Non-Regular Languages, Minimizing DFAs
CS154

Homework 1 is due!

Homework 2 will appear this afternoon
The Pumping Lemma: Structure in Regular Languages

Let $L$ be a regular language

Then there is a positive integer $P$ s.t.

for all strings $w \in L$ with $|w| \geq P$

there is a way to write $w = xyz$, where:

1. $|y| > 0$ (that is, $y \neq \varepsilon$)
2. $|xy| \leq P$
3. For all $i \geq 0$, $xy^iz \in L$

Why is it called the pumping lemma? The word $w$ gets pumped into longer and longer strings...
**Proof:** Let $M$ be a DFA that recognizes $L$

Let $P$ be the **number of states in $M$**

Let $w$ be a string where $w \in L$ and $|w| \geq P$

We show: $w = xyz$

1. $|y| > 0$
2. $|xy| \leq P$
3. $xy^iz \in L$ for all $i \geq 0$

**Claim:** There must exist $j$ and $k$ such that $0 \leq j < k \leq P$, and $q_j = q_k$
Applying the Pumping Lemma

Let’s prove that
$\text{EQ} = \{ w \mid w \text{ has equal number of 1s and 0s} \}$
is not regular.

By contradiction. Assume $\text{EQ}$ is regular.

Let $P$ be as in pumping lemma. Let $w = 0^P1^P$; note $w \in \text{EQ}$.

If $\text{EQ}$ is regular, then there is a way to write $w$ as $w = xyz$, $|y| > 0$, $|xy| \leq P$, and for all $i \geq 0$, $xy^i z$ is also in $\text{EQ}$.

Claim: The string $y$ must be all zeroes.

Why? Because $|xy| \leq P$ and $w = xyz = 0^P1^P$

But then $xxyyz$ has more 0s than 1s  Contradiction!
Applying the Pumping Lemma

Let’s prove that
\[ SQ = \{0^n^2 \mid n \geq 0\} \] is not regular

Assume SQ is regular. Let \( w = 0^{p^2} \)

If SQ is regular, then we can write \( w = xyz, |y| > 0, |xy| \leq P \), and for any \( i \geq 0 \), \( xy^i z \) is also in SQ

So \( xyyz \in SQ \). Note that \( xyyz = 0^{p^2+|y|} \)

Note that \( 0 < |y| \leq P \)

So \( |xyyz| = p^2 + |y| \leq p^2 + P < p^2 + 2P + 1 = (p+1)^2 \)

and \( p^2 < |xyyz| < (p+1)^2 \)

Therefore \( |xyyz| \) is not a perfect square!

Hence \( 0^{p^2+|y|} = xyyz \notin SQ \), so our assumption must be false.

That is, SQ is not regular!
Does this DFA have a minimal number of states?

NO
Is this minimal?

How can we tell in general?
Theorem:

For every regular language L, there is a unique (up to re-labeling of the states) minimal-state DFA M* such that \( L = L(M^*) \).

Furthermore, there is an efficient **algorithm** which, given any DFA M, will output this unique M*.

If this were true for more general models of computation, that would be an engineering breakthrough!!
Note: There isn’t a uniquely minimal NFA
Extending transition function $\delta$ to strings

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend $\delta$ to a function $\Delta : Q \times \Sigma^* \rightarrow Q$ as follows:

$$\Delta(q, \epsilon) = q$$

$$\Delta(q, \sigma) = \delta(q, \sigma)$$

$$\Delta(q, \sigma_1 ... \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 ... \sigma_k), \sigma_{k+1})$$

$\Delta(q, w) = \textit{the state of } M \textit{ reached after reading in } w, \textit{ starting from state } q$

Note: $\Delta(q_0, w) \in F \iff M \textit{ accepts } w$

**Def.** $w \in \Sigma^*$ distinguishes states $q_1$ and $q_2$ iff

$$\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F$$
Extending transition function $\delta$ to strings

