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We show how to solve all-pairs shortest paths on n nodes in deterministic n3/2Ω(
√
logn)

time, and how to count

the pairs of orthogonal vectors among n 0-1 vectors in d = c logn dimensions in deterministic n2−1/O (log c)
time.

These running times essentially match the best known randomized algorithms of (Williams, STOC’14) and

(Abboud, Williams, and Yu, SODA 2015) respectively, and the ability to count was open even for randomized

algorithms. By reductions, these two results yield faster deterministic algorithms for many other problems.

Our techniques can also be used to deterministically count k-SAT assignments on n variable formulas in

2
n−n/O (k)

time, roughly matching the best known running times for detecting satisfiability and resolving an

open problem of Santhanam (2013).

A key to our constructions is an efficient way to deterministically simulate certain probabilistic polyno-

mials critical to the algorithms of prior work, carefully applying small-biased sets and modulus-amplifying

polynomials.

CCS Concepts: • Theory of computation→ Design and analysis of algorithms; Shortest paths; Pseu-
dorandomness and derandomization.

Additional KeyWords and Phrases: All-pairs shortest paths, polynomial method, derandomization, satisfiability

ACM Reference Format:
Timothy M. Chan and Ryan Williams. 0. Deterministic APSP, Orthogonal Vectors, and More: Quickly Deran-

domizing Razborov-Smolensky. ACM Trans. Algor. 0, 0, Article 0 ( 0), 14 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
We investigate a recently introduced method for randomized algorithm design that was inspired

by lower bound techniques in low-depth circuit complexity. The polynomial method in circuit

complexity is a general strategy for proving circuit lower bounds, by (a) modeling low-complexity

functions approximately with low-degree polynomials, then (b) proving that certain simple functions

do not have low-degree polynomial approximations. A generation of papers (for instance [Raz87,

Smo87, Yao90, BT94, BRS91, ABFR94, NS94, PS94, Bei95, KS12]) have proved circuit complexity

lower bounds in this generic way.
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In most cases, the approximations computed by these polynomials are a worst-case notion:

for every possible input, a random choice of a low-degree polynomial (from some efficiently

computable distribution) correctly computes the desired function, with high probability. This

notion of probabilistic polynomial has been recently applied to algorithm design in the following

sense:

• Start with an algorithm whose worst-case running time is constrained by a subprocedure

that is executed many times on different inputs. (For example, if one is searching for a pair of

strings with some property P , a redundant subprocedure might be the property test for P .
Another example would be a matrix multiplication algorithm which computes many inner

products on different pairs of vectors.)

• Next, give a way to model this subprocedure with a low-complexity circuit.

• Finally, randomly convert that low-complexity circuit into a sparse polynomial (via the

polynomial method), and use the algebraic structure of the polynomial to speed up the

repeated execution of the subprocedure. (Multiple random conversions may be needed, to

increase the probability of success.)

This approach has led to faster randomized algorithms for solving several fundamental problems:

all-pairs shortest paths (and therefore min-plus convolution, minimum weight triangle, minimum

cycle, second shortest paths, replacement paths, etc.) [Wil14b], finding a pair of disjoint vectors in a

collection (and therefore computing partial match queries in batch, computing the longest common

substring with wildcards, evaluating DNFs on many chosen assignments, etc.) [Wil14a, AWY15],

and (recently) computing Hamming distance queries in batch as well [AW15].

A fundamental characteristic of the polynomial method is its reliance on probability and ap-

proximation: for the method to work, it is necessary that the polynomial representations are

random/approximate. For example, representing the OR function on n bits exactly requires Ω(2n)
monomials and degree Ω(n) over any fixed field, but probabilistic and approximate representations

can be much more succinct over finite fields, requiring onlyO(poly(n))monomials and degreeO(1)
to achieve less than 1% probability of error [Raz87, Smo87]. Such a sparse representation is simply

impossible to achieve deterministically/exactly.

Therefore it is somewhat surprising that, in this paper, we strongly derandomize almost all of the

algorithms of prior work: the running times of our deterministic algorithms essentially match those

of the randomized ones. To do this, we show how the applications of probabilistic polynomials in

the previous algorithms can be avoided, by deterministically and efficiently constructing algebraic

counterparts to these polynomials. In some cases (for example, in APSP) we rely on the structure

of the underlying problem in order to achieve the derandomization.

1.1 Deterministic All-Pairs Shortest Paths
In the all-pairs shortest paths (APSP) problem, we are given an n-node graph with arbitrary integer

edge weights, and wish to compute a representation of the shortest paths between all pairs of

nodes in the graph. It is well-known (see for example Seidel [Sei95]) that such a representation

can be represented with O(n2 logn) bits, in the form of a successor matrix. (Alternatively, we may

wish to compute the shortest distances between every pair of nodes; our algorithm can solve both

problems.) As is typical, we work over the real RAM model which has two kinds of registers: “real

registers” holding elements of R, and “word registers” holding (logn)-bit words, where additions
and comparisons of two real registers take unit time and arbitrary operations on two word registers

can be done in unit time.

