CS154

Non-Regular Languages, Minimizing DFAs
CS154

Homework 1 is due!

Homework 2 will appear this afternoon
The Pumping Lemma: Structure in Regular Languages

Let \(L \) be a regular language

Then there is a positive integer \(P \) s.t.

for all strings \(w \in L \) with \(|w| \geq P \)

there is a way to write \(w = xyz \), where:

1. \(|y| > 0 \) (that is, \(y \neq \varepsilon \))
2. \(|xy| \leq P \)
3. For all \(i \geq 0 \), \(xy^iz \in L \)

Why is it called the pumping lemma? The word \(w \) gets *pumped* into longer and longer strings...
Proof: Let M be a DFA that recognizes L

Let P be the number of states in M

Let w be a string where \(w \in L \) and \(|w| \geq P \)

We show: \(w = xyz \)

1. \(|y| > 0 \)
2. \(|xy| \leq P \)
3. \(xy^iz \in L \) for all \(i \geq 0 \)

Claim: There must exist \(j \) and \(k \) such that

\[0 \leq j < k \leq P, \text{ and } q_j = q_k \]
Applying the Pumping Lemma

Let’s prove that
\[EQ = \{ w | w \text{ has equal number of } 1\text{s and } 0\text{s} \} \]
is not regular.

By contradiction. Assume \(EQ \) is regular.

Let \(P \) be as in pumping lemma. Let \(w = 0^P1^P; \) note \(w \in EQ. \)

If \(EQ \) is regular, then there is a way to write \(w \) as \(w = xyz, \ |y| > 0, \ |xy| \leq P, \) and
for all \(i \geq 0, \ xy^iz \) is also in \(EQ \)

Claim: The string \(y \) must be all zeroes.

Why? Because \(|xy| \leq P \) and \(w = xyz = 0^P1^P \)

But then \(xyyz \) has more 0s than 1s \textbf{Contradiction!}
Applying the Pumping Lemma

Let's prove that
\[\text{SQ} = \{0^n^2 \mid n \geq 0\} \text{ is not regular} \]

Assume SQ is regular. Let \(w = 0^P^2 \)

If SQ is regular, then we can write \(w = xyz, |y| > 0, |xy| \leq P \), and for any \(i \geq 0 \), \(xy^iz \) is also in SQ

So \(xyyz \in \text{SQ} \). Note that \(xyyz = 0^{P^2+|y|} \)

Note that \(0 < |y| \leq P \)

So \(|xyyz| = P^2 + |y| \leq P^2 + P < P^2 + 2P + 1 = (P+1)^2 \)

and \(P^2 < |xyyz| < (P+1)^2 \)

Therefore \(|xyyz| \) is not a perfect square!

Hence \(0^{P^2+|y|} = xyyz \notin \text{SQ} \), so our assumption must be false.

That is, SQ is not regular!
Does this DFA have a minimal number of states?

NO
Is this minimal?

How can we tell in general?
Theorem:
For every regular language \(L \), there is a unique (up to re-labeling of the states) minimal-state DFA \(M^* \) such that \(L = L(M^*) \).

Furthermore, there is an efficient algorithm which, given any DFA \(M \), will output this unique \(M^* \).

If this were true for more general models of computation, that would be an engineering breakthrough!!
Note: There isn’t a uniquely minimal NFA
Extending transition function \(\delta \) to strings

Given DFA \(M = (Q, \Sigma, \delta, q_0, F) \), we extend \(\delta \) to a function \(\Delta : Q \times \Sigma^* \to Q \) as follows:

\[
\Delta(q, \varepsilon) = q \\
\Delta(q, \sigma) = \delta(q, \sigma) \\
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
\]

\(\Delta(q, w) = \) the state of \(M \) reached after reading in \(w \),
starting from state \(q \)

Note: \(\Delta(q_0, w) \in F \iff M \) accepts \(w \)

Def. \(w \in \Sigma^* \) distinguishes states \(q_1 \) and \(q_2 \) iff
\[
\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F
\]
Extending transition function δ to strings

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend δ to a function $\Delta : Q \times \Sigma^* \to Q$ as follows:

\[
\Delta(q, \varepsilon) = q
\]
\[
\Delta(q, \sigma) = \delta(q, \sigma)
\]
\[
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
\]

$\Delta(q, w) =$ the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly one of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state
Distinguishing two states

Def. \(w \in \Sigma^* \) distinguishes states \(q_1 \) and \(q_2 \) iff exactly one of \(\Delta(q_1, w), \Delta(q_2, w) \) is a final state.
Distinguishing two states

Def. \(w \in \Sigma^* \) distinguishes states \(q_1 \) and \(q_2 \) iff exactly one of \(\Delta(q_1, w) \), \(\Delta(q_2, w) \) is a final state.

I’m in \(q_1 \) or \(q_2 \), but which?

Ok, I’m \textit{accepting}!

