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Abstract

First-order logic captures a vast number of computational problems
on graphs. We study the time complexity of deciding graph proper-
ties definable by first-order sentences in prenex normal form with
k variables. The trivial algorithm for this problem runs in O(nk)
time on n-node graphs (the big-O hides the dependence on k).

Answering a question of Miklós Ajtai, we give the first algo-
rithms running faster than the trivial algorithm, in the general case
of arbitrary first-order sentences and arbitrary graphs. One algo-
rithm runs in O(nk−3+ω) ≤ O(nk−0.627) time for all k ≥ 3,
where ω < 2.373 is the n× n matrix multiplication exponent. By
applying fast rectangular matrix multiplication, the algorithm can
be improved further to run in nk−1+o(1) time, for all k ≥ 9. Fi-
nally, we observe that the exponent of k − 1 is optimal, under the
popular hypothesis that CNF satisfiability with n variables and m
clauses cannot be solved in (2−ε)n ·poly(m) time for some ε > 0.

Categories and Subject Descriptors G.2.2 [Graph Theory]: Graph
algorithms

Keywords first-order logic, graph algorithms, matrix multiplica-
tion, satisfiability

1. Introduction

One goal of finite model theory is to achieve a fine-grained un-
derstanding of the complexity of deciding first-order sentences on
finite structures. In particular, the class of finite graphs is of prime
importance. We focus on first order formulas φ in prenex normal
form (PNF) with k quantifiers, i.e., of the form

φ = (Q1 v1) · · · (Qk vk)ψ(v1, . . . , vk),

where each Qi ∈ {∃, ∀}, and the predicate ψ is a boolean formula
over graphs, i.e., over atoms of the form (vi = vj) and the
edge relationE(vi, vj). The model checking problem for first-order
logic on graphs is defined as follows:

MC(FO)
Instance: A graph G and first-order sentence φ

Problem: Decide if G |= φ.
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MC(FO) is PSPACE-complete, and therefore appears very un-
likely to be solvable efficiently [Sto74, Var82]. The PSPACE-
completeness of the problem stems from the fact that the sentence
φ is given as part of the input. However, model-checking is still
very interesting for fixed sentences with k quantifiers, where k is
a constant. By exhaustive search, it is straightforward to decide a
first-order sentence with k quantifiers in O(nk) time; that is, for
every fixed sentence φ, we may always find some polynomial time
algorithm for model-checking it.

Is nk the best possible running time we can hope for, in gen-
eral? To our knowledge, no algorithmic progress on general first-
order model checking for graphs has yet been reported. There has
been significant prior work on important special cases. A promi-
nent example of algorithmic progress on restricted structures is the
work of Courcelle [Cou90], who famously proved that the model-
checking problem for monadic second-order logic can be solved in
linear time on all graphs of bounded treewidth. Dvorak, Král, and
Thomas [DKT10] have shown that deciding first-order graph prop-
erties in graphs of bounded expansion (such as planar graphs) can
be done in linear time.

Two examples most relevant to this paper are the k-clique prob-
lem and the k-dominating set problem. The k-clique problem asks
whether a given graph on n nodes contains a clique of size k, and
can be expressed as the sentence:

(∃v1)(∃v2) · · · (∃vk)

∧
i6=j

E(vi, vj)

 .
The k-dominating set problem asks whether a given graph contains
a set S of k nodes such that all nodes not in S have a neighbor in
S, and can be expressed with k + 1 quantifiers as:

(∃v1)(∃v2) · · · (∃vk)(∀w)

[∨
i

((w = vi) ∨ E(vi, w))

]
.

Both problems are known to admit algorithms that run in o(nq)
time, where q is the number of quantifiers in the sentence defin-
ing the problem. For k-clique, the best known algorithms run in
O(nδk) time for a finite number of δ ∈ (0.8, 1) depending on
k [NP85, EG04]. For (k− 1)-dominating set, the best known algo-
rithms run inO(nk−ε+o(1)) time for some ε ∈ (0, 1] depending on
k [EG04]. In particular, the problem is solvable in nk−1+o(1) for
all k ≥ 8.