Decades of work on the dense case of APSP (such as [Flo62, War62, Fre75, Dob90, Tak91, Han04,

Tak04, Zwi04, Cha05, Han06, Cha07, HT12]) yielded only log
2−o(1) n factor improvements over
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the well-known O(n3)-time solution, until Williams [Wil14b] showed in 2014 that APSP can be

solved in n3/2Ω(
√
logn)

time with a Monte Carlo algorithm. The paper [Wil14b] also proved that

there is some δ > 0 such that APSP can be solved in O(n3/2(logn)
δ
) time deterministically, using a

deterministic polynomial transformation due to Beigel and Tarui [BT94]. However, the value of δ
was left undetermined; straightforward calculation indicates that δ ≤ 1/4. In this paper, we design

a deterministic algorithm that runs in roughly the same time as the randomized algorithm:

Theorem 1.1. APSP on n-node weighted graphs can be solved in n3/2Ω(
√
logn)

time deterministi-

cally.

1.2 Deterministic Orthogonal Vectors and Applications
We can also derandomize algorithms for another category of problems that have been successfully

attacked with the polynomial method.

In the Batch Partial Match problem, we are given a database D of n points in {0, 1}d and a

set Q of n queries in {0, 1,⋆}d ; we wish to find for all q ∈ Q a point x ∈ D that matches all the

non-star characters in q (or, report that no x exists). Equivalently, in Batch Boolean Orthogonal

Vectors, the database D is a set of vectors from {0, 1}d and Q is a set of vectors in {0, 1}d ; we
wish to determine for all q ∈ Q if there is a v ∈ D such that ⟨q,v⟩ = 0. Yet another equivalent

problem is Batch SubsetQueries: given a database D of n subsets of [d] and n queries Q which

are subsets of [d], determine for all S ∈ Q if there is a T ∈ D such that S ⊆ T . These problems

capture extremely basic yet difficult aspects of search, and have a long history (see [Riv74] and

Section 6.5 of [Knu73]).

In the Longest Common Substring with Wildcards problem, we are given two strings

S,T ∈ (Σ ∪ {⋆})n ; we wish to find the longest string over Σ that matches both a contiguous

substring of S and a contiguous substring of T in the non-star characters.

In the DNF Batched Evaluation problem, we are given a DNF formula F with d variables and t
terms, and v different assignments; we wish to evaluate F on all v assignments.

It was shown by Abboud, Williams, and Yu [AWY15] that the difficulties in solving all the above

problems stem from an apparently much simpler problem:

Definition 1.2 (Boolean Orthogonal Vectors). Given n vectors in {0, 1}c logn , are there distinct
u,v ∈ {0, 1}c logn such that ⟨u,v⟩ = 0 (over the integers)?

The problem can be easily solved in O(cn2 logn) time, or in O(nc+1) time; it cannot be solved in

n1.999 time for all constants c ≥ 1, unless the Strong Exponential Time Hypothesis is false [Wil04,

WY14]. Abboud, Williams and Yu [AWY15] showed that Boolean Orthogonal Vectors can in

fact be solved in n2−1/O (log c)
time with a Monte Carlo algorithm, using the probabilistic polynomial

method. This algorithm was used to derive faster algorithms for all aforementioned problems. We

derandomize their algorithm, and in fact derive a stronger result: we can count the number of

solutions in essentially the same running time.

Theorem 1.3. Given n vectors in {0, 1}c logn for any c ≤ 2
δ
√
logn

for a sufficiently small constant

δ , the number of distinct u,v ∈ {0, 1}c logn such that ⟨u,v⟩ = 0 can be counted in n2−1/O (log c)
time

deterministically.

Applying the reductions of Abboud, Williams, and Yu [AWY15], we immediately obtain:

Corollary 1.4. The following problems can be solved deterministically:

• Batch Boolean Orthogonal Vectors, Batch Partial Match, and Batch SubsetQueries

in n2−1/O (log c)
time for d = c logn with c ≤ 2

δ
√
logn

for a sufficiently small constant δ .
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• Longest Common Substring with Wildcards in n2/2Ω(
√
logn)

time.

• DNF Batched Evaluation in v · t1−1/O (log c)
time for t ≤ v and d = c log t with c ≤ 2

δ
√
log t

.

The fact that we can count solutions (and not just detect them) permits some new applications.

For example:

Corollary 1.5. The number of satisfying assignments to a CNF formula with cn clauses and n

variables can be computed in 2
n−n/O (log c)

time deterministically for any c ≤ 2
o(
√
n)
.

Theorem 1.6. Let k ≥ 3 be a constant. The number of satisfying assignments to a k-CNF formula

with n variables can be computed in 2
n−n/O (k )

time deterministically for any constant k .

The theorem resolves an open problem posed by Rahul Santhanam [HPSW13], who was mo-

tivated by the question of whether algorithms for counting k-SAT solutions could be made as

competitive as algorithms for k-SAT. Impagliazzo, Matthews, and Paturi [IMP12] gave Las Vegas

randomized algorithms for counting CNF-SAT with n variables and cn clauses in 2
n−n/O (log c)

time,

and for counting k-SAT in 2
n−n/O (k )

time. The best general deterministic k-SAT algorithms we

could find in the literature are by Dubois [Dub91] and Zhang [Zha96], who showed how to count

solutions to k-SAT instances in 2
n−n/O (2k )

time. This is much worse than our bound (the running

time converges to 2
n
much faster).

