CS 154

Finite Automata vs Regular Expressions, Non-Regular Languages
Deterministic Finite Automata

Computation with finite memory
Non-Deterministic Finite Automata

Computation with finite memory

and "guessing"
Regular Languages are closed under all of the following operations:

- **Union:** \(A \cup B = \{ w \mid w \in A \text{ or } w \in B \} \)
- **Intersection:** \(A \cap B = \{ w \mid w \in A \text{ and } w \in B \} \)
- **Complement:** \(\neg A = \{ w \in \Sigma^* \mid w \notin A \} \)
- **Reverse:** \(A^R = \{ w_1 \ldots w_k \mid w_k \ldots w_1 \in A \} \)
- **Concatenation:** \(A \cdot B = \{ vw \mid v \in A \text{ and } w \in B \} \)
- **Star:** \(A^* = \{ w_1 \ldots w_k \mid k \geq 0 \text{ and each } w_i \in A \} \)
Regular Expressions

Computation as simple, logical description

A totally different way of thinking about computation:

What is the complexity of describing the strings in the language?
Inductive Definition of Regexp

Let Σ be an alphabet. We define the regular expressions over Σ inductively:

For all $\sigma \in \Sigma$, σ is a regexp

ε is a regexp

\emptyset is a regexp

If R_1 and R_2 are both regexps, then

(R_1R_2), $(R_1 + R_2)$, and $(R_1)^*$ are regexps
Precedence Order:

\[
\begin{align*}
&\ast \\
&\text{then} \quad \cdot \\
&\text{then} \quad +
\end{align*}
\]

Example: \(R_1 \ast R_2 + R_3 = ((R_1 \ast) \cdot R_2) + R_3 \)
Definition: Regexps Represent Languages

The regexp $\sigma \in \Sigma$ represents the language $\{\sigma\}$

The regexp ε represents $\{\varepsilon\}$

The regexp \emptyset represents \emptyset

If R_1 and R_2 are regular expressions representing L_1 and L_2 then:

$(R_1 R_2)$ represents $L_1 \cdot L_2$

$(R_1 + R_2)$ represents $L_1 \cup L_2$

$(R_1)^*$ represents L_1^*

Example: $(10 + 0^*1)$ represents $\{0^k1 \mid k \geq 0\} \cup \{10\}$
Regexps Represent Languages

For every regexp R, define $L(R)$ to be the language that R represents.

A string $w \in \Sigma^*$ is accepted by R (or, w matches R) if $w \in L(R)$

Example: 01010 matches the regexp $(01)^*0$
Assume $\Sigma = \{0,1\}$

\[
\{ \text{w | w has exactly a single 1} \} \\
0^*10^*
\]

\[
\{ \text{w | w contains 001} \} \\
(0+1)^*001(0+1)^*
\]
Assume $\Sigma = \{0,1\}$

What language does the regexp \emptyset^* represent?

$\{\varepsilon\}$
Assume $\Sigma = \{0,1\}$

$\{ w \mid w \text{ has length } \geq 3 \text{ and its 3rd symbol is } 0 \}$

$(0+1)(0+1)0(0+1)^*$
Assume $\Sigma = \{0,1\}$

\[
\{ w \mid \text{every odd position in } w \text{ is a 1} \}
\]

\[
(1(0 + 1))^{\ast}(1 + \varepsilon)
\]
DFAs \equiv NFAs \equiv Regular Expressions!

L can be represented by some regexp
\iff L is regular
L can be represented by some regexp

⇒ L is regular
Given any regexp R, we will construct an NFA N s.t. N accepts exactly the strings accepted by R

Proof by induction on the length of the regexp R:

Base Cases (R has length 1):

- $R = \sigma$
- $R = \varepsilon$
- $R = \emptyset$
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\[R = R_1 + R_2 \]

\[R = R_1 R_2 \]

\[R = (R_1)^* \]
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

\[R = R_1 + R_2 \quad \text{By induction, } R_1 \text{ and } R_2 \text{ represent some regular languages, } L_1 \text{ and } L_2 \]

\[R = R_1 R_2 \quad \text{But } L(R) = L(R_1 + R_2) = L_1 \cup L_2 \]

\[R = (R_1)^* \quad \text{so } L(R) \text{ is regular, by the union theorem!} \]
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length $k > 1$