Giving a partial negative answer to the above question, Chen et
al. [CHKX06] proved that the k-clique problem cannot be solved in
no(k) time assuming a reasonable conjecture in complexity theory:
that the 3SAT problem is not solvable in 2o(n) time. Results of
Frick and Grohe [FG04] show that, under the same conjecture, first-



order model checking on the class of binary trees cannot be solved

in 222o(k)

· p(n) time (for all polynomials p(n)).1

1.1 Our Results

We find that the k-clique problem and k-dominating set problem,
both of central importance to parameterized complexity [DF99,
FG06], are also central to understanding the time complexity of
first-order logic on graphs in general.

k-Clique and Existential FOL on Graphs An existential first
order sentence contains only existentially quantified variables. For
instance, the k-clique problem is existential. Our first theorem is
that k-clique is the “hardest” existential first-order sentence: the
time complexity of k-clique determines an upper bound on the time
complexity of all other existential queries. This is intriguing, as the
predicate in the k-clique sentence is quite simple, yet checking it is
sufficient for all sentences with k quantifiers.

Theorem 1.1 Let T (n, k) be the time complexity of deciding
whether a given n-node graph contains a k-clique. Then every
existential first-order sentence with k quantified variables can be
decided on n-node graphs in 2O(k2)T (n, k) time.

That is, faster algorithms for k-clique imply faster algorithms
for every existential first-order sentence. The following are imme-
diate corollaries:

Corollary 1.1 The k-clique problem is inO(f(k)T (n, k)) time for
some function f : N → N iff the model checking problem for
existential first-order logic on graphs is in O(g(k)T (n, k)) time
for some g : N→ N on k quantifier sentences.

Corollary 1.2 There is a universal δ < 1 such that every exis-
tential first-order sentence with k quantifiers can be decided on
n-node graphs in 2O(k2)nδk time.

k-Dominating Set and FOL on Graphs The k-dominating set
problem plays a similar, but not analogous, role in the general
case of arbitrary sentences. Although the (k − 1)-dominating set
problem has (k − 1) existential quantifiers and one universal, we
present algorithms for model-checking sentences with k quantifiers
that match the known time complexity of the (k − 1)-dominating
set problem, and observe that the difficulty of (k − 1)-dominating
set must be overcome to improve this time complexity any further.

Our first algorithm gives a non-trivial time bound for three-
quantifier sentences. In the following, let ω < 2.373 be the matrix
multiplication exponent [Vas12].

Theorem 1.2 Every first-order sentence on n-node graphs with
three quantifiers can be decided in Õ(nω) time.

Corollary 1.3 Let k ≥ 3. Every k-quantifier first-order sentence
on n-node graphs can be decided in Õ(nk−3+ω) time.

To compare with prior work, Eisenbrand and Grandoni [EG04]
show that (k − 1)-dominating set is solvable in about nk−3+ω

time, for all k ≥ 3. Applying fast rectangular matrix multipli-
cation [Cop97, HP98, Gal12], the algorithm can be improved for
large enough values of k:

1 Technically, Frick and Grohe prove their results assuming FPT 6= W [1],
but this follows from the assumption that 3SAT is not in 2o(n) time [DF99].

Theorem 1.3 Let k ≥ 9. Every k-quantifier first-order sentence on
n-node graphs can be decided in nk−1+o(1) time.

This algorithm also matches the known running times for solv-
ing (k − 1)-dominating set [EG04] for large k.

Remark 1 In fact, there is no special dependency on graph struc-
tures in our algorithms, other than the fact that a graph is a binary
relation over a vertex set. All our algorithms can be modified to
work for first-order prenex sentences over any vocabulary that is
defined with a finite set of unary and binary relations.

The k−1 exponent of Theorem 1.3 may look like an incremental
advance, which may soon be improved further. However, prior
work of Pǎtraşcu and the author shows that a great advance in
theoretical SAT solving would result if this k − 1 exponent could
be improved.

Theorem 1.4 (Pǎtraşcu-Williams [PW10]) For every ε > 0 and
k ≥ 3, if the (k − 1)-dominating set problem can be solved in
O(nk−1−ε) time, then there is a δ > 0 such that satisfiability
of general CNF formulas with n variables and m clauses can be
solved in (2− δ)n ·mO(1) time.

