CS 154
Unrecognizability, Undecidability, Diagonalization
“There are more problems to solve than there are programs to solve them.”

Languages over \{0,1\}

Turing Machines
Let L be any set and 2^L be the power set of L

Theorem: There is no onto function from L to 2^L

No function from L to 2^L can “cover” all the elements in 2^L

No matter what the set L is, the power set 2^L always has strictly larger cardinality than L
Suppose every language is recognizable.

Then for every language L' over $\{0,1\}$ there is a TM M such that $L(M) = L'$.

This means that the function $f(M) = L(M)$ from $\{\text{Turing Machines}\}$ to $\{\text{Languages}\}$ is \textit{onto}:

For every L' in $\{\text{Languages}\}$, there is an M in $\{\text{Turing Machines}\}$ such that $f(M) = L'$
Thm: There are *unrecognizable* languages

Assuming every language is recog., there’s an onto function

\[f: \{\text{Turing Machines}\} \rightarrow \{\text{Languages}\} \]

\{Turing Machines\} \hspace{1cm} \{\text{Languages over \{0,1\}}\}

\{0,1\}^* \hspace{1cm} \{\text{Sets of strings of 0s and 1s}\}

Set \(S \) \hspace{1cm} \text{Set of all subsets of M: } 2^S

Since \(f \) is onto, there is also an onto \(g \) from \(S \) to \(2^S \).

But there is *no* onto function from \(S \) to \(2^S \). Contradiction!

This is an extremely generic argument!
In the early 1900’s, logicians were trying to define consistent foundations for mathematics.

Suppose $X =$ “Universe of all possible sets”

Frege’s Axiom: Let $f : X \rightarrow \{0,1\}$
Then $\{S \in X \mid f(S) = 1\}$ is a set.

Define $F = \{S \in X \mid S \notin S\}$

Suppose $F \in F$. Then by definition, $F \notin F$.
So $F \notin F$ and by definition $F \in F$.

This logical system is inconsistent!
A Concrete Undecidable Problem: The Acceptance Problem for TMs

\[A_{TM} = \{ (M, w) \mid M \text{ is a TM that accepts string } w \} \]

Theorem [Turing’30s]

\(A_{TM} \) is recognizable but **NOT** decidable
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

A_{TM} is undecidable: (proof by contradiction)

Suppose H is a machine that decides A_{TM}

\[
H((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Reject} & \text{if } M \text{ does not accept } w
\end{cases}
\]

Define a new TM D as follows:

$D(M)$: Run H on (M,M) and output the opposite of H.

\[
D(D) = \begin{cases}
\text{Reject} & \text{if } D \text{ accepts } D \\
\text{Accept} & \text{if } D \text{ does not accept } D
\end{cases}
\]

Set $M = D$?
The table of outputs of $H(x,y)$

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>...</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
<td>reject</td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td></td>
<td></td>
</tr>
<tr>
<td>:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The behavior of $D(x)$ is a *diagonal* on this table.

<table>
<thead>
<tr>
<th></th>
<th>w_1</th>
<th>w_2</th>
<th>w_3</th>
<th>w_4</th>
<th>...</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td>M_1</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_2</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td>reject</td>
<td></td>
</tr>
<tr>
<td>M_3</td>
<td>accept</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>M_4</td>
<td>accept</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td></td>
</tr>
<tr>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
<td>\vdots</td>
</tr>
<tr>
<td>D</td>
<td>reject</td>
<td>reject</td>
<td>accept</td>
<td>accept</td>
<td>$?$</td>
<td></td>
</tr>
</tbody>
</table>

$D(x)$ outputs the *opposite* of $H(x,x)$

$D(D)$ outputs the *opposite* of $H(D,D)=D(D)$
$A_{TM} = \{ (M,w) \mid M \text{ is a TM that accepts string } w \}$

A_{TM} is undecidable: (a constructive proof)

Let U be a machine that recognizes A_{TM}

$$U((M,w)) = \begin{cases}
\text{Accept} & \text{if } M \text{ accepts } w \\
\text{Rejects or loops} & \text{otherwise}
\end{cases}$$

Define a new TM D_U as follows:

$D_U(M)$: Run U on (M,M) until the simulation halts
Output the opposite answer
$D_U(D_U) = \begin{cases}
\text{Reject if } D_U \text{ accepts } D_U \\
\text{(i.e. if } H(D_U , D_U) = \text{Accept}) \\
\text{Accept if } D_U \text{ rejects } D_U \\
\text{(i.e. if } H(D_U , D_U) = \text{Reject}) \\
\text{Loops if } D_U \text{ loops on } D_U \\
\text{(i.e. if } H(D_U , D_U) \text{ loops})
\end{cases}$

Note: There is no contradiction here!