2 THE MAIN POLYNOMIAL CONSTRUCTION: SUM OF ORS
The key to our new algorithms is a succinct deterministic algebraic expression for the following

function, which is repeatedly computed (with different parameters) in straightforward algorithms

for all of the problems mentioned in this paper. Let d1,d2 be positive integers. Define the function
SUM-ORd1,d2 : {0, 1}

d1 ·d2 → {0, . . . ,d1} as

SUM-ORd1,d2 (x1,1, . . . , x1,d2, . . . . . . , xd1,1, . . . , xd1,d2 )

:=

d1∑
i=1

(
d2∨
j=1

xi , j

)
.

That is, SUM-ORd1,d2 computes d1 ORs on d2 disjoint inputs, and returns the number of ORs that

are true.

The following theorem states that we can deterministically produce a “somewhat short” multi-

linear polynomial simulating SUM-ORd1,d2 .

Theorem 2.1. Let d1,d2 be positive integers such that 10 log(d1 · d2) < d2. There are integers
ℓ = 5 log(d1 · d2), M ≤ poly(d1,d2), and a polynomial Pd1,d2 in d1 · d2 variables over Z withm ≤(d2
2ℓ

)
· poly(d1 · d2) monomials, such that for all ®x ∈ {0, 1}d1d2 , SUM-ORd1,d2 (®x) equals the nearest

integer to (Pd1,d2 (®x) mod 2
ℓ)/M . Furthermore, Pd1,d2 can be constructed in poly(d1) ·

(d2+1
ℓ

)2
time.

For a concrete example of the theorem (which will also be useful in the case of APSP), let

d := d1 = d2. Then Theorem 2.1 says:

Corollary 2.2 (of Theorem 2.1). In 2
O (log2 d )

time, we can build a polynomial Pd ,d over Z

simulating SUM-ORd ,d (in the above sense) with only 2
O (log2 d )

monomials.

In comparison, a deterministic polynomial exactly representing SUM-ORd ,d over Z requires

Ω(2d ) monomials (indeed, the OR function requires this many). The construction of Theorem 2.1

uses two mathematical ingredients, which we now introduce and motivate.
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Small-bias sets. The Razborov–Smolensky [Raz87, Smo87] probabilistic polynomial for OR boils

down to the following observation: for any non-zero vector v ∈ {0, 1}n , if r ∈ {0, 1}n is a uniform

random vector,

Pr

r
[⟨v, r ⟩ = 0 over F2] = 1/2.

This “random XOR” fact is frequently utilized in complexity theory (cf. Arora and Barak [AB09]).

We would like to substitute the uniform random choice of r with deterministic choices. Trying

all possible vectors r isn’t efficient, however, since the sample space of possible vectors has size

2
n
. Our first observation is that the sample space can be reduced considerably while achieving a

similar property, using ε-biased sets:

Definition 2.3 (Naor and Naor [NN93]). Let ε ∈ (0, 1/2). A set S ⊆ {0, 1}n of n-dimensional vectors

is ε-biased if for all non-zero v ∈ {0, 1}n ,

Pr

w ∈S
[⟨v,w⟩ = 0 over F2] ∈ (1/2 − ε, 1/2 + ε).

By the above observation, the set S = {0, 1}n is 0-biased. An ε-biased set of small cardinality can

be used to “simulate” the behavior of a uniform random XOR. Several deterministic constructions

of ε-biased sets are known; for concreteness, let us cite a particular one with good dependence on

n and ε :

Theorem 2.4 (Alon et al. [AGHP92]). For every positive integer n and ε ∈ (0, 1/2), there is an

ε-biased set Sn,ε ⊆ {0, 1}n of cardinality Õ(n2/ε2), constructible in poly(n/ε) time.

Modulus-amplifying polynomials. Small-bias sets let us substitute a completely random vector in

a mod-2 inner product with an enumeration over a polynomial-sized set of vectors. Our second

ingredient aids this enumeration: it is a special univariate polynomial Fℓ(x) of degree 2ℓ − 1 (for

a parameter ℓ) that, given an integer a which is odd, Fℓ(a) equals 1 mod 2
ℓ
, else Fℓ(a) equals

0 mod 2
ℓ
. This polynomial Fℓ lets us tally up a collection of “modulo 2” sums over Z, by computing

Fℓ(A1)+ · · ·+Fℓ(Ak )where theAi are various sums to be computed modulo 2. Such polynomials are

called modulus-amplifying [Yao90], and were critical in both the proof of Toda’s theorem [Tod91]

(that the polynomial hierarchy is contained in P#P) and a famous depth-reduction theorem for

ACC0
circuits [BT94].

Theorem 2.5 (Beigel and Tarui [BT94]). For every positive integer ℓ, the degree 2ℓ−1 polynomial

Fℓ(y) = 1 − (1 − y)ℓ
ℓ−1∑
j=0

(
ℓ + j − 1

j

)
y j (1)

has the property that for all y ∈ Z,

• if y mod 2 = 1 then Fℓ(y) mod 2
ℓ = 1, and

• if y mod 2 = 0 then Fℓ(y) mod 2
ℓ = 0.

