Streaming Algorithms
Streaming Algorithms
L = \{ x \mid x \text{ has more 1's than 0's} \}

Initialize: C := 0 and B := 0

When the next symbol x is read,
If (C = 0) then B := x, C := 1
If (C \neq 0) and (B = x) then C := C + 1
If (C \neq 0) and (B \neq x) then C := C – 1

When the stream stops,
accept if B=1 and C > 0, else reject

B = the majority bit
C = how many more times that B appears

On all strings of length n, the algorithm uses 1+\log_2(n+1) bits of space (to store B & C)
Streaming algorithms differ from DFAs in several significant ways:

1. Streaming algorithms can output more than one bit

2. The “memory” or “space” of a streaming algorithm can (slowly) increase as it reads longer strings

3. Could also make multiple passes over the data, could be randomized

Can recognize non-regular languages
DFAs and Streaming

Theorem: Suppose a language L can be recognized by a DFA M with $\leq 2^p$ states. Then L is computable by a streaming algorithm A using $\leq p$ bits of space.

Proof Idea: Can define algorithm A as follows:

- **Initialize:** Encode the *start state of M* in memory.
- **When the next symbol σ is read:** Use the transition function of M to *update the state of M*.
- **When the string ends:** Output *accept* if the *current state of M is a final state*, *reject* otherwise.
DFAs and Streaming

For any \(L \subseteq \Sigma^* \) define \(L_n = \{ x \in L : |x| = n \} \)

Theorem: Suppose \(L' \) is computable by a streaming algorithm \(A \) using \(f(n) \) bits of space, on all strings of length up to \(n \).

Then for all \(n \), there is a DFA \(M \) with \(\leq 2^{f(n)} \) states such that \(L'_n = L(M)_n \)

Proof Idea: States of \(M = 2^{f(n)} \) possible settings of \(A \)'s memory, on strings of length up to \(n \)

Start state of \(M = \) Initial memory configuration of \(A \)

Transition function = Mimic how \(A \) updates its memory

Final states of \(M = \) Memory configurations in which \(A \) would accept, if the string ends
Example: \(L = \{x \mid x \text{ has more 1's than 0's}\} \)

Initialize: \(C := 0 \) and \(B := 0 \)
When the next symbol \(x \) is read,
If \(C = 0 \) then \(B := x, C := 1 \)
If \(C \neq 0 \) and \(B = x \) then \(C := C + 1 \)
If \(C \neq 0 \) and \(B \neq x \) then \(C := C - 1 \)
When the stream stops,

accept if \(B = 1 \) and \(C > 0 \), else *reject*

Want: A DFA that agrees with \(L \) on all strings of length \(\leq 2 \)
Is there a streaming algorithm for L using much *less than* $(\log_2 n)$ space?

Theorem: Every streaming algorithm for L requires at least $(\log_2 n)-1$ bits of space (for infinitely many n)

We will use:
• Myhill-Nerode Theorem
• The connection between DFAs and streaming
\[L = \{x \mid x \text{ has more 1's than 0's}\} \]

Theorem: Every streaming algorithm for \(L \) requires at least \((\log_2 n)-1\) bits of space.

Proof Idea: Let \(n \) be even, let \(L_n = \{x \in L : |x| = n\} \)

We will give a set \(S_n \) of \(n/2+1 \) strings such that each pair in \(S_n \) is *distinguishable* in \(L_n \).

Myhill-Nerode Thm \(\Rightarrow \) Every DFA recognizing \(L_n \) needs at least \(n/2+1 \) states

\(\Rightarrow \) Every streaming algorithm for \(L \) needs at least \((\log n)-1\) bits of memory on strings of length \(n \).
L = \{x \mid x \text{ has more 1's than 0's}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-1\) bits of space

Suppose we partition all strings into their equivalence classes under \(\equiv_{L_n}\)

But the number of states in a DFA recognizing \(L_n\) is at least the number of equivalence classes under \(\equiv_{L_n}\)
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-1\) bits of space

Proof (Slide 1): Let \(S_n = \{0^{n/2-i}1^i \mid i = 0,\ldots,n/2\}\)
Let \(x = 0^{n/2-k}1^k\) and \(y = 0^{n/2-j}1^j\) be from \(S_n\), with \(k > j\)

Claim: \(z = 0^{k-1}1^{n/2-(k-1)}\) distinguishes \(x\) and \(y\) in \(L_n\)

\(xz\) has \(n/2-1\) zeroes and \(n/2+1\) ones \(\Rightarrow xz \in L_n\)
\(yz\) has \(n/2+(k-j-1)\) zeroes and \(n/2-(k-j-1)\) ones
But \(k-j-1 \geq 0\), so \(yz \notin L_n\)

So the string \(z\) distinguishes \(x\) and \(y\), and \(x \not\equiv_{L_n} y\)
L = \{x \mid x \text{ has more 1’s than 0’s}\}

Theorem: Every streaming algorithm for L requires at least \((\log_2 n)-1\) bits of space.

