If S is in \mathcal{F} and there is a proof of S describable as a computation, then there’s a proof of S in \mathcal{F}. *If M accepts w, then there is a proof P in \mathcal{F} of $S_{M,w}$*
Consistency and Completeness

A formal system F is consistent or sound if no false statement has a valid proof in F (Proof in F implies Truth in F)

A formal system F is complete if every true statement has a valid proof in F (Truth in F implies Proof in F)
Limitations on Mathematics

For every consistent and interesting F,

Theorem 1. (Gödel 1931) F is incomplete: There are mathematical statements in F that are true in F but cannot be proved in F.

Theorem 2. (Gödel 1931) The consistency of F cannot be proved in F.

Theorem 3. (Church-Turing 1936) The problem of checking whether a given statement in F has a proof is undecidable.
Unprovable Truths in Mathematics

(Gödel) Every consistent interesting \mathcal{F} is incomplete: there are true statements that cannot be proved.

Let $S_{M, w}$ in \mathcal{F} be true if and only if M accepts w

Proof: Define Turing machine $G(x)$:

1. Obtain own description G [Recursion Theorem!]
2. Construct statement $S' = \neg S_{G, x}$
3. Search for a proof of S' in \mathcal{F} over all finite length strings. Accept if a proof is found.

Claim: S' is true in \mathcal{F}, but has no proof in \mathcal{F}

S' basically says “There is no proof of S' in \mathcal{F}”
(Gödel 1931) The consistency of F cannot be proved within any interesting consistent F

Proof: Suppose we can prove “F is consistent” in F

We constructed $\neg S_{G, x} = \text{“G does not accept x”}$

which we showed is true, but has no proof in F

G does not accept $x \iff$ There is no proof of $\neg S_{G, x}$ in F

But if there’s a proof in F of “F is consistent” then

there is a proof in F of $\neg S_{G, x}$ (here’s the proof):

“If $S_{G, x}$ is true, then there is a proof in F of $\neg S_{G, x}$.

F is consistent, therefore $\neg S_{G, x}$ is true.

But $S_{G, x}$ and $\neg S_{G, x}$ cannot both be true.

Therefore, $\neg S_{G, x}$ is true”

This contradicts the previous theorem.
Undecidability in Mathematics

PROVABLE$_F = \{S \mid \text{there's a proof in } F \text{ of } S, \text{ or there's a proof in } F \text{ of } \neg S\}

(Church-Turing 1936) For every interesting consistent F, PROVABLE$_F$ is undecidable

Proof: Suppose PROVABLE$_F$ is decidable with TM P.

Then we can decide A_{TM} using the following procedure:

On input (M, w), run the TM P on input $S_{M,w}$

If P accepts, examine all possible proofs in F

If a proof of $S_{M,w}$ is found then accept

If a proof of $\neg S_{M,w}$ is found then reject

If P rejects, then reject.

Why does this work?
Kolmogorov Complexity:
A Universal Theory of Data Compression
The Church-Turing Thesis:

Everyone’s Intuitive Notion = Turing Machines of Algorithms

This is not a theorem – it is a falsifiable scientific hypothesis.

A Universal Theory of Computation
A Universal Theory of *Information*?

Can we quantify how much *information* is contained in a string?

A = 01010101010101010101010101010101

B = 110010011101110101101001011001011

Idea: The more we can “compress” a string, the less “information” it contains....
Information as Description

Thesis: The amount of information in a string x is the length of the *shortest description* of x

How should we “describe” strings?

Use Turing machines with inputs!

Let $x \in \{0,1\}^*$

Def: A *description of x* is a string $<M,w>$ such that

M on input w halts with only x on its tape.

Def: The *shortest description of x*, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that $M(w)$ halts with only x on its tape.
A Specific Pairing Function

Theorem. There is a 1-1 computable function
\(<,> : \Sigma^* \times \Sigma^* \rightarrow \Sigma^*\) and computable functions
\(\pi_1 \) and \(\pi_2 : \Sigma^* \rightarrow \Sigma^*\) such that:

\[z = <M,w> \iff \pi_1(z) = M \text{ and } \pi_2(z) = w \]

Define: \(<M,w> := 0^{|M|}1 \ M \ w \)

(Example: \(<10110,101> = 00000110110101\))

Note that \(|<M,w>| = 2|M| + |w| + 1 \)
Kolmogorov Complexity (1960’s)

Definition: The *shortest description of x*, denoted as $d(x)$, is the lexicographically shortest string $<M,w>$ such that $M(w)$ halts with only x on its tape.