Must have been \(q_1 \)
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State p is *distinguishable* from state q iff there is $w \in \Sigma^*$ that distinguishes p and q iff there is $w \in \Sigma^*$ so that exactly one of $\delta(p, w)$, $\delta(q, w)$ is a final state

State p is *indistinguishable* from state q

iff p is not distinguishable from q

iff for all $w \in \Sigma^*$, $\delta(p, w) \in F \iff \delta(q, w) \in F$

Pairs of indistinguishable states are redundant...
Which pairs of states are distinguishable here?

ε distinguishes all final states from non-final states
The string 10 distinguishes q_0 and q_3. Which pairs of states are distinguishable here?
The string 0 distinguishes q_1 and q_2.
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation \sim on the states of M:

$p \sim q$ iff p is indistinguishable from q

$p \not\sim q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation

$p \sim p$ (reflexive)

$p \sim q \Rightarrow q \sim p$ (symmetric)

$p \sim q \text{ and } q \sim r \Rightarrow p \sim r$ (transitive)

Proof?
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Proposition: \sim is an equivalence relation

Therefore, the relation \sim partitions Q into disjoint equivalence classes

$[q] := \{ p \mid p \sim q \}$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

$L(M) = L(M_{\text{MIN}})$

M_{MIN} has no inaccessible states

M_{MIN} is irreducible

$\|$

For all states $p \neq q$ of M_{MIN}, p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M
Intuition:
The states of M_{MIN} will be the *equivalence classes* of states of M

We’ll uncover these equivalent states with a *dynamic programming* algorithm
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$

(2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

High-Level Idea:

- We know how to find those pairs of states that the string ε distinguishes...
- Use this and *iteration* to find those pairs distinguishable with *longer* strings
- The pairs of states left over will be indistinguishable
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$
2. $EQUIV_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that p accepts and q rejects $\Rightarrow p \sim q$
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:
1. $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \not\sim q \}$
2. $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that p accepts and q rejects $\Rightarrow p \not\sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

\[\delta(p, \sigma) = p' \]
\[\sim \]
\[\delta(q, \sigma) = q' \]

mark

\[\Rightarrow p \not\sim q \]

Repeat until no more D’s can be added
Claim: If \((p, q)\) is marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof: By induction on the number of steps in the algorithm before \((p, q)\) is marked \(D\)

If \((p, q)\) is marked \(D\) at the *start*, then one state’s in \(F\) and the other isn’t, so \(\varepsilon\) distinguishes \(p\) and \(q\)

Suppose \((p, q)\) is marked \(D\) at a later point.

Then there are states \(p', q'\) such that:

1. \((p', q')\) are marked \(D\) \(\Rightarrow\) \(p' \sim q'\) (by induction)

 So there’s a string \(w\) s.t. \(\Delta(p', w) \in F \iff \Delta(q', w) \notin F\)

2. \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\), where \(\sigma \in \Sigma\)

 The string \(\sigma w\) distinguishes \(p\) and \(q\)!
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)

Then there is a string \(w\) such that \(|w| > 0\) and:

\[\Delta(p, w) \in F \quad \text{and} \quad \Delta(q, w) \notin F\] (Why is \(|w| > 0\)?)

Of all such bad pairs, let \(p, q\) be a pair with the shortest distinguishing string \(w\)
Claim: If \((p, q)\) is not marked D by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):

Suppose the pair \((p, q)\) is not marked D by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)

Of all such bad pairs, let \(p, q\) be a pair with the \textit{shortest} distinguishing string \(w\)

\[
\Delta(p, w) \in F \text{ and } \Delta(q, w) \notin F \quad \text{(Why is } |w| > 0?)
\]

We have \(w = \sigma w'\), for some string \(w'\) and some \(\sigma \in \Sigma\)

Let \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\)

Then \((p', q')\) is also a bad pair,
but with a SHORTER distinguishing string, \(w'\)!
Algorithm MINIMIZE
Input: DFA M
Output: Equivalent minimal-state DFA M_{MIN}

1. Remove all inaccessible states from M

2. Run Table-Filling algorithm on M to get:
 $\text{EQUIV}_M = \{ [q] \mid q \text{ is an accessible state of } M \}$

3. Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0 \text{ MIN}}, F_{\text{MIN}})$

 $Q_{\text{MIN}} = \text{EQUIV}_M$, $q_{0 \text{ MIN}} = [q_0]$, $F_{\text{MIN}} = \{ [q] \mid q \in F \}$

 $\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$

Claim: $L(M_{\text{MIN}}) = L(M)$
Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose for a DFA M', $L(M') = L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an isomorphism between M' and M_{MIN}.

If M' is a minimal DFA, then M' has no inaccessible states and is irreducible. So the Claim implies:

If M' is a minimal DFA for M, then there is an isomorphism between M' and M_{MIN}. So the Thm holds!

Corollary: If M has no inaccessible states and is irreducible, then M is minimal.

Proof: Let M^{min} be minimal for M. Then $L(M) = L(M^{\text{min}})$, no inaccessible states in M, and M is irreducible. By Claim, both M^{min} and M are isomorphic to M_{MIN}!