In what follows, we will also use the fact that

Fℓ(0) = 1 − (1 − 0)ℓ
ℓ−1∑
j=0

(
ℓ + j − 1

j

)
0
j = 0. (2)

The SUM-OR polynomial. We are now prepared to prove Theorem 2.1.

Proof of Theorem 2.1. Let S ⊆ {0, 1}d2 be a 1/(4d1)-biased set; Theorem 2.4 guarantees

that S can be constructed in poly(d1 · d2) time and that |S | ≤ Õ((d1 · d2)
2). Set M := |S |/2 and

ACM Trans. Algor., Vol. 0, No. 0, Article 0. Publication date: 0.
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ℓ := 5 log(d1 · d2). Define

Pd1,d2 (x1,1, . . . , x1,d2, . . . . . . , xd1,1, . . . , xd1,d2 )

:=

d1∑
i=1

∑
v ∈S

Fℓ

(
d2∑
j=1

v[j] · xi , j

)
,

where Fℓ(x) is the modulus-amplifying polynomial of (1) guaranteed by Theorem 2.5.

Let us first describe how to construct Pd1,d2 efficiently. Let Gi = Fℓ
(∑d2

j=1v[j] · xi , j
)
. Each Gi

has d2 variables and degree 2ℓ − 1. Notice that without loss of generality, we can make each Gi a

multilinear polynomial of the same degree, since x2i = xi over {0, 1}. Therefore the total number of

monomials in each Gi can be upper-bounded by

mi =

2ℓ−1∑
j=0

(
d2
j

)
≤ O

((
d2

2ℓ − 1

))
,

where the above inequality holds when 2ℓ − 1 < d2/2.

Producing a multilinear version of each Gi can be done in Õ
( (d2+1

ℓ

)2)
time, as follows. First,

expand sj =
(∑d2

j=1v[j] · xi , j
) j

for j = 0, . . . , ℓ and sℓ+1 =
(
1 −

∑d2
j=1v[j] · xi , j

)ℓ
into a multilinear

sum of products, each of which can be produced in Õ
( (d2+1

ℓ

) )
time. Then, multiply sℓ+1 and sj

for j = 0, . . . , ℓ − 1, and each of these products can be done in Õ
( (d2+1

ℓ

)2)
time. (Computing the

coefficients

(ℓ+j−1
j

)
can easily be done in poly(ℓ) ≤ poly(log(d1 · d2)) time.) Finally, since Pd1,d2 is

just a sum of O(d3
1
· d2

2
) Gi ’s, the total number of monomials in Pd1,d2 is O

(
d3
1
d2
2
·
( d2
2ℓ−1

) )
.

Now we argue for the correctness of Pd1,d2 . For all i = 1, . . . ,d1,

• If

∨d2
j=1 xi , j is true, then the vector (xi ,1, . . . , xi ,d2 ) is non-zero. Since S is ε-biased,

Pr

v ∈S

[
d2∑
j=1

v[j] · xi , j = 1 over F2

]
∈ (1/2 − ε, 1/2 + ε).

Since Fℓ is modulus-amplifying, it follows that

Yi :=
∑
v ∈S

Fℓ

(
d2∑
j=1

v[j] · xi , j

)
is congruent to an integer in the interval

((1/2 − ε)|S |, (1/2 + ε)|S |), modulo 2
ℓ
.

• On the other hand, if

∨d2
j=1 xi , j is false, then since Fℓ(0) = 0 (by (2)) we have

Yi =
∑
v ∈S

Fℓ

(
d2∑
j=1

v[j] · xi , j

)
= 0.

For notational simplicity, let K = SUM-ORd1,d2 (®x). It follows from the above that, for all ®x ∈

{0, 1}d1 ·d2 , Pd1,d2 (®x) =
∑d1

i=1 Yi modulo 2
ℓ
is congruent to an integer in the interval

((1/2 − ε)|S | · K, (1/2 + ε)|S | · K).

Since ε = 1/(4d1) and 0 ≤ SUM-ORd1,d2 (®x) ≤ d1, the above interval is contained in the interval

((1/2)|S |(K − 1/2), (1/2)|S | (K + 1/2)) .
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Observe that 2
ℓ = (d1 · d2)

5 > d1 · |S |. It follows that

(Pd1,d2 (®x) mod 2
ℓ)

M
∈ (K − 1/2, K + 1/2) .

(Note that the statement is trivially true in the special case of K = SUM-ORd1,d2 (®x) = 0, i.e., ®x = 0.)

�

3 A DETERMINISTIC APSP ALGORITHM
Our first application of the SUM-OR polynomial of Theorem 2.1 is to solve all-pairs shortest paths

deterministically. We will use the polynomial simulating SUM-OR to evaluate an extension of the

SUM-OR function on many pairs of points efficiently. The SUM-OR evaluation algorithm is then

used to efficiently compute min-plus matrix multiplication, which is sufficient (and necessary) for

solving APSP.

This approach is somewhat different from Williams’ randomized APSP algorithm [Wil14b],

which worked with expressions more complicated than SUM-OR, and reduced those expressions

to polynomials over F2. The fact that APSP can be efficiently reduced to SUM-OR evaluation is

interesting in its own right.