Definition: The *Kolmogorov complexity of x*, denoted as $K(x)$, is $|d(x)|$.

EXAMPLES??
Let’s first determine some properties of K. Examples will fall out of this.
Theorem: There is a fixed c so that for all x in $\{0,1\}^*$

$$K(x) \leq |x| + c$$

“The amount of information in x isn’t much more than $|x|$”

Proof: Define a TM M = “On input w, halt.”
On any string x, $M(x)$ halts with x on its tape.
Observe that $<M,x>$ is a description of x.

Let $c = 2|M| + 1$
Then $K(x) \leq |<M,x>| \leq 2|M| + |x| + 1 \leq |x| + c$
Repetitive Strings have Low K-Complexity

Theorem: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“The information in x^n isn’t much more than that in x”

Proof: Define the TM

$N = \text{“On input } <n, <M, w>>, \\
\text{Let } x = M(w). \text{ Print } x \text{ for } n \text{ times.”}$

Let $<M, w>$ be the shortest description of x.

Then $K(x^n) \leq K(<N, <n, <M, w>>>)$

$\leq 2 |N| + d \log n + K(x) \leq c \log n + K(x)$

for some constants c and d
Repetitive Strings have Low K-Complexity

Theorem: There is a fixed c so that for all $n \geq 2$, and all $x \in \{0,1\}^*$, $K(x^n) \leq K(x) + c \log n$

“The information in x^n isn’t much more than that in x”

Recall:

$A = 01010101010101010101010101010101$

For $w = (01)^n$, we have $K(w) \leq K(01) + c \log n$

So for all n, $K((01)^n) \leq d + c \log n$ for a fixed c, d
Does The Computational Model Matter?

Turing machines are one “programming language.” If we use other programming languages, could we get significantly shorter descriptions?

An interpreter is a “semi-computable” function

\[p : \Sigma^* \rightarrow \Sigma^* \]

Takes programs as input, and (may) print their outputs

Definition: Let \(x \in \{0,1\}^* \). The shortest description of \(x \) under \(p \), called \(d_p(x) \), is the lexicographically shortest string \(w \) for which \(p(w) = x \).

Definition: The \(K_p \) complexity of \(x \) is \(K_p(x) := |d_p(x)| \).
Theorem: For every interpreter \(p \), there is a fixed \(c \) so that for all \(x \in \{0,1\}^* \), \(K(x) \leq K_p(x) + c \)

Moral: Using another programming language would only change \(K(x) \) by some additive constant

Proof: Define \(M = \text{"On } w, \text{ simulate } p(w) \text{ and write its output to tape"} \)

Then \(<M,d_p(x)> \) is a description of \(x \), so

\[
K(x) \leq |<M,d_p(x)>| \\
\leq 2|M| + K_p(x) + 1 \leq c + K_p(x)
\]
There Exist Incompressible Strings

Theorem: For all \(n \), there is an \(x \in \{0,1\}^n \) such that \(K(x) \geq n \)

“There are incompressible strings of every length”

Proof: (Number of binary strings of length \(n \)) = \(2^n \)
but (Number of descriptions of length < \(n \))
\[\leq (\text{Number of binary strings of length } < n) \]
\[= 1 + 2 + 4 + \cdots + 2^{n-1} = 2^n - 1 \]

Therefore, there is at least one \(n \)-bit string \(x \) that does not have a description of length < \(n \)
Random Strings Are Incompressible!

Theorem: For all n and $c \geq 1$,
\[\Pr_{x \in \{0,1\}^n}[K(x) \geq n-c] \geq 1 - \frac{1}{2^c} \]

"Most strings are highly incompressible"

Proof:
(Number of binary strings of length n) = 2^n
but (Number of descriptions of length < $n-c$)
\[\leq (\text{Number of binary strings of length } < n-c) \]
\[= 2^{n-c} - 1 \]

Hence the probability that a random x satisfies
\[K(x) < n-c \]
is at most $(2^{n-c} - 1)/2^n < 1/2^c$.
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000

2. 123581321345589144233377610987

3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000
2. 123581321345589144233377610987
3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 010001101100000101001110010111011000
2. 123581321345589144233377610987
3. 126241207205040403203628803628800
Kolmogorov Complexity: Try it!

