CS 154
Finite Automata,
Nondeterminism,
Regular Expressions
The DFA accepts a string if the process ends in a double circle.
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

- Q is the set of states (finite)
- Σ is the alphabet (finite)
- $\delta : Q \times \Sigma \rightarrow Q$ is the transition function
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of accept/final states

$L(M) = \text{set of all strings that } M \text{ accepts}$

= “the language recognized by M”
A DFA is a 5-tuple $M = (Q, \Sigma, \delta, q_0, F)$

$L(M) = \text{set of all strings that } M \text{ accepts} = \text{“the language recognized by } M\text{”}$

Definition: A language L' is **regular** if it is recognized by a DFA; that is, there is a DFA M where $L' = L(M)$.
Union Theorem for Regular Languages

The union of two regular languages is also a regular language

Intersection Theorem for Regular Languages

The intersection of two regular languages is also a regular language
Complement Theorem for Regular Languages

The complement of a regular language is also a regular language.
The **Reverse** of a Language

Reverse of L:

\[L^R = \{ w_1 ... w_k \mid w_k ... w_1 \in L, w_i \in \Sigma \} \]

If L is recognized by the usual kind of DFA,
Then \(L^R \) is recognized by a DFA that reads its strings from *right to left*!

Question: If L is regular, then is \(L^R \) also regular?

Can every “Right-to-Left” DFA be replaced by a normal “Left-to-Right” DFA?
Suppose our machine reads strings from right to left...
Then \(L(M) = \{ w \mid w \text{ ends with a 1} \} \). Is this regular?
Reversing DFAs

Assume L is a regular language.
Let M be a DFA that recognizes L

We’ll build a machine M^R that accepts L^R

If M accepts w, then w describes a directed path in M from start to an accept

First Attempt: Try to define M^R as M with the arrows reversed, turn start state into a final state, turn final states into starts
Problem: M^R IS NOT ALWAYS A DFA!

It could have many start states

Some states may have more than one outgoing edge, or none at all!
Non-deterministic Finite Automata (NFA)

What happens with 100?

We will say this new machine accepts a string x if

there is some path reading in x that reaches

some accept state from some start state
Non-deterministic Finite Automata (NFA)

Then, this machine recognizes: \(\{ w \mid w \text{ contains } 100 \} \)

We will say this new machine accepts a string \(x \) if there is some path reading in \(x \) that reaches some accept state from some start state.
At each state, we can have *any* number of out arrows for a letter $\sigma \in \Sigma$, including ϵ.

Set of strings accepted by this NFA = $\{w \mid w$ contains a 0$\}$
Multiple Start States

We allow *multiple* start states for NFAs, and Sipser allows only one.

Can easily convert NFA with many start states into one with a single start state:
A **non-deterministic** finite automaton (NFA) is a 5-tuple $N = (Q, \Sigma, \delta, Q_0, F)$ where

- Q is the set of states
- Σ is the alphabet
- $\delta : Q \times \Sigma \varepsilon \rightarrow 2^Q$ is the transition function
- $Q_0 \subseteq Q$ is the set of start states
- $F \subseteq Q$ is the set of accept states

2^Q is the set of all possible subsets of Q

$$\Sigma_\varepsilon = \Sigma \cup \{\varepsilon\}$$
Def. Let \(w \in \Sigma^* \). Let \(N \) be an NFA. \(N \) accepts \(w \) if there’s a sequence of states \(r_0, r_1, ..., r_k \in Q \) and \(w \) can be written as \(w_1 ... w_k \) with \(w_i \in \Sigma \cup \{ \varepsilon \} \) such that

1. \(r_0 \in Q_0 \)
2. \(r_{i+1} \in \delta(r_i, w_{i+1}) \) for all \(i = 0, ..., k-1 \), and
3. \(r_k \in F \)

\[
L(N) = \text{the language recognized by } N
= \text{set of all strings machine } N \text{ accepts}
\]

A language \(L' \) is **recognized** by an NFA \(N \) if \(L' = L(N) \).
\[N = (Q, \Sigma, \delta, Q_0, F) \]

\[Q = \{q_1, q_2, q_3, q_4\} \]

\[\Sigma = \{0,1\} \]

\[Q_0 = \{q_1, q_2\} \]

\[F = \{q_4\} \]

\[\delta(q_2,1) = \{q_4\} \]

\[\delta(q_3,1) = \emptyset \]

\[\delta(q_1,0) = \{q_3\} \]

\[L(N) = \{1,00,01\} \]
Are these equally powerful???
NFAs are generally simpler than DFAs

A DFA recognizing the language \{1\}

An NFA recognizing the language \{1\}
Theorem: For every NFA N, there is a DFA M such that $L(M) = L(N)$

Corollary: A language L is regular if and only if L is recognized by an NFA

Corollary: L is regular iff L^R is regular
From NFAs to DFAs

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

To learn if an NFA accepts, we could do the computation in parallel, maintaining the set of all possible states that can be reached.