Given vectors ®x, ®y ∈ {0, 1}m , let ®x ∗ ®y ∈ {0, 1}m denote their element-wise product.

Corollary 3.1. Given sets X ,Y ⊆ {0, 1}d
2

with |X | = |Y | = n, SUM-ORd ,d (®x ∗ ®y) can be computed

for every ®x ∈ X and ®y ∈ Y in n2 · poly(logn) deterministic time when d ≤ 2
c
√
logn

, for some fixed

constant c > 0.

Since this proof follows the pattern of prior work fairly closely, we give only a sketch.

Proof. (Sketch) Let d ≤ 2
O (
√
logn)

, and X ,Y ⊆ {0, 1}d
2

, with |X | = |Y | = n. By Theorem 2.1, it

suffices to evaluate the polynomial Pd ,d (®x ∗ ®y) withm ≤
( d
O (logd )

)
· poly(d) ≤ 2

O (log2 d )
monomials

over the ring Z/(2ℓZ), on all ®x ∈ X and ®y ∈ Y , where ℓ = O(logd).
Williams [Wil14b] proves that, given any polynomial P(®x, ®y) in 2d2 variables and m ≤ n0.1

monomials over a field F, we can evaluate P on all ®x ∈ X and ®y ∈ Y in n2 · poly(logn) arithmetic

operations, by reducing the problem to evaluating P on an n ×m andm × n rectangular matrix

multiplication over F. There is a minor complication in applying this result, because we need to

evaluate Pd ,d (®x ∗ ®y) over Z/(2ℓZ), which is not a field. However, by inspection there is a fixed

c0 ≥ 1 such that, for all ®x, ®y ∈ {0, 1}d
2

, Pd ,d (®x ∗ ®y) ∈ [−dc0 logd ,dc0 logd ]. Therefore, without loss of
generality it suffices to compute the value of Pd ,d on all (®x, ®y) pairs over a prime field Fp , where

p ∈ [2c0 log
2 d , 21+c0 log

2 d ]. The rest of the computations (the remainders modulo 2
ℓ
, and divisions by

M) can then be computed over Z in poly(logd) time, for each (®x, ®y) pair.

Hence the SUM-OR evaluation problem can be reduced to the multiplication of an n × 2
O (log2 d )

and an 2
O (log2 d ) × n matrix over Fp , where each entry requires O(log2 d) bits. For c > 0 sufficiently

small, setting d := 2
c
√
logn

implies thatm ≤ n0.1. By known results on rectangular matrix multipli-

cation [Cop82] over fields, we can multiply an n×n0.1 and n0.1 ×n matrix over Fp in n
2 ·poly(logn)

time. �

Our APSP algorithm reduces APSP to the above SUM-OR evaluation problem of Corollary 3.1.

Reminder of Theorem 1.1 APSP on n-node weighted graphs can be solved in n3/2Ω(
√
logn)

time

deterministically.
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Proof. Let A,B ∈ Rn×n . Recall that the min-plus matrix multiplication of A and B is the n × n
matrix

(A⋆ B)[i, j] := min

k=1, ...,n
(A[i,k] + B[k, j]) .

First, it is well-known [Mun71, FM71, AHU74] that a T (n)-time algorithm for min-plus matrix

multiplication implies an O(T (n))-time algorithm for APSP. Furthermore, it is also easy to see

[Fre75] that if the min-plus matrix product of n × d and d × n matrices (with d ≤ n) is computable

in T ′(n) time, then the min-plus matrix product of n × n matrices can be computed in O
( n
d ·T ′(n)

)
time, by simply partitioning the given n × n matrices into n/d matrix products of dimensions n × d
and d × n.

We show how to efficiently reduce the min-plus product of an n × d matrix A and a d × n matrix

B to the SUM-OR evaluation problem of Corollary 3.1. Let c > 0 be the constant guaranteed in

Corollary 3.1; our reduction will yield an n2 ·poly(logn) time algorithm for min-plus matrix product

of n × 2
(c/4)

√
logn

and 2
(c/4)

√
logn × n matrices; by the previous paragraph, it will follow that APSP

is in O(n3/2(c/4)
√
logn) time.

Set d := 2
(c/4)

√
logn

. Fix an index q ∈ [logd].1 It suffices to describe how to compute, for every

pair i, j ∈ [n], the q-th bit of the index ki , j ∈ [d] that minimizes A[i,k] + B[k, j]. (From this, we can

compute all logd bits of ki , j for all i, j, and recover the min-plus matrix product.) We call this q-th
bit c

q
i j in the following.