It follows that any algorithmic improvement over Theorem 1.3
would resolve a major open question about SAT solving:

Corollary 1.4 Let k ≥ 4. If the model-checking problem for
k-quantifier first-order sentences over graphs can be solved in
O(nk−1−ε) time for some ε > 0, then the Strong Exponential
Time Hypothesis (SETH) is false.

More discussion on these issues can be found in Section V of
the paper.

2. Preliminaries

We assume some basic familiarity with algorithms and complexity
theory.

Let us outline some notation particularly important for this pa-
per. For a formula φ with free variable x, we use φ|x=a to de-
note the formula obtained by substituting a in place of the free
occurrences of x in φ. The notation Õ(f(n)) denotes an upper
bound of the form O(f(n) logc n) for some constant c. The nota-
tion f(n)1+o(1) denotes an upper bound that is less than f(n)1+ε

for all constant ε > 0.

For the purposes of this paper, an atom is a relation of the form
(vi = vj), (vi 6= vj), E(vi, vj), or ¬E(vi, vj) where vi and vj
are (node) variables. A boolean formula over graphs is a boolean
formula comprised of such atoms. More formally, the above atoms
are boolean formulas over graphs, and given two formulas F1 and
F2, F1 ∧ F2, F1 ∨ F2, and ¬F1 are also boolean formulas over
graphs.

3. The Case of Existential Sentences

We begin with the algorithm for deciding existential sentences with
k quantifiers:

Reminder of Theorem 1.1 Let T (n, k) be the time complexity
of deciding whether a given n-node graph contains a k-clique.



Then every existential first-order sentence with k quantifiers can
be decided on n-node graphs in 2O(k2)T (n, k) time.

Proof. Let φ = (∃ v1) · · · (∃ vk)[ψ(v1, . . . , vk)] be a first-order
sentence on graphs, where the predicate ψ is a boolean formula
over graphs. Let G = ({1, . . . , n}, E) be a given graph on which
we wish to decide G |= φ.

Without loss of generality, we can assume that the predicate ψ is
in disjunctive normal form (DNF): that is, ψ is an OR of ANDs of
atoms. Treating k as a constant, we observe that converting ψ into
this form only increases the size of ψ by a constant factor. That is,
if ψ has k free variables, the size of ψ in DNF is at most 2O(k2),
since the number of possible atoms over the variables is O(k2).

Let C be the set of all conjuncts in the DNF ψ. Each conjunct
c in C can be viewed as a set of atoms, each of which are either
E(vi, vj) or (vi = vj), possibly with negations. We therefore can
write

φ = (∃ v1)(∃ v2) · · · (∃ vk)

[∨
c∈C

(∧
a∈c

a

)]
.

By commutativity of OR and existential quantifiers, we can rewrite
φ equivalently as

(∃ c ∈ C)(∃ v1)(∃ v2) · · · (∃ vk−1)(∃ vk)

[∧
a∈c

a

]
.

(Of course this is, strictly speaking, no longer a sentence in first-
order logic over graphs; this fact will not trouble us.) We now
express the decision of this sentence as an OR of |C| instances of
the k-clique problem, as follows. For every c ∈ C, we shall build a
graph Gc that contains a k-clique if and only if the conjunct c can
be satisfied by the graph G.

First, we define the vertex set of Gc to be k times the size of
G, being the union of k disjoint sets V1, . . . , Vk, each set having
n vertices. For each i = 1, . . . , k, we associate an (arbitrary)
permutation πi : Vi → {1, . . . , n} indexing the vertices. For i 6= j
and vertices wi ∈ Vi and wj ∈ Vj , put an edge {wi, wj} ∈ Ec
if and only if every atom in the conjunct Ac :=

∧
a∈c a referring

to vi and vj is true when vi is assigned πi(wi) and vj is assigned
πi(wj). More formally, an edge is placed betweenwi andwj if and
only if all of the following requirements are met.

• If (vi = vj) (respectively, (vi 6= vj)) is an atom in Ac, then
we require that πi(wi) = πj(wj) (respectively, πi(wi) 6=
πj(wj)).
• If E(vi, vj) (respectively, ¬E(vi, vj)) is an atom in Ac, then

we require that E(πi(wi), πj(wj)) is true of G (respectively,
E(πi(wi), πj(wj)) is not true of G).