Proof (Slide 2):

All pairs of strings in \(S_n\) are distinguishable in \(L_n\)

\(\Rightarrow\) There are at least \(|S_n|\) equiv classes of \(\equiv_{L_n}\)

By the Myhill-Nerode Theorem:

\(\Rightarrow\) All DFAs recognizing \(L_n\) need \(\geq |S_n|\) states

\(\Rightarrow\) Every streaming algorithm for L requires at least \((\log_2 |S_n|)\) bits of space.

Recall \(|S_n| = n/2 + 1\) and we’re done!
Number of Distinct Elements

The DE problem
Input: $x \in \{0,1,...,2^k\}^*$, $2^k > |x|^2$
Output: The number of distinct elements appearing in x

Note: There is a streaming algorithm for DE using $O(kn)$ space

Theorem: Every streaming algorithm for DE requires $\Omega(kn)$ space
The DE problem
Input: $x \in \{0,1,...,2^k\}^*, \ 2^k > |x|^2$
Output: The number of distinct elements appearing in x

Theorem: There is a randomized streaming algorithm that can approximate DE to within 0.1% error, using $O(k + \log n)$ space!

See the lecture notes for more details.
Communication Complexity
Communication Complexity

A theoretical model of distributed computing

- **Function** $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$
 - Two inputs, $x \in \{0,1\}^*$ and $y \in \{0,1\}^*$
 - We assume $|x| = |y| = n$. Think of n as HUGE

- **Two computers:** Alice and Bob
 - Alice *only* knows x, Bob *only* knows y

- **Goal:** Compute $f(x, y)$ by communicating as few bits as possible between Alice and Bob

We do not count computation cost. We *only* care about the number of bits communicated.
Alice and Bob Have a Conversation

In every step: A bit is sent, which is a function of the party’s input and all the bits communicated so far.

Communication cost = number of bits communicated
= 4 (in the example)

We assume Alice and Bob alternate in communicating, and the last bit sent is the value of \(f(x,y) \)
Def. A *protocol* for a function f is a pair of functions $A, B : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0, 1, \text{STOP}\}$ with the semantics:

On input (x, y), let $r := 0, b_0 = \varepsilon$.

While ($b_r \neq \text{STOP}$),

$$r++$$

If r is odd, Alice sends $b_r = A(x, b_1 \cdots b_{r-1})$.

else Bob sends $b_r = B(y, b_1 \cdots b_{r-1})$.

Output b_{r-1}. Number of rounds $= r - 1$.
Def. The cost of a protocol P for f on n-bit strings is
\[
\max_{x, y \in \{0,1\}^n} \text{number of rounds in } P \text{ to compute } f(x, y)
\]

The communication complexity of f on n-bit strings is the minimum cost over all protocols for f on n-bit strings
\[
= \text{the minimum number of rounds used by any protocol that computes } f(x, y), \text{ over all } n\text{-bit } x, y
\]
Example. Let $f : \{0,1\}^* \times \{0,1\}^* \rightarrow \{0,1\}$ be arbitrary.

There is always a “trivial” protocol:

- **Alice** sends the bits of her x in odd rounds.
- **Bob** sends the bits of his y in even rounds.

After $2n$ rounds, they both know each other’s input!

The communication complexity of every f is at most $2n$
Example. \(\text{PARITY}(x, y) = \sum_i x_i + \sum_i y_i \mod 2. \)

What’s a good protocol for computing PARITY?

Alice sends \(b_1 = (\sum_i x_i \mod 2) \)
Bob sends \(b_2 = (b_1 + \sum_i y_i \mod 2). \) Alice stops.

The communication complexity of PARITY is 2.
Example. $\text{MAJORITY}(x, y) = \text{most frequent bit in } xy$

What’s a good protocol for computing MAJORITY?

Alice sends $N_x = \text{number of 1s in } x$
Bob computes $N_y = \text{number of 1s in } y,$
sends 1 iff $N_x + N_y$ is greater than $(|x| + |y|)/2 = n$

Communication complexity of MAJORITY is $O(\log n)$
Example. $\text{EQUALS}(x, y) = 1 \iff x = y$

What’s a good protocol for computing EQUALS?

$\text{Communication complexity}$ of EQUALS is at most $2n$