Our reduction to SUM-OR evaluation requires some precomputation. Let Kq be the set of all

indices in [d] having their q-th bit equal to 1. For k,k ′ ∈ [d], let Lk ,k ′ be the sorted list of 2n
elements containing A[i,k] −A[i,k ′] for all i ∈ [n] and B[k ′, j] − B[k, j] for all j ∈ [n]. These lists

are computable inO(d2 · n logn) time. Let r (i)k ,k ′ be the rank of A[i,k] −A[i,k ′] in Lk ,k ′ , and let s(j)k ,k ′

be the rank of B[k ′, j] − B[k, j] in Lk ,k ′ .
By Fredman’s trick [Fre75] that A[i,k] + B[k, j] > A[i,k ′] + B[k ′, j] implies A[i,k] − A[i,k ′] >

B[k ′, j] − B[k, j], we have

(¬c
q
i j ) =

∧
k ∈Kq

∨
k ′∈[d ]

[r (i)k ,k ′ > s(j)k ,k ′],

where [P] outputs 1 if property P is true, and 0 otherwise. Hence it suffices to compute the above

AND of ORs of comparisons, over all i, j ∈ [n].
We will use a SUM-OR evaluation to compute some of the c

q
i , j ’s, and use a counting argument

to directly compute the rest. Let D := 2
(3c/4)

√
logn

, and observe that d · D = 2
c
√
logn

. The key idea

is to compare rank values with multiples of n/D, which partition [2n] into O(D) “buckets”—this
idea is inspired by Matoušek’s dominance algorithm [Mat91] (the observation that APSP is related

to solving multiple dominance problems was noted, e.g., in [Cha05]). More precisely, for each

ℓ ∈ [2 · D], define the Boolean values

x (i)k ,k ′,ℓ = [r (i)k ,k ′ > ℓn/D] and y(j)k ,k ′,ℓ = [s(j)k ,k ′ ≤ ℓn/D].

Observe that all x (i)k ,k ′,ℓ and y
(j)
k ,k ′,ℓ can be computed inO(n ·D ·d2) time. We then compute for all i, j

e
q
i , j =

∑
k ∈Kq

©­«
∨

k ′∈[d ],ℓ∈[D]

(x (i)k ,k ′,ℓ ∧ y(j)k ,k ′,ℓ)
ª®¬ .

1[m] denotes {1, . . . ,m }.
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Since d · D = 2
c
√
logn

, the ORs of e
q
i , j are over 2

c
√
logn

variables. The outer sum is over |Kq | ≤ d ≤

2
(c/5)

√
logn

ORs. Therefore e
q
i , j can be computed in n2 · poly(logn) time for all i, j ∈ [n], by applying

Corollary 3.1.

Let (i, j) ∈ [n]2. Call the pair (i, j) bad if r (i)k ,k ′ and s(j)k ,k ′ both lie in a common interval ((ℓ −

1)n/D, ℓn/D] for some k,k ′ ∈ [d], ℓ ∈ [2 · D]. If (i, j) is not bad, then note that (¬c
q
i , j ) = 1 ⇐⇒

e
q
i , j = |Kq |, so our computation of e

q
i , j decides the bit c

q
i , j for all not-bad pairs (i, j).

Now we consider the bad pairs. Each bad pair (i, j) can be specified by choosing k,k ′
(specifying

Lk ,k ′), then choosing ℓ ∈ [2 · D] and two numbers in the interval ((ℓ − 1)n/D, ℓn/D]. Hence the
number of bad pairs is at most O(d2 · D · (n/D)2) ≤ O(d2n2/D). Enumerating over all such choices,

we can compute c
q
i , j for each bad pair (i, j) by directly computing mink (A[i,k] + B[k, j]), in O(d)

time per pair. Hence the bad pairs can be enumerated in O(d3n2/D) time.

Therefore for d = 2
(c/4)

√
logn

, the bad pairs can be enumerated in O(n2) time by our choice of D.
It follows that we can compute the min-plus product of the n × d matrix A and d × n matrix B in

n2 · poly(logn) deterministic time. From the above discussion, it follows that APSP can be solved in

n3/2Ω(
√
logn)

deterministic time. �

4 A DETERMINISTIC ORTHOGONAL VECTORS ALGORITHM
We now turn to derandomizing the algorithms of Abboud, Williams, and Yu [AWY15]. An algorithm

for Boolean Orthogonal Vectors can be directly derived from the following theorem:

Theorem 4.1. For every positive c ≤ 2
δ
√
logn

for a sufficiently small constant δ , there is a constant
k ≥ 1 such that for s = n1/(k log c)

the following holds. Let S = {u1, . . . ,us } and T = {v1, . . . ,vs }
be two sets of (c logn)-dimensional Boolean vectors. The number of ui ∈ S and vj ∈ T such that

⟨u,v⟩ = 0 can be computed by a multilinear polynomial Qs (u1, . . . ,us ,v1, . . . ,vs ) in s2 · c logn
variables and O(n0.1) monomials, over Z. Furthermore, the polynomial Qs can be constructed in time

O(n0.2+1/Ω(log c)).

Proof. Let S = {u1, . . . ,us } and T = {v1, . . . ,vs }. We wish to sum, over all s2 pairs of vectors
ui and vj from S and T , the value of

∨
k (ui [k] · vj [k]); this will exactly count the number of

non-orthogonal pairs (ui ,vj ). The function we wish to compute is precisely

SUM-ORs2,c logn(u1 ∗v1,u1 ∗v2, . . . ,u1 ∗vs , . . .