Given DFA $M = (Q, \Sigma, \delta, q_0, F)$, we extend $\delta$ to a function $\Delta : Q \times \Sigma^* \to Q$ as follows:

$$
\Delta(q, \varepsilon) = q
$$

$$
\Delta(q, \sigma) = \delta(q, \sigma)
$$

$$
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
$$

$\Delta(q, w)$ = the state of $M$ reached after reading in $w$, starting from state $q$

Note: $\Delta(q_0, w) \in F \iff M$ accepts $w$

Def. $w \in \Sigma^*$ distinguishes states $q_1$ and $q_2$ iff exactly one of $\Delta(q_1, w), \Delta(q_2, w)$ is a final state
Distinguishing two states

Def. \( w \in \Sigma^* \) distinguishes states \( q_1 \) and \( q_2 \) iff exactly one of \( \Delta(q_1, w) \), \( \Delta(q_2, w) \) is a final state.

I’m in \( q_1 \) or \( q_2 \), but which? How can I tell?
Distinguishing two states

**Def.** \( w \in \Sigma^* \) **distinguishes** states \( q_1 \) and \( q_2 \) iff exactly one of \( \Delta(q_1, w) \), \( \Delta(q_2, w) \) is a final state

I’m in \( q_1 \) or \( q_2 \), but which? How?

Ok, I’m **accepting**!

Must have been \( q_1 \)
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State $p$ is **distinguishable** from state $q$

- iff there is $w \in \Sigma^*$ that distinguishes $p$ and $q$
- iff there is $w \in \Sigma^*$ so that exactly one of $\Delta(p, w), \Delta(q, w)$ is a final state

State $p$ is **indistinguishable** from state $q$

- iff $p$ is not distinguishable from $q$
- iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

*Pairs of indistinguishable states are redundant...*
Which pairs of states are distinguishable here?

\( \varepsilon \) distinguishes all final states from non-final states
Which pairs of states are distinguishable here?

The string 10 distinguishes $q_0$ and $q_3$
The string 0 distinguishes $q_1$ and $q_2$. Which pairs of states are distinguishable here?
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation $\sim$ on the states of $M$:

$p \sim q$ iff $p$ is indistinguishable from $q$

$p \not\sim q$ iff $p$ is distinguishable from $q$

**Proposition:** $\sim$ is an equivalence relation

- $p \sim p$ (reflexive)
- $p \sim q \implies q \sim p$ (symmetric)
- $p \sim q$ and $q \sim r \implies p \sim r$ (transitive)

**Proof?**
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

**Proposition:** $\sim$ is an equivalence relation

Therefore, the relation $\sim$ partitions $Q$ into disjoint equivalence classes

$$[q] := \{ p \mid p \sim q \}$$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA $M_{\text{MIN}}$ such that:

$L(M) = L(M_{\text{MIN}})$

$M_{\text{MIN}}$ has no inaccessible states

$M_{\text{MIN}}$ is irreducible

For all states $p \neq q$ of $M_{\text{MIN}}$, $p$ and $q$ are distinguishable

Theorem: $M_{\text{MIN}}$ is the unique minimal DFA that is equivalent to $M$
Intuition:
The states of $M_{\text{MIN}}$ will be the equivalence classes of states of $M$.

We’ll uncover these equivalent states with a dynamic programming algorithm.
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$

(2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

High-Level Idea:

• We know how to find those pairs of states that the string $\varepsilon$ distinguishes...

• Use this and iteration to find those pairs distinguishable with longer strings

• The pairs of states left over will be indistinguishable
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$
        (2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all $(p, q)$ such that $p$ accepts and $q$ rejects $\Rightarrow p \sim q$
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output: (1) $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \sim q \}$

(2) $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all $(p, q)$ such that $p$ accepts and $q$ rejects $\implies p \sim q$

Iterate: If there are states $p, q$ and symbol $\sigma \in \Sigma$ satisfying:

\[ \delta(p, \sigma) = p', \quad \delta(q, \sigma) = q' \]

mark $p \sim q$

Repeat until no more $D$'s can be added
Claim: If \((p, q)\) is marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof: By induction on the number of steps in the algorithm before \((p,q)\) is marked \(D\)

If \((p, q)\) is marked \(D\) at the start, then one state’s in \(F\) and the other isn’t, so \(\varepsilon\) distinguishes \(p\) and \(q\)

Suppose \((p, q)\) is marked \(D\) at a later point.

