DFA Minimization Theorem:

For every regular language L', there is a unique (up to re-labeling of states) minimal-state DFA M^* such that $L(M^*) = L'$.

Furthermore, there is an efficient algorithm which, given any DFA M, will output this unique M^*.
Extending transition function δ to strings

Given $M = (Q, \Sigma, \delta, q_0, F)$, we can extend δ to a function $\Delta : Q \times \Sigma^* \to Q$ that works on strings:

$\Delta(q, \varepsilon) = q$

$\Delta(q, \sigma) = \delta(q, \sigma)$

$\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})$

$\Delta(q, w) =$ the state of M reached after reading in w, starting from state q

Note: $\Delta(q_0, w) \in F \iff M$ accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff

$\Delta(q_1, w) \in F \iff \Delta(q_2, w) \notin F$
Extending transition function δ to strings

Given $M = (Q, \Sigma, \delta, q_0, F)$, we can extend δ to a function \(\Delta : Q \times \Sigma^* \rightarrow Q \) that works on strings:

\[
\Delta(q, \varepsilon) = q \\
\Delta(q, \sigma) = \delta(q, \sigma) \\
\Delta(q, \sigma_1 \ldots \sigma_{k+1}) = \delta(\Delta(q, \sigma_1 \ldots \sigma_k), \sigma_{k+1})
\]

\(\Delta(q, w) \) = the state of M reached after reading in w, starting from state q

Note: \(\Delta(q_0, w) \in F \iff M \) accepts w

Def. $w \in \Sigma^*$ distinguishes states q_1 and q_2 iff exactly one of $\Delta(q_1, w)$, $\Delta(q_2, w)$ is a final state
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q \in Q$

Definition:

State p is *distinguishable* from state q

iff there is $w \in \Sigma^*$ that distinguishes p and q

iff there is $w \in \Sigma^*$ so that

exactly one of $\Delta(p, w)$, $\Delta(q, w)$ is a final state

State p is *indistinguishable* from state q

iff p is not distinguishable from q

iff for all $w \in \Sigma^*$, $\Delta(p, w) \in F \iff \Delta(q, w) \in F$

Pairs of indistinguishable states are redundant...
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Define a binary relation \sim on the states of M:

- $p \sim q$ iff p is indistinguishable from q
- $p \not\sim q$ iff p is distinguishable from q

Proposition: \sim is an equivalence relation

- $p \sim p$ (reflexive)
- $p \sim q \Rightarrow q \sim p$ (symmetric)
- $p \sim q$ and $q \sim r \Rightarrow p \sim r$ (transitive)
Fix $M = (Q, \Sigma, \delta, q_0, F)$ and let $p, q, r \in Q$

Proposition: \sim is an equivalence relation

As a consequence, the relation \sim partitions Q into disjoint equivalence classes

$$[q] := \{ p \mid p \sim q \}$$
Algorithm: MINIMIZE-DFA

Input: DFA M

Output: DFA M_{MIN} such that:

$L(M) = L(M_{\text{MIN}})$

M_{MIN} has no inaccessible states

M_{MIN} is irreducible

||

For all states $p \neq q$ of M_{MIN}, p and q are distinguishable

Theorem: M_{MIN} is the unique minimal DFA that is equivalent to M
The Table-Filling Algorithm

Input: DFA $M = (Q, \Sigma, \delta, q_0, F)$

Output:

1. $D_M = \{ (p, q) \mid p, q \in Q \text{ and } p \neq q \}$
2. $\text{EQUIV}_M = \{ [q] \mid q \in Q \}$

Base Case: For all (p, q) such that p accepts and q rejects $\Rightarrow p \not\sim q$

Iterate: If there are states p, q and symbol $\sigma \in \Sigma$ satisfying:

\[
\delta(p, \sigma) = p' \\
\delta(q, \sigma) = q' \\
\not\sim \Rightarrow p \not\sim q
\]

Repeat until no more D's can be added.
Algorithm MINIMIZE

Input: DFA M

Output: Equivalent minimal-state DFA M_{MIN}

1. Remove all inaccessible states from M

2. Run Table-Filling algorithm on M to get:
 $\text{EQUIV}_M = \{ \left[q \right] \mid q \text{ is an accessible state of } M \}$

3. Define: $M_{\text{MIN}} = (Q_{\text{MIN}}, \Sigma, \delta_{\text{MIN}}, q_{0 \text{MIN}}, F_{\text{MIN}})$

 $Q_{\text{MIN}} = \text{EQUIV}_M$, $q_{0 \text{MIN}} = \left[q_0 \right]$, $F_{\text{MIN}} = \{ \left[q \right] \mid q \in F \}$

 $\delta_{\text{MIN}}(\left[q \right], \sigma) = \left[\delta(q, \sigma) \right]$

Claim: $L(M_{\text{MIN}}) = L(M)$
Thm: M_{MIN} is the **unique** minimal DFA equivalent to M

Claim: Suppose $L(M') = L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then **there is an isomorphism** between M' and M_{MIN}

Suppose for now the **Claim** is true. If M' is a minimal DFA, then M' has no inaccessible states and is irreducible (*why?*)

So the **Claim** implies:

Let M' be a minimal DFA for M. Then, there is an isomorphism between M' and the DFA M_{MIN} that is output by MINIMIZE(M). Therefore the Thm holds!
Thm: M_{MIN} is the unique minimal DFA equivalent to M

Claim: Suppose $L(M')=L(M_{\text{MIN}})$ and M' has no inaccessible states and M' is irreducible. Then there is an isomorphism between M' and M_{MIN}

Proof: We recursively construct a map from the states of M_{MIN} to the states of M'