Idea:

Set $Q' = 2^Q$
From NFAs to DFAs: Subset Construction

Input: NFA $N = (Q, \Sigma, \delta, Q_0, F)$

Output: DFA $M = (Q', \Sigma, \delta', q_0', F')$

- $Q' = 2^Q$
- $\delta' : Q' \times \Sigma \rightarrow Q'$
- $\delta'(R,\sigma) = \bigcup_{r \in R} \varepsilon(\delta(r,\sigma))$
- $q_0' = \varepsilon(Q_0)$
- $F' = \{ R \in Q' | f \in R \text{ for some } f \in F \}$

For $S \subseteq Q$, the ε-closure of S is

$$\varepsilon(S) = \{ q \in Q \text{ reachable from some } s \in S \text{ by taking 0 or more } \varepsilon \text{ transitions} \}$$
Example of the ε-closure

$\varepsilon(\{q_0\}) = \{q_0, q_1, q_2\}$

$\varepsilon(\{q_1\}) = \{q_1, q_2\}$

$\varepsilon(\{q_2\}) = \{q_2\}$
Given: NFA $N = (\{1,2,3\}, \{a,b\}, \delta, \{1\}, \{1\})$

Construct: Equivalent DFA M

$M = (2^{\{1,2,3\}}, \{a,b\}, \delta', \{1,3\}, ...)$
Reverse Theorem for Regular Languages

The reverse of a regular language is also a regular language

If a language can be recognized by a DFA that reads strings *from right to left*, *then* there is an “normal” DFA that accepts the same language

Proof?

Given a DFA for a language L, “reverse” its arrows and flip its start and accept states, getting an NFA. Convert that NFA back to a DFA.
Using NFAs in place of DFAs can make proofs about regular languages much easier!

Remember this on homework/exams!
Union Theorem using NFAs?
Regular Languages are closed under concatenation

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Given DFAs \(M_1 \) and \(M_2 \), connect the accept states of \(M_1 \) to the start states of \(M_2 \)

\[L(N) = L(M_1) \cdot L(M_2) \]
Regular Languages are closed under star

$$A^* = \{ s_1 \ldots s_k \mid k \geq 0 \text{ and each } s_i \in A \}$$

Let M be a DFA, and let $L = L(M)$

We can construct an NFA N that recognizes L^*
Formally, the construction is:

Input: DFA $M = (Q, \Sigma, \delta, q_1, F)$

Output: NFA $N = (Q', \Sigma, \delta', \{q_0\}, F')$

\[
Q' = Q \cup \{q_0\}
\]

\[
F' = F \cup \{q_0\}
\]

\[
\delta'(q,a) = \begin{cases}
\{\delta(q,a)\} & \text{if } q \in Q \text{ and } a \neq \varepsilon \\
\{q_1\} & \text{if } q \in F \text{ and } a = \varepsilon \\
\{q_1\} & \text{if } q = q_0 \text{ and } a = \varepsilon \\
\emptyset & \text{if } q = q_0 \text{ and } a \neq \varepsilon \\
\emptyset & \text{else}
\end{cases}
\]
How would we prove that this NFA construction works?

Want to show: \(L(N) = L^* \)

1. \(L(N) \supseteq L^* \)
2. \(L(N) \subseteq L^* \)
1. \(L(N) \supseteq L^* \)

Assume \(w = w_1...w_k \) is in \(L^* \) where \(w_1,...,w_k \in L \)

We show \(N \) accepts \(w \) by induction on \(k \)

Base Cases:

- \(k = 0 \) \((w = \epsilon) \)
- \(k = 1 \) \((w \in L) \)

Inductive Step:

Assume \(N \) accepts all strings \(v = v_1...v_k \in L^* \), \(v_i \in L \)

Let \(u = u_1...u_ku_{k+1} \in L^* \), \(u_j \in L \)

Since \(N \) accepts \(u_1...u_k \) (by induction) and \(M \) accepts \(u_{k+1} \), \(N \) also accepts \(u \) (by construction)
2. \(L(N) \subseteq L^* \)

Assume \(w \) is accepted by \(N \); we want to show \(w \in L^* \)

If \(w = \varepsilon \), then \(w \in L^* \)

I.H. \(N \) accepts \(u \) and takes at most \(k \) \(\varepsilon \)-transitions \(\Rightarrow u \in L^* \)

Let \(w \) be accepted by \(N \) with \(k+1 \).

Write \(w \) as \(w = uv \), where \(v \) is the substring read after the last \(\varepsilon \)-transition.

By I.H. \(u \in L(N) \), so \(u \in L^* \)

\(w = uv \in L^* \)

\(v \in L \)
Regular Languages are closed under all of the following operations:

Union: \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)

Intersection: \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)

Complement: \(\overline{A} = \{ w \in \Sigma^* \mid w \notin A \} \)

Reverse: \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)

Concatenation: \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)

Star: \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
Homework 1 is coming out today... watch for it!
Regular Expressions
Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

- For all $\sigma \in \Sigma$, σ is a regexp
- ε is a regexp
- \emptyset is a regexp

If R_1 and R_2 are both regexps, then
- $(R_1 R_2)$, $(R_1 + R_2)$, and $(R_1)^*$ are regexps
Precedence Order:

*

then ·

then +

Example: \[R_1 \ast R_2 + R_3 = ((R_1 \ast) \cdot R_2) + R_3 \]
Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$

The regexp ε represents $\{\varepsilon\}$

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

(R_1R_2) represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*
Regexp Represent Languages

For every regexp R, define $L(R)$ to be the language that R represents

A string $w \in \Sigma^*$ is *accepted by* R (or, w matches R) if $w \in L(R)$

Example: 01010 matches the regexp $(01)^*0$
end