Then there are states \(p', q'\) such that:

1. \((p', q')\) are marked \(D\) \(\Rightarrow\) \(p' \sim q'\) (by induction)

   So there’s a string \(w\) s.t. \(\Delta(p', w) \in F \iff \Delta(q', w) \notin F\)

2. \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\), where \(\sigma \in \Sigma\)

The string \(\sigma w\) distinguishes \(p\) and \(q\)!
Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)

Then there is a string \(w\) such that \(|w| > 0\) and:

\[
\Delta(p, w) \in F \quad \text{and} \quad \Delta(q, w) \notin F \quad (Why \ is \ |w| > 0?)
\]

Of all such bad pairs, let \(p, q\) be a pair with the \textit{shortest} distinguishing string \(w\)

Claim: If \((p, q)\) is not marked \(D\) by the Table-Filling algorithm, then \(p \sim q\)

Proof (by contradiction):
Suppose the pair \((p, q)\) is not marked \(D\) by the algorithm, yet \(p \not\sim q\) (call this a “bad pair”)

Of all such bad pairs, let \(p, q\) be a pair with the \textit{shortest} distinguishing string \(w\)

\[
\Delta(p, w) \in F \quad \text{and} \quad \Delta(q, w) \not\in F \quad (\text{Why is } |w| > 0?)
\]

We have \(w = \sigma w'\), for some string \(w'\) and some \(\sigma \in \Sigma\)

Let \(p' = \delta(p, \sigma)\) and \(q' = \delta(q, \sigma)\)

Then \((p', q')\) is also a bad pair, but with a SHORTER distinguishing string, \(w'\)!
Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA $M_{\text{MIN}}$

1. Remove all inaccessible states from M
2. Run Table-Filling algorithm on M to get:
   $\text{EQUIV}_M = \{ [q] \mid q \text{ is an accessible state of } M \}$
3. Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0\text{MIN}}, F_{\text{MIN}})$

   $Q_{\text{MIN}} = \text{EQUIV}_M$, $q_{0\text{MIN}} = [q_0]$, $F_{\text{MIN}} = \{ [q] \mid q \in F \}$

   $\delta_{\text{MIN}}([q], \sigma) = [\delta(q, \sigma)]$

Claim: $L(M_{\text{MIN}}) = L(M)$
<table>
<thead>
<tr>
<th>$q_0$</th>
<th>$q_1$</th>
<th>$q_3$</th>
<th>$q_4$</th>
<th>$q_5$</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
<td>D</td>
</tr>
</tbody>
</table>
**Thm:** $M_{\text{MIN}}$ is the **unique minimal** DFA equivalent to $M$.

**Claim:** Suppose for a DFA $M'$, $L(M') = L(M_{\text{MIN}})$ and $M'$ has no inaccessible states **and** $M'$ is irreducible. Then **there is an isomorphism** between $M'$ and $M_{\text{MIN}}$.

If $M'$ is a minimal DFA, then $M'$ has no inaccessible states and is irreducible. So the Claim implies:

**If $M'$ is a minimal DFA for $M$, then there is an isomorphism between $M'$ and $M_{\text{MIN}}$. So the Thm holds!**

**Corollary:** If $M$ has no inaccessible states and is irreducible, then $M$ is minimal.

**Proof:** Let $M_{\text{min}}$ be minimal for $M$. Then $L(M) = L(M_{\text{min}})$, no inaccessible states in $M$, and $M$ is irreducible. By Claim, both $M_{\text{min}}$ and $M$ are isomorphic to $M_{\text{MIN}}$!