Give short algorithms for generating the strings:

1. 01000110110000010100111001011101110000
2. 123581321345589144233377610987
3. 126241207205040403203628803628800

This seems hard to determine in general. Why?
Determining Compressibility?

Can an algorithm perform optimal compression? Can algorithms tell us if a given string is compressible?

\[\text{COMPRESS} = \{ (x,c) \mid K(x) \leq c \} \]

Theorem: COMPRESS is undecidable!

Idea: If decidable, we could design an algorithm that prints the shortest incompressible string of length \(n \)

But such a string could then be succinctly described, by providing the algorithm code and \(n \) in binary!

Berry Paradox: “The smallest integer that cannot be defined in less than thirteen words.”
Determining Compressibility?

COMPRESSION = \{(x,c) \mid K(x) \leq c\}

Theorem: COMPRESSION is undecidable!

Proof: Suppose it’s decidable. Consider the TM:

M = “On input x ∈ \{0,1\}*, let N = 2^{|x|}.

For all y ∈ \{0,1\}* in lexicographical order,

If (y,N) ∉ COMPRESSION then print y and halt.”

M(x) prints the shortest string y’ with K(y’) > 2^{|x|}.

<M,x> is a description of y’, and |<M,x>| ≤ d + |x|

So 2^{|x|} < K(y’) ≤ d + |x|. CONTRADICTION for large x!
Yet Another Proof that A_{TM} is Undecidable!

$COMPRESS = \{ (x,c) \mid K(x) \leq c \}$

Theorem: A_{TM} is undecidable.

Proof: Reduction from $COMPRESS$ to A_{TM}.
Given a pair (x,c), our reduction constructs a TM:

$M_{x,c} = \text{On input } w,$

For all pairs $<M',w'>$ with $|<M',w'>| \leq c$, simulate each M' on w' in parallel.

If some M' halts and prints x, then accept.

$K(x) \leq c \iff M_{x,c}$ accepts ε
More on Interesting Formal Systems

A formal system F is *interesting* if it is finite and:

1. Any mathematical statement about computation can also be effectively described within F.

 For all strings x and integers c, there is a $S_{x,c}$ in F that is equivalent to “$K(x) \geq c$”

2. Proofs are convincing: it should be possible to check that a proof of a theorem is correct

 This set is decidable: $\{ (S,P) \mid P$ is a proof of S in $F \}$
The Unprovable Truth About K-Complexity

Theorem: For every interesting consistent \mathcal{F}, there is a t s.t. for all x, “$K(x) > t$” is unprovable in \mathcal{F}

Proof: Define an M that treats its input as an integer:

$M(k) := \text{Search over all strings } x \text{ and proofs } P \text{ for a proof } P \text{ in } \mathcal{F} \text{ that } K(x) > k. \text{ Output } x \text{ if found}$

Suppose $M(k)$ halts. It must print some output x'

Then $K(x') = K(<M,k>) \leq c + |k| \leq c + \log k$ for some c

Because \mathcal{F} is consistent, $K(x') > k$ is true

But $k < c + \log k$ only holds for small enough k

If we choose t to be greater than these k...

then $M(t)$ cannot halt, so “$K(x) > t$” has no proof!
Random Unprovable Truths

Theorem: For every interesting consistent \mathcal{F}, there is a t s.t. for all x, “$K(x) > t$” is unprovable in \mathcal{F}

For a randomly chosen x of length $t+100$, “$K(x) > t$” is true with probability at least $1 - 1/2^{100}$.

We can randomly generate true statements in \mathcal{F} which have no proof in \mathcal{F}, with high probability!

For every interesting formal system \mathcal{F} there is always some finite integer (say, $t=10000$) so that you’ll never be able to prove in \mathcal{F} that a random 20000-bit string requires a 10000-bit program!