. . . ,us ∗v1,us ∗v2, . . . ,us ∗vs ),

where u ∗v ∈ {0, 1}c logn is the component-wise product of u and v . By Theorem 2.1, this function

is computable with a polynomial Ps2,c logn with a number of monomials equal to

m ≤

(
2c logn

O(log s + log c + log logn)

)
· poly(s2 · c logn),

and Ps2,c logn can be constructed in poly(s) ·
(

2c logn+1
O (log s+log c+log logn)

)2
time.
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Setting s = n1/(k log c)
for a fixed and sufficiently large constant k , the number of monomials is at

most

poly(n1/(k log c), logn) ·

(
2c logn

10(logn)/(k log c)

)
≤ nO (1)/(k log c) ·

©­«2ec logn10 logn
k log c

ª®¬
10 logn
k log c

,

due to c ≤ 2
δ
√
logn

, and the inequality

(n
K

)
≤ (en/K)K . Finally, the above quantity is less than

nO (1)/(k log c) · (ck log c)10(logn)/(k log c)

≤ nO (1)/(k log c) · n10 log(ck log c)/(k log c)

≤ nO (1)/(k log c) · n10/k+(logk )/(k log c)+(log log c)/(k log c)

≤ k · n0.1,

for sufficiently large constant k . �

Armed with Theorem 4.1, the orthogonal pairs counting algorithm follows from previous argu-

ments.

Reminder of Theorem 1.3 Given n vectors in {0, 1}c logn for any c ≤ 2
δ
√
logn

for a sufficiently

small constant δ > 0, the number of distinct u,v ∈ {0, 1}c logn such that ⟨u,v⟩ = 0 can be counted in

n2−1/O (log c)
time deterministically.

Proof. (Sketch) Analogous to [AWY15]. We partition the set of n vectors into O(n/s) groups of
at most s vectors each. Theorem 4.1 constructs a polynomial Qs in O(n0.1) monomials such that,

for any pair of groups, we can count the number of orthogonal pairs among the pair of groups

with a single evaluation to Qs . Therefore the counting problem reduces to evaluation of Qs on all

O(n2/s2) pairs of groups. As in the proof of Corollary 3.1, this evaluation of Qs can be computed

using a multiplication of an n/s × n0.1 and n0.1 × n/s matrix, where s = n1/O (log c)
.

By inspection, the value of the polynomial Qs over all Boolean inputs is always an integer in

the range [d−c0(log s+logd ),dc0(log s+logd )], for a sufficiently large constant c0 > 0. Therefore, our

matrix multiplication can be performed over a field of characteristic greater than dc0(log s+logd ),
analogously to the proof of Corollary 3.1. By known results [Cop82], the matrix multiplication

takes (n2/s2) · poly(logd, logn) ≤ n2−1/O (log c)
time, and recovering the number of orthogonal pairs

from the resulting matrix entries can be done efficiently. �

5 COUNTING SAT ASSIGNMENTS DETERMINISTICALLY
The ability to count the number of orthogonal pairs yields some new applications, such as faster

deterministic algorithms for counting satisfying assignments to CNF formulas.

Reminder of Corollary 1.5 The number of satisfying assignments to a CNF formula with cn

clauses and n variables can be computed in 2
n−n/O (log c)

time deterministically for c ≤ 2
o(
√
n)
.

Proof. (Sketch) A simple reduction of Williams [Wil04] takes a CNF F with cn clauses and n
variables and produces an orthogonal vectors instance with O(2n/2) vectors in 2 + cn dimensions,

such that the number of orthogonal pairs equals the number of satisfying assignments to F . The
result then follows from the orthogonal vectors algorithm (Theorem 1.3). �
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We cite the next consequence as a “theorem” rather than a “corollary”, as it does not immediately

follow from the counting algorithm for orthogonal vectors.

Reminder of Theorem 1.6 The number of satisfying assignments to a k-CNF formula with n
variables can be computed in 2

n−n/O (k)
time deterministically for any constant k .

Proof. Given a k-CNF formula F on n variables andm clauses, let {C1, . . . ,Cm} be its set of

clauses, and let #(F ) denote its number of satisfying assignments. Note thatm ≤ O(nk ), without
loss of generality.

Instead of reducing to the orthogonal vectors problem (in which the clause width k is lost in

the reduction) we work directly with F . In particular, we consider the following expression which

counts the number of falsifying assignments (2
n − #(F )):∑

a1, ...,an ∈{0,1}

(
m∨
i=1

pi (a1, . . . ,an)

)
, (3)

where the ∨ is an OR outputting 0 or 1, and pi is a function such that

p(a1, . . . ,an) = 0 if (a1, . . . ,an) satisfies Ci

p(a1, . . . ,an) = 1 if (a1, . . . ,an) does not satisfy Ci .

Since Ci involves at most k variables, each pi can easily be defined as a polynomial of degree at

most k . For example, if Ci = {x1,¬x2, x3} then pi (x1, . . . , xn) = (1 − x1)x2(1 − x3).
Let δ ∈ (0, 1) be a parameter, and define the (1 − δ )n-variate expression

P(x1, . . . , xn(1−δ )) :=
∑

a1, ...,aδn ∈{0,1}

m∨
i=1

pi (a1, . . . ,an). (4)

Then it is clear that ∑
b1, ...,bn−δn ∈{0,1}

P(b1, . . . ,bn(1−δ ))

=
∑

a1, ...,an ∈{0,1}

m∨
i=1

pi (a1, . . . ,an).