Note that Gc is a k-partite graph, and hence every k-clique C =
{c1, . . . , ck} contains exactly one vertex ci from each Vi, for all
i = 1, . . . , k. We observe that Gc contains a k-clique C if and
only if the conjunct Ac is true of G, under the variable assignment
where for all i = 1, . . . , k, variable vi is assigned the vertex
πi(ci) from G. (Suppose C = {c1, . . . , ck} is a k-clique of Gc.
Since every possible edge in C is present, it follows that every
atom a in Ac must be satisfied under the variable assignment
vi 7→ πi(ci). Moreover, for every variable assignment that satisfies
Ac, the corresponding subset S of vertices inGc forms a k-clique.)

Therefore, by determining whether any of the 2O(k2) graphs
Gc contain a k-clique, we may determine the truth of the original
sentence φ on the graph G. �

4. The General Case

Now we turn to the general case of model-checking arbitrary first-
order formulas over graphs. It shall be convenient to start with an
improved algorithm for the case of three quantified variables, and
develop the other algorithms by building on the arguments given in
this case.

Reminder of Theorem 1.2 Every first-order sentence with three
quantified variables on n-node graphs can be decided in Õ(nω)
time.

Proof. Let φ = (Q1 v1)(Q2 v2)(Q3 v3)ψ(v1, v2, v3) be a first-
order sentence on graphs, where each Qi ∈ {∃,∀}, and the predi-
cate ψ is a boolean formula over graphs. Without loss of generality,
we can massage φ to satisfy the conditions:

1. The third quantifier Q3 is existential. This can be ensured by
simply complementing the formula if Q3 is universal, and de-
ciding the complement instead.

2. The predicate ψ is in disjunctive normal form (DNF). The
argument here is analogous to Theorem 1.1; the size of ψ in
DNF is at most 2O(k2).

Let C be the set of conjuncts in ψ. Each conjunct c ∈ C can be
construed as a set of atoms, hence φ is expressible as

φ = (Q1 v1)(Q2 v2)(∃ v3)

[∨
c∈C

(∧
a∈c

a

)]
.

By the commutativity of existential quantifiers and basic properties
of OR, we can rewrite φ equivalently as

(Q1 v1)(Q2 v2)(∃ c ∈ C)(∃ v3)

[∧
a∈c

a

]
.

Let

ψ′(v1, v2) = (∃ c ∈ C)(∃ v3)

[∧
a∈c

a

]
,

and suppose a graphG is given with vertex set {1, . . . , n}. We shall
produce an n × n matrix M over {0, 1}, such that M(i, j) = 1 if
and only if ψ′|v1=i,v2=j is true on graph G. The knowledge of
matrix M clearly suffices for determining the truth value of φ on
G, in O(n2) time.

For every conjunct c ∈ C, define n × n matrices Xc, Yc, and
Zc over {0, 1} as follows:

• Xc[i, k] = 1 iff every atom in c containing v1 and v3 is satisfied
by the assignment v1 = i and v3 = k.
• Yc[k, j] = 1 iff every atom in c containing v3 and v2 is satisfied

by the assignment v3 = k and v2 = j.
• Zc[j, i] = 1 iff every atom in c containing v1 and v2 is satisfied

by the assignment v2 = j and v1 = i.

Now for every c ∈ C, multiply Xc and Yc, obtaining the
n × n matrix Mc. Replace every nonzero entry of Mc[i, j] with
the constant 1, so that M has 0-1 entries. It follows from the
definition of matrix multiplication that Mc[i, j] = 1 iff there is a
k ∈ [n] such that all atoms in c containing {v1, v3} are satisfied by
v1 = i, v3 = k, and all atoms in c containing {v2, v3} are satisfied
by v2 = j, v3 = k.

Compute the n× n matrix

M [i, j] =
∑
c∈C

(Mc[i, j] · Zc[j, i]) ,



and replace all nonzero entries of M [i, j] with the constant 1 to
make M a boolean matrix. Observe that M can be computed in
Õ(n2) arithmetic operations, since |C| is bounded by a constant.
The overall running time is at most Õ(nω).