D_U must loop on D_U

We have an input (D_U, D_U) which is not in A_{TM} but U infinitely loops on (D_U, D_U)!
In summary:

Given the code of any \textbf{machine U} that \textbf{recognizes} \(A_{TM}\) (i.e. a Universal Turing Machine) we can \textbf{effectively} construct an input \((D_U, D_U)\), where:

1. \((D_U, D_U)\) does not belong to \(A_{TM}\)

2. \textbf{U runs forever} on the input \((D_U, D_U)\)

3. So \textbf{U cannot decide} \(A_{TM}\)

Given any program that recognizes the \textbf{Acceptance Problem}, we can efficiently construct an input where the program hangs!
Theorem: A_{TM} is recognizable but NOT decidable

Corollary: $\neg A_{TM}$ is not recognizable

Proof: Suppose $\neg A_{TM}$ is recognizable. Then $\neg A_{TM}$ and A_{TM} are both recognizable. But that would mean they’re both decidable… … this is a contradiction!
The Halting Problem

\[\text{HALT}_{\text{TM}} = \{ (M, w) \mid M \text{ is a TM that halts on string } w \} \]

Theorem: \(\text{HALT}_{\text{TM}} \) is undecidable

Proof: Assume (for a contradiction) there is a TM \(H \) that decides \(\text{HALT}_{\text{TM}} \)

Idea: Use \(H \) to construct a TM \(M' \) that *decides* \(A_{\text{TM}} \)

\(M'(M, w): \) Run \(H(M, w) \)

- If \(H \) rejects then *reject*
- If \(H \) accepts, run \(M \) on \(w \) until it halts:
 - If \(M \) accepts, then *accept*
 - If \(M \) rejects, then *reject*

Claim: If \(H \) exists, then \(M' \) decides \(A_{\text{TM}} \)
If \(M \) doesn't halt:

\[
\text{reject}
\]

If \(M \) halts:

\[
\text{H}
\]

Does \(M \) halt on \(w \)?

\[
(M, w)
\]
Can often prove a language L is undecidable by proving: “if L is decidable, then so is A_{TM}”

We **reduce** A_{TM} to the language L

$$A_{TM} \leq L$$

L is “at least as difficult as” A_{TM}
Reducing from One Problem to Another

\[f : \Sigma^* \rightarrow \Sigma^* \text{ is a computable function if} \]
\[\text{there is a Turing machine } M \text{ that halts with just } f(w) \text{ written on its tape, for every input } w \]

A language A is **mapping reducible** to language B, written as \(A \leq_m B \), if there is a computable \(f : \Sigma^* \rightarrow \Sigma^* \) such that for every \(w \),

\[w \in A \iff f(w) \in B \]

\(f \) is called a mapping reduction (or many-one reduction) from A to B
Let $f : \Sigma^* \rightarrow \Sigma^*$ be a computable function such that $w \in A \iff f(w) \in B$.

Say: “A is mapping reducible to B”

Write: $A \leq_m B$
Theorem: If \(A \leq_m B \) and \(B \leq_m C \), then \(A \leq_m C \)

\[w \in A \iff f(w) \in B \iff g(f(w)) \in C \]
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Proof: Suppose TM M decides B. Let f be a mapping reduction from A to B. We build a machine M' for deciding A

$M'(w)$:

1. Compute $f(w)$
2. Run M on $f(w)$, output its answer

$w \in A \iff f(w) \in B$ so $w \in A \Rightarrow M'$ accepts w

$w \notin A \Rightarrow M'$ rejects w
Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable.

Proof: Let M recognize B. Let f be a mapping reduction from A to B.

To recognize A, we build a machine M':

$M'(w)$:
1. Compute $f(w)$
2. Run M on $f(w)$, output its answer if you ever receive one.
Theorem: If $A \leq_m B$ and B is decidable, then A is decidable

Corollary: If $A \leq_m B$ and A is undecidable, then B is undecidable

Theorem: If $A \leq_m B$ and B is recognizable, then A is recognizable

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable
A mapping reduction from A_{TM} to $HALT_{TM}$

Theorem: $A_{TM} \leq_m HALT_{TM}$

$f(z) :=$ Decode z into a pair (M, w)

Construct a TM M' with the specification:

"$M'(w) = $ Simulate M on w. If $M(w)$ accepts then *accept* else *loop forever*"

Output (M', w)

We have $z \in A_{TM} \iff (M', w) \in HALT_{TM}$

Corollary: $HALT_{TM}$ is undecidable
Theorem: $A_{TM} \leq_m \text{HALT}_{TM}$

Corollary: $\neg A_{TM} \leq_m \neg \text{HALT}_{TM}$

Proof?

Corollary: $\neg \text{HALT}_{TM}$ is unrecognizable!

Proof: If $\neg \text{HALT}_{TM}$ were recognizable, then $\neg A_{TM}$ would be recognizable...
Theorem: $\text{HALT}_{TM} \leq_m A_{TM}$

Proof: Define the computable function

$$f(M, w) := \text{Construct } M' \text{ with the specification:}$$

"$M'(w) = \text{If } M(w) \text{ halts then accept else loop forever}"$

Output (M', w)

Observe $(M, w) \in \text{HALT}_{TM} \iff (M', w) \in A_{TM}$