So to compute #(F ), it suffices to evaluate P(x1, . . . , xn(1−δ )) on all 2
n(1−δ )

Boolean assignments.

Set ℓ := 5(δn + logm), and ε := 1/(4 · 2δn). Let Sm,ε ⊆ {0, 1}m be an ε-biased set of size

Õ(m2/ε2) (from Theorem 2.4), and let Fℓ(x) be a modulus-amplifying polynomial of degree ℓ (from
Theorem 2.5). By Theorem 2.1, computing the expression P(x1, . . . , xn(1−δ )) of (4) on a Boolean

assignment is equivalent to computing the polynomial∑
a1, ..,aδn ∈{0,1}

∑
®r ∈Sm,ε

Fℓ

(
m∑
i=1

ri · pi (x1, . . . , xn(1−δ ),a1, . . . ,aδn)

)
. (5)

For every vector ®r = (r1, . . . , rm) ∈ Sm,ε , each term Fℓ(
∑m

i=1 ri · pi (x1, . . . , xn(1−δ ),a1, . . . ,aδn))
can be written as a multilinear polynomial in n(1 − δ ) variables, of degree at most (2ℓ − 1) ·

k . Therefore we can expand the expression 5 into a sum of monomials, in time no more than

O⋆
(
2
δn · |Sm,ε | ·

∑(2ℓ−1)·k
i=0

(n(1−δ )
i

) )
.
2
When

(2ℓ − 1) · k < n(1 − δ )/2, (6)

2
The O⋆

notation omits poly(n) factors from the running time.
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the time for converting (5) into a sum of monomials is at most

O⋆

(
2
δn · |Sm,ε | ·

(
n

(2ℓ − 1) · k

))
.

This time bound can be achieved by “slowly” producing (5): inside of each Fℓ , we compute the

powers of sums by multiplying one factor at a time (no repeated squaring).

Since it is now a sum of monomials, we can now evaluate the polynomial of (5) on all 2
n−δn

Boolean assignments to its variables in only O⋆(2n(1−δ )) time, using a simple divide-and-conquer

strategy (cf. [Wil11]) or Yates’ dynamic programming algorithm (cf. [BHK09], Section 2.2). Therefore

we can count the number of satisfying assignments to F in time

O⋆

(
2
n(1−δ ) + 2δn · |Sm,ε | ·

(
n(1 − δ )

(2ℓ − 1) · k

))
≤ O⋆

(
2
n(1−δ ) +m2

2
3δn ·

(
n(1 − δ )

10(δn + logm) · k

))
.

Supposing δ := 1/(ck) for some sufficiently large constant c > 1, inequality 6 holds, and the

running time is upper bounded by O⋆(2n(1−1/(ck ))). In particular, the running time for constructing

the (n − δn)-variate polynomial (modulo poly(n,m) factors) is at most

2
2n/(ck ) ·

(
n(1 − 1/(ck))

10n/c + 10k logm

)
.

Letting c = 30, the above is at most

2
n/(15k) ·

(
n(1 − 1/(30k))

n/3 + 10k logm

)
< 2

n/(15k)+.919n,

which is less than 2
n(1−1/(30k ))

for all k ≥ 2. (Note we have made little attempt to optimize c .) �

The same algorithm for Theorem 1.6 can be extended more generally to solve constraint satisfac-

tion problems over n Boolean variables, where each constraint involves k variables for a constant

k .

6 CONCLUSION
We have shown that randomness is not essential to the recent algorithmic applications of the

polynomial method, despite the fact that randomness and/or approximation are necessary in circuit

lower bound proofs via the polynomial method. Let us highlight a few interesting further directions.

• In our construction of the SUM-OR polynomial (Theorem 2.1), we composed the output of

the OR function with a univariate polynomial Fℓ of degree 2ℓ − 1. This led to a polynomial

with about

(d2
2ℓ

)
monomials. Is there a sparser polynomial representation for SUM-OR? Such a

polynomial would yield even faster algorithms, since in our applications we only care about

the number of monomials in the polynomial.

• Wehave derandomized all algorithms of [Wil14b, AWY15,Wil14a]. In subsequentwork [AW15,

ACW16], new probabilistic polynomials yield a subquadratic time algorithm for a nearest

neighbor problem: for any constant c , given n red and blue Boolean vectors in c logn dimen-

sions, the closest red-blue pair in the Hamming metric can be computed in n2−1/O (
√
c log2/3 c)

randomized time. However, these randomized polynomial constructions are very different

from Razborov-Smolensky, and derandomizing them looks like a challenging problem (the

best deterministic algorithm from [ACW16] has a weaker time bound of n2−1/O (c log2 c)
).
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Subsequent to the conference version of this work, several papers have given further applications

of our results and techniques. Chan [Cha17] showed how dominance range searching/counting

in Rc logn can be reduced to the Boolean orthogonal vectors problem, and can thus also be solved

in n2−1/O (log c)
deterministic time (for c ≪ 2

δ
√
logn

). Lokshtanov et al. [LPT
+
17] adapted the tech-

niques here to obtain new deterministic algorithms for solving systems of multivariate polynomial

equations over finite fields.
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