We claim that M [i, j] = 1 if and only if ψ′|v1=i,v2=j is true
on graph G, which will complete the proof. This follows from the
chain of equivalences:

ψ′|v1=i,v2=j is true on G

⇐⇒ (∃ c ∈ C)(∃ v3)

[∧
a∈c

a|v1=i,v2=j ]

]
⇐⇒ (∃ c ∈ C)(∃ k ∈ [n])

[v1 = i, v3 = k satisfies all atoms in c
containing {v1, v3},
v2 = j, v3 = k satisfies all atoms in c

containing {v2, v3},
v1 = i, v2 = j satisfies all atoms in c
containing {v1, v2}]

⇐⇒ (∃ c ∈ C)[Mc[i, j] 6= 0 and Zc[j, i] = 1]

⇐⇒ M [i, j] 6= 0

�

The algorithm for the three variable case can be easily extended
to sentences with k quantifiers:

Corollary 4.1 Every k-quantifier first-order sentence on n-node
graphs can be decided in Õ(nk−3+ω) time.

Proof. Given a graphG, systematically examine all ways to assign
vertices to the first k − 3 variables of the given sentence φ. For
each of these nk−3 assignments, substitute in values for the k − 3
variables into φ, simplifying the formula (removing true and false
constants) as necessary. The resulting formula has three variables,
and can be solved in Õ(nω) time by Theorem 1.2. �

For sufficiently large k, rectangular matrix multiplication can be
applied to obtain a better running time.

Reminder of Theorem 1.3 Let k ≥ 9. Every first-order sentence
with k quantifiers can be decided on n-node graphs in nk−1+o(1)

time.

Proof. We reconsider the proof of Theorem 1.2 with the following
modifications. Without loss of generality, we have a first-order
sentence

φ = (Q1 v1) · · · (Qk−1 vk−1)(∃ vk)[ψ]

where ψ is DNF. Let k1 = b(k − 1)/2c, k2 = d(k − 1)/2e, and
note that k1 + k2 = k − 1.

Instead of forming the n × n 0-1 matrices Xc, Yc, and Zc as
defined in the proof of Theorem 1.2 (for each conjunct c in the
DNF), we define 0-1 matrices Xc, Yc, and Zc to have dimensions
nk1 × n, n× nk2 , and nk1 × nk2 , respectively.

• The rows of Xc are indexed by all possible nk1 assignments
(i1, . . . , ik1) ∈ {1, . . . , n}k1 to the variables v1, . . . , vk1
of φ, and the columns are indexed by all n possible assign-
ments to the variable vk. We define X[(i1, . . . , ik1), j] := 1
if and only if every atom in c containing a pair of variables
from (v1, . . . , vk1 , vk) is satisfied by the variable assignment
(i1, . . . , ik1 , j).

• Similarly, the rows of Yc are indexed by all n possible assign-
ments to the variable vk, and the columns are indexed by all
possible nk2 assignments to the variables vk1+1, . . . , vk−1. We
define Y [j, (i1, . . . , ik2)] := 1 if and only if every atom in
c containing a pair of variables from (vk1+1, . . . , vk−1, vk) is
satisfied by the assignment (i1, . . . , ik2 , j).

• Finally, the rows of Zc are indexed by all possible nk1 as-
signments to the variables v1, . . . , vk1 of φ, the columns
are indexed by all possible nk2 assignments to the variables
vk1+1, . . . , vk−1, and Z[(i1, . . . , ik1), (ik1+1, . . . , ik−1)] :=
1 if and only if all atoms in c containing a pair of variables from
(v1, . . . , vk−1) are satisfied by the assignment (i1, . . . , ik−1).

Each of the matrices can be built in at most Õ(nk−1) time.
Analogously with the proof of Theorem 1.3, we observe that the
expression Mc[(i1, . . . , ik1), (ik1+1, . . . , ik−1)] =

((Xc · Yc)[(i1, . . . , ik1), (ik1+1, . . . , ik−1)] 6= 0)

∧ Zc[(i1, . . . , ik1), (ik1+1, . . . , ik−1)]

is true if and only if the variable assignment (v1, . . . , vk−1) 7→
(i1, . . . , ik−1) satisfies (∃ vk)[c].