Three possibilities for R:

- $R = R_1 + R_2$ By induction, R_1 and R_2 represent some regular languages, L_1 and L_2
- $R = R_1 R_2$ But $L(R) = L(R_1 \cdot R_2) = L_1 \cdot L_2$
- $R = (R_1)^*$ so $L(R)$ is regular by the *concatenation theorem*
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

- \(R = R_1 + R_2 \) By induction, \(R_1 \) and \(R_2 \) represent some regular languages, \(L_1 \) and \(L_2 \)

- \(R = R_1 R_2 \) But \(L(R) = L(R_1^*) = L_1^* \)

- \(R = (R_1)^* \) so \(L(R) \) is regular, by the *star theorem*
Induction Step: Suppose every regexp of length < k represents some regular language.

Consider a regexp R of length k > 1

Three possibilities for R:

- \(R = R_1 + R_2 \)
 By induction, \(R_1 \) and \(R_2 \) represent some regular languages, \(L_1 \) and \(L_2 \)

- \(R = R_1 R_2 \)
 But \(L(R) = L(R_1^*) = L_1^* \)

- \(R = (R_1)^* \)
 so \(L(R) \) is regular, by the *star theorem*

Therefore: If \(L \) is represented by a regexp, then \(L \) is regular
Give an NFA that accepts the language represented by \((1(0 + 1))^*\)

Regular expression: \((1(0+1))^*\)
Generalized NFAs (GNFA)

L can be represented by a regexp

\[\iff \]

L is a regular language

Idea: Transform an NFA for L into a regular expression by removing states and re-labeling the arcs with *regular expressions*

Rather than reading in just 0 or 1 letters from the string on a step, we can read in *entire substrings*
A GNFA is a 5-tuple \(G = (Q, \Sigma, R, q_{\text{start}}, q_{\text{accept}}) \)

- \(Q, \Sigma \) are states and alphabet

- \(R : (Q-{q_{\text{accept}}}) \times (Q-{q_{\text{start}}}) \rightarrow \mathcal{R} \) is the transition function

- \(q_{\text{start}} \in Q \) is the start state

- \(q_{\text{accept}} \in Q \) is the (unique) accept state

\(\mathcal{R} \) = set of all regular expressions over \(\Sigma \)
A GNFA is a 5-tuple $G = (Q, \Sigma, R, q_{\text{start}}, q_{\text{accept}})$

Let $w \in \Sigma^*$ and let G be a GNFA.

G accepts w if w can be written as $w = w_1 \cdots w_k$
where $w_i \in \Sigma^*$ and there is a sequence $r_0, r_1, \ldots, r_k \in Q$ such that

- $r_0 = q_{\text{start}}$
- w_i matches $R(r_{i-1}, r_i)$ for all $i = 1, \ldots, k$, and
- $r_k = q_{\text{accept}}$

$L(G) = \text{set of all strings that } G \text{ accepts}$

= “the language recognized by } G”
This GNFA recognizes \(L(a^*b(cb)^*a) \)

Is \(aaabcbcba \) accepted or rejected?

Is \(bba \) accepted or rejected?

Is \(bcba \) accepted or rejected?
Add unique start and accept states
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state.
While the machine has more than 2 states:

Pick an internal state, rip it out and re-label the arrows with regexps, to account for paths through the missing state

01*0
While the machine has more than 2 states:

In general:

\[R(q_1, q_3) \]

\[R(q_1, q_2) \]

\[R(q_2, q_3) \]

\[R(q_2, q_2) \]
While the machine has more than 2 states:

In general:

\[R(q_1, q_2)R(q_2, q_2)^*R(q_2, q_3) + R(q_1, q_3) \]
$R(q_0, q_3) = (a*b)(a+b)^*$
represents $L(N)$
\[R(q_0, q_3) = (a\cdot b)(a+b)^* \]

represents \(L(N) \)
\[R(q_0, q_3) = (a*b)(a+b)^* \]
represents \(L(N) \)
Formally: Given a DFA, add q_{start} and q_{acc} to create G