Base Case: $q_{0\text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$
Base Case: $q_{0 \text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$
Base Case: $q_{0, \text{MIN}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$
\[\sigma \quad \sigma \]
\[q \quad q' \]

Then $q \mapsto q'$

Goal: Show this is an isomorphism. Need to prove:

The map is **defined** everywhere

The map is **well defined**

The map is a **bijection**

The map **preserves all transitions**: If $p \mapsto p'$ then $\delta_{\text{MIN}}(p, \sigma) \mapsto \delta'(p', \sigma)$

(this follows from the definition of the map!)
The map is defined everywhere

That is, for all states \(q \) of \(M_{\text{MIN}} \) there is some state \(q' \) of \(M' \) such that \(q \mapsto q' \)

If \(q \in M_{\text{MIN}} \), there is a string \(w \) such that \(\Delta_{\text{MIN}}(q_{0_{\text{MIN}}},\sigma) = q \) (Why?)

Let \(q' = \Delta'(q_{0'_{\text{MIN}}}w) \). Then \(q \mapsto q' \)

(proof by induction on \(|w| \))
Base Case: \(q_{0, \text{MIN}} \mapsto q_0' \)

Recursive Step: If \(p \mapsto p' \)
\[\sigma \quad \sigma \]
\[q \quad q' \]

Then \(q \mapsto q' \)

The map is well defined

Proof by contradiction.

Suppose there are states \(q' \) and \(q'' \) such that \(q \mapsto q' \) and \(q \mapsto q'' \)

We show that \(q' \) and \(q'' \) are *indistinguishable*, so it must be that \(q' = q'' \)
Suppose there are states q' and q'' such that $q \leftrightarrow q'$ and $q \leftrightarrow q''$

Now suppose q' and q'' are distinguishable...

Contradiction!
Base Case: $q_{0_{\text{MIN}}} \mapsto q_0'$

Recursive Step: If $p \mapsto p'$

Then $q \mapsto q'$

The map is onto

Want to show: For all states q' of M' there is a state q of M_{MIN} such that $q \mapsto q'$

For every q' there is a string w such that M' reaches state q' after reading in w

Let q be the state of M_{MIN} after reading in w

Claim: $q \mapsto q'$ (proof by induction on $|w|$)
The map is **one-to-one**

Proof by contradiction. Suppose there are states \(p \neq q \) such that \(p \mapsto q' \) and \(q \mapsto q' \)

If \(p \neq q \), then \(p \) and \(q \) are **distinguishable**.
How can we prove that two regular expressions are equivalent?
The Myhill-Nerode Theorem
In DFA Minimization, we defined an equivalence relation between states.

We can also define a similar equivalence relation over strings and languages:

Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y \iff \text{for all } z \in \Sigma^*, [xz \in L \iff yz \in L]$

Define: x and y are indistinguishable to L iff $x \equiv_L y$

Claim: \equiv_L is an equivalence relation

Proof?
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y$ iff for all $z \in \Sigma^*$, $[xz \in L \iff yz \in L]$

The Myhill-Nerode Theorem:

A language L is regular *if and only if* the number of equivalence classes of \equiv_L is **finite**.

Proof (\Rightarrow) Let $M = (Q, \Sigma, \delta, q_0, F)$ be a min DFA for L.

Define the relation: $x \sim_M y \iff \Delta(q_0, x) = \Delta(q_0, y)$

Claim: \sim_M is an equivalence relation with $|Q|$ classes

Claim: If $x \sim_M y$ then $x \equiv_L y$

Proof: $x \sim_M y$ implies for all $z \in \Sigma^*$, xz and yz reach the *same state* of M. So $xz \in L \iff yz \in L$, and $x \equiv_L y$

Corollary: Number of equiv. classes of \equiv_L is *at most* the number of equiv. classes of \sim_M (which is $|Q|$)
Let $L \subseteq \Sigma^*$ and $x, y \in \Sigma^*$

$x \equiv_L y \text{ iff for all } z \in \Sigma^*, [xz \in L \iff yz \in L]$

(\iff) If the number of equivalence classes of \equiv_L is k
then there is a DFA for L with k states

Idea: Build a DFA using equivalence classes of \equiv_L!

Define a DFA M where

- Q is the set of equivalence classes of \equiv_L
- $q_0 = [\epsilon] = \{y \mid y \equiv_L \epsilon\}$
- $\delta([x], \sigma) = [x \sigma]$
- $F = \{[x] \mid x \in L\}$

Claim: M accepts x if and only if $x \in L$
The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:

L is not regular if and only if there are infinitely many equiv. classes of \(\equiv_L \)

L is not regular if and only if

There are infinitely many strings \(w_1, w_2, \ldots \) so that for all \(w_i \neq w_j \), \(w_i \) and \(w_j \) are distinguishable to \(L \):

there is a \(z \in \Sigma^* \) such that

\(\text{exactly one of } w_i \text{ and } w_j \) is in \(L \)

Distinguishing set for \(L \)
The Myhill-Nerode Theorem gives us a new way to prove that a given language is not regular:

Theorem: \(L = \{0^n 1^n \mid n \geq 0\} \) is not regular.

Proof: Consider the infinite set of strings
\[S = \{0, 00, 000, \ldots, 0^n, \ldots\} \]

Take any pair \((0^m, 0^n)\) of distinct strings in \(S\)

Let \(z = 1^m \)

Then \(0^m 1^m\) is in \(L\), but \(0^n 1^m\) is not in \(L\)

That is, all pairs of strings in \(S\) are distinguishable

Hence there are infinitely many equivalence classes of \(\equiv_L\), and \(L\) is not regular.