Now we observe that knowing the value of

Mc[(i1, . . . , ik1), (ik1+1, . . . , ik−1)],

for all conjuncts c ofψ, and all ((i1, . . . , ik1), (ik1+1, . . . , ik−1)) ∈
[n]k1× [n]k2 , is sufficient for determining the truth of φ. Moreover,
we can recover the truth value of φ efficiently in Õ(nk−1) time.
One way to see this is to build a complete tree with branching fac-
tor n, depth k − 1, and nk−1 leaves, corresponding to all possible
choices for the first k − 1 variables of φ. That is, each child of the
root corresponds to a choice for the variable v1; each child of those
children corresponds to a choice for the variables v1 and v2, and so
on. At every leaf, there is a choice (i1, . . . , ik−1) ∈ [n]k−1 for all
variables v1, . . . , vk−1. Suppose we label each such leaf with the
truth value of∨

c

Mc[(i1, . . . , ik1), (ik1+1, . . . , ik−1)].

Then, evaluating this tree as a two-player game tree (with one
player choosing the existential variables, and the other choosing the
universal variables) in a standard dynamic programming fashion,
we recover the truth value of φ in Õ(nk−1) time.

It remains to estimate the complexity of computing the matrices
Mc for each c. This corresponds to performing 2O(k2) matrix
multiplications, each with dimensions nk1 × n and n × nk2 , then
comparing the entries of the result component-wise with the entries
of another nk1 × nk2 matrix.

LeGall [Gal12], building on Coppersmith [Cop97], recently
gave an algorithm for multiplying an m × mα matrix with an
mα × m matrix, which uses only m2+o(1) arithmetic operations
(additions and multiplications) when 0 < α < 0.302.

Suppose first that k is odd, so k1 = k2 = (k − 1)/2. Set
m = nk2 . When 0.302·k2 ≤ 1, or equivalently when k ≥ 7.6, this
matrix multiplication algorithm applies to our situation. The matrix
multiplies then take n2·(k−1)/2+o(1) ≤ nk−1+o(1) time. When
k ≥ 9 is even, the matrix multiplies have dimension nk/2−1 × n
and n× nk/2, respectively. This can be decomposed into n matrix
multiplies of dimensions nk/2−1×n and n×nk/2−1. Each of these
are computable separately in nk−2+o(1) time using the rectangular
matrix multiply, and can be summed together in nk−1+o(1) time.



It follows that, for every integer k ≥ 9, the algorithm can be
implemented to run in nk−1+o(1) time for any fixed first-order
sentence with k quantified variables. �

5. Discussion: Can these running times be
improved? In which cases?

An experienced algorithm designer might conjecture that the algo-
rithms of the previous section are suboptimal, since they do not
appear to exploit the full power of matrix multiplication. The next
logical step would then be to find an algorithm for MC(FO) on
graphs that runs in less than nk−1 time for sufficiently large k.

However, understanding what sorts of first-order queries can
be answered on general graphs faster than nk−1 time, and which
cannot, is far from straightforward. To illustrate, for some first-
order sentences with seemingly complex quantifier prefixes, such
as

(∃v1) · · · (∃vk/3)(∀vk/3+1) · · · (∀v2k/3)

(∃v2k/3+1) · · · (∃vk)

∧
i 6=j

E(vi, vj)

 ,
we can adapt the reduction of Theorem 1.1 and the algorithm
of Theorem 1.2 to answer such queries in time that is roughly
equal to the running time for k-clique. (Note that the above first-
order sentence is a version of the k-clique problem, but with some
variables universally quantified.)

Theorem 5.1 Let k be divisible by 3. For all quantifier types
Q1, Q2, Q3 ∈ {∃, ∀}, every first order sentence of the form

(Q1 v1) · · · (Q1 vk/3)(Q2 vk/3+1) · · · (Q2 v2k/3)

(Q3 v2k/3+1) · · · (Q3 vk)[
∧
i 6=j

E(vi, vj)]

can be model-checked with any given n-node graph in Õ(nωk/3)
time.

That is, the problem can be readily solved in the same running
time as the purely existential fragment (Theorem 1.1).

Proof. Following the Nešetřil-Poljak strategy for solving k-
clique [NP85], we shall transform the problem of checking φ on a
given graph G into a three-variable sentence φ′ to be be evaluated
over a larger graph G′. The formula φ′ is simply a generalization
of the 3-clique sentence:

φ′ = (Q1 v1)(Q2 v2)(Q3 v3)[
∧
i 6=j

E(vi, vj)].