For all q,q', define $R(q,q')$ to be σ if $\delta(q,\sigma) = q'$, else \emptyset

CONVERT(G): (Takes a GNFA, outputs a regexp)

If $\#\text{states} = 2$ return $R(q_{\text{start}}, q_{\text{acc}})$

If $\#\text{states} > 2$

select $q_{\text{rip}} \in Q$ different from q_{start} and q_{acc}

define $Q' = Q - \{q_{\text{rip}}\}$

define R' on $Q'-\{q_{\text{acc}}\} \times Q'-\{q_{\text{start}}\}$ as:

$$R'(q_i,q_j) = R(q_i,q_{\text{rip}})R(q_{\text{rip}},q_{\text{rip}})^*R(q_{\text{rip}},q_j) + R(q_i,q_j)$$

return $\text{CONVERT}(G')$

Claim: $L(G') = L(G)$
Theorem: Let \(R = \text{CONVERT}(G) \). Then \(L(R) = L(G) \).

Proof by induction on \(k \), the number of states in \(G \)

Base Case: \(k = 2 \) \(\text{CONVERT} \) outputs \(R(q_{\text{start}}, q_{\text{acc}}) \) ✓

Inductive Step:

Assume theorem is true for \(k-1 \) state GNFA

Let \(G \) have \(k \) states. Let \(G' \) be the \(k-1 \) state GNFA obtained by ripping out a state.

We already claimed \(L(G) = L(G') \) [Sipser, p.73--74]

\(G' \) has \(k-1 \) states, so by induction,

\[
L(G') = L(\text{CONVERT}(G')) = L(R)
\]

Therefore \(L(R) = L(G) \). QED
\(\varepsilon \rightarrow q_1 \rightarrow (a + ba) \rightarrow q_2 \rightarrow b \rightarrow (\varepsilon \rightarrow q_1) \rightarrow bb \rightarrow q_1 \)
\[(bb + (a + ba)b^*a)^* (b + (a + ba)b^*)\]
Convert the NFA to a regular expression
Convert the NFA to a regular expression
Convert the NFA to a regular expression

\(q_1 \)

\(q_3 \)

\(\varepsilon \)

\((a + b)b^*b \)

\(a \)

\(bb^*b \)

\(\varepsilon \)
Convert the NFA to a regular expression

\[
\epsilon + (a + b)b^*b(bb^*b)^* \epsilon + (a + b)b^*b(bb^*b)^*a
\]

\[
((a + b)b^*b(bb^*b)^*a)^*((\epsilon + (a + b)b^*b(bb^*b)^*)\epsilon)
\]
Some Languages Are Not Regular:

Limitations on DFAs
Regular or Not?

C = \{ w \mid w \text{ has equal number of } 1\text{s and } 0\text{s}\}

NOT REGULAR!

D = \{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \}

REGULAR!
\{ w \mid w \text{ has equal number of occurrences of } 01 \text{ and } 10 \} \\
= \{ w \mid w = 1, w = 0, \text{ or } w = \varepsilon, \text{ or } w \text{ starts with a } 0 \text{ and ends with a } 0, \text{ or } w \text{ starts with a } 1 \text{ and ends with a } 1 \} \\
1 + 0 + \varepsilon + 0(0+1)^*0 + 1(0+1)^*1 \\

Claim:
A string w has equal occurrences of 01 and 10 \iff w starts and ends with the same bit.
The Pumping Lemma: Structure in Regular Languages

Let L be a regular language

Then there is a positive integer P s.t.

for all strings \(w \in L \) with \(|w| \geq P \)

there is a way to write \(w = xyz \), where:

1. \(|y| > 0 \) (that is, \(y \neq \varepsilon \))
2. \(|xy| \leq P \)
3. For all \(i \geq 0, xy^iz \in L \)

Why is it called the pumping lemma? The word \(w \) gets \textit{pumped} into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where \(w \in L \) and \(|w| \geq P\)

We show: \(w = xyz \)

1. \(|y| > 0\)
2. \(|xy| \leq P\)
3. \(xy^iz \in L\) for all \(i \geq 0\)

There must exist \(j \) and \(k \) such that
\[0 \leq j < k \leq P, \text{ and } q_j = q_k \]