Given a graph G = (V,E) on n nodes, we construct a larger
tripartite graph G′, where each part V1, V2, V3 contains O(nk/3)
nodes, indexed by those k/3-sets of V corresponding to k/3-
cliques in G. For every a 6= b, put an edge between vertices
{s1, . . . , sk/3} ∈ Va and {t1, . . . , tk/3} ∈ Vb if and only if
{s1, . . . , sk/3, t1, . . . , tk/3} is a 2k/3-clique in G.

Each vertex in G′ corresponds to a k/3-clique in G, and each
edge in G′ corresponds to a 2k/3-clique in G. We observe that
G′ |= φ′ if and only if G |= φ. Applying Theorem 1.2, we can
check whether G′ |= φ′ in time Õ(nωk/3) time. �

In contrast to the above positive results, for some first-order
sentences with the quantifier prefix

∃ · · · ∃︸ ︷︷ ︸
k−1

∀,

it will be difficult to obtain even an nk−1−ε time algorithm for some
ε > 0. Noting that the (k− 1)-dominating set problem is definable
with this quantifier prefix, we cite the following result from the
literature:

Theorem 5.2 (Pǎtraşcu-Williams [PW10]) For every ε > 0 and
k ≥ 3, if the (k − 1)-dominating set problem can be solved in
O(nk−1−ε) time, then there is a δ > 0 such that satisfiability
of general CNF formulas with n variables and m clauses can be
solved in (2− δ)n ·mO(1) time.

This result is intriguing due to the popular Strong Exponential
Time Hypothesis posed in the literature:

Conjecture 5.1 (SETH [IP01, IPZ01]) For every constant δ < 1
there is a clause width k such that the k-SAT problem cannot be
solved in 2δn time on formulas with n variables.

The conjecture looks rather strong, however all known SAT
solving algorithms do not contradict it. A rapidly growing thread
of work [CIP09, DW10, PW10, LMS11, CNP+11, CDL+12, PP12,
HKN12, Cyg12, CKN13, RV13, FHV13, WY14, AVW14, AV14]
has shown that the Strong Exponential Time Hypothesis has many
interesting consequences for the complexity of other natural prob-
lems.

It is easy to see that SETH implies the negation of the conclu-
sion of Theorem 5.2. Therefore, if SETH is true then the running
time exponent of our model-checking algorithm is optimal:

Reminder of Corollary 1.4 Let k ≥ 4. If the model-checking
problem for k-variable first-order sentences over graphs can be
solved in O(nk−1−ε) time for some ε > 0, then the Strong Expo-
nential Time Hypothesis (SETH) is false.

Corollary 1.4, together with the algorithmic results of this pa-
per, indicates that the tractability landscape of first-order model-
checking on arbitrary graphs must have delicate structure; this land-
scape deserves further inquiry.

We conclude by highlighting two open problems:

1. Can one improve on the nk running time of the trivial algorithm
without using nΩ(k) space and running time exponential in k?
For instance, can first-order model checking on graphs be done
inO(nk−εkc) time andO((n+k)c) space, for a fixed constant
c? Can one give evidence that such an algorithm will be hard to
find?

2. Early in the paper, it was remarked that the algorithms of this
paper will work for first-order sentences over any vocabulary
with a finite number of unary and binary relations, not just
graphs. What about for vocabularies with ternary relations?
To achieve a faster algorithm in that case, it appears we will
need to compute a three-dimensional generalization of matrix
multiplication more efficiently. Let A,B,C ∈ {0, 1}n×n×n;
that is, A, B, and C are boolean tensors of order 3, or “3D
matrices.” We wish to compute the following 3D matrix in n4−ε

time, for some ε > 0:

D[i, j, k] =

n∑
`=1

A[i, j, `] ·B[j, k, `] · C[k, i, `].

Generalizing the ideas presented earlier for the three-variable
case, such a product operation would allow us to more effi-
ciently find (for example) a 4-clique in a 3-uniform hypergraph,
which can be expressed as a first-order sentence over a ternary
relation.
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