
The Polynomial Method in Circuit Complexity
Applied to Algorithm Design∗

Ryan Williams1

1 Computer Science Department, Stanford University
353 Serra Mall, Stanford, CA 94305, USA
rrw@cs.stanford.edu

Abstract
In circuit complexity, the polynomial method is a general approach to proving circuit lower bounds
in restricted settings. One shows that functions computed by sufficiently restricted circuits are
“correlated” in some way with a low-complexity polynomial, where complexity may be meas-
ured by the degree of the polynomial or the number of monomials. Then, results limiting the
capabilities of low-complexity polynomials are extended to the restricted circuits.

Old theorems proved by this method have recently found interesting applications to the design
of algorithms for basic problems in the theory of computing. This paper surveys some of these
applications, and gives a few new ones.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems

Keywords and phrases algorithm design, circuit complexity, polynomial method

Digital Object Identifier 10.4230/LIPIcs.xxx.yyy.p

1 Introduction

The polynomial method was developed for proving impossibility results on the capabilities of
“low-complexity” circuits. (The usual measures of “low-complexity” for circuits are either
low size, or low depth, or both.) The idea of the polynomial method, at a high level, is
to show that functions computable by low-complexity circuits can be also be computed
(approximately or exactly) by a “low-complexity” polynomial over some algebraic structure.
Typically, the complexity of a polynomial is measured by its degree, but the complexity
could also be the number of monomials. The survey by Beigel [8] contains many references
to papers in which low-complexity circuits are represented via low-complexity polynomials,
resulting in lower bounds against those circuits.

While the method was initially conceived to show the limitations of computational devices,
the intermediate theorems proved via the method turn out to also be rather useful in the
design of algorithms for certain problems – positive results about computational devices. Over
the last few years, we have found some unexpected applications of the polynomial method
to developing more efficient algorithms for several fundamental computational problems.
Sometimes it is natural to see how the polynomial method might help; in other cases, it is
not at all obvious, and some ingenuity is required. An intuitive outline of the approach is:
1. Find a “hard part” of one’s computational problem that can be modeled by low-complexity

circuits.

∗ This work was partially supported by the National Science Foundation Grant CCF 1212372.

© Richard Ryan Williams;
licensed under Creative Commons License CC-BY

Conference title on which this volume is based on.
Editors: Billy Editor and Bill Editors; pp. 1–14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.xxx.yyy.p
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

2 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

2. Apply the polynomial method to convert the low-complexity circuits into an algebraic,
polynomial form.

3. Use other algebraic algorithms to efficiently manipulate or evaluate these polynomials,
thereby solving the original “hard part” more efficiently.

This article outlines several instances of this approach. Some of the algorithms in this paper
are new to the literature; they are included to illustrate the versatility of the polynomial
method in algorithm design. Many proofs of the known results are omitted from this article;
however, some results stated here are new, and we shall describe their proofs in detail.

1.1 What This Survey is NOT

We make no claims to be the “first” to apply the polynomial method in positive algorithmic
ways. There are many theorems in mathematics and theoretical computer science regarding
the modeling of efficient functions with polynomials; discussing all of them is neither wise nor
possible in this space. Nevertheless, it’s important to note that there are more interesting
theorems related to the polynomial method, in the hopes that future work will make use of
them. To give three examples from different angles:
1. Many theorems from approximation theory (which is effectively the study of point-

wise approximating functions via “simple” expressions, such as polynomials over the
reals) have seen applications in areas such as communication complexity and quantum
computing [31, 7, 1]. We haven’t yet personally found algorithmic applications of these
polynomials for our problems of interest, but that is probably our own failing, and not
that of the polynomials.

2. Another example is the collection of lemmas in the literature informally known as the
Schwartz-Zippel-DeMillo-Lipton Lemma [35, 50, 16] concerning the (low) number of
zeroes in low-degree polynomials that are not identically zero. These lemmas are already
a staple of randomized algorithms [30].

3. The polynomial method has found a large number of applications in computational learning
theory, such as in algorithms for learning DNFs and low-depth circuits (e.g., [26, 27, 24, 19])
and learning functions with a small number of relevant variables (a.k.a. juntas) [29].

2 The Circuits

We assume the reader is familiar with the usual notion of Boolean circuits as directed acyclic
graphs, where n input gates are represented by 2n source nodes (the n input bits and their
negations), the output gate is represented by a single sink node, and each node (or “gate”)
is labeled with a boolean function. We shall consider two well-studied restrictions of this
general notion. Let d,m ∈ N.

• An AC circuit of depth d is such that the longest path from any source to sink is at most
d, and each gate computes either the OR (of its inputs) or the AND (of its inputs).

• An ACC circuit of depth d and modulus m is such that the longest path from any source
to sink is at most d, and each gate computes one of OR, AND, or MODm, where
MODm(y1, . . . , yt) = 1 if and only if

∑
i yi is divisible by m.

More background can be found in the textbooks [5, 42].

R. R. Williams 3

3 The Tools

In this survey, we shall focus on just a few polynomial constructions from the literature
which have recently been helpful. Again, we have made no attempt to be comprehensive.

Three notions of representation by polynomials will be considered in this article: exact
representations, probabilistic representations over finite fields and the integers, and what we
shall call “symmetric” representations.

In the following, let f : {0, 1}n → {0, 1} be a Boolean function with 0 representing
false and 1 representing true, and let R be a ring containing 0 and 1. We shall always be
evaluating polynomials over the values 0, 1, or −1. Since xa ∈ {x,−x} for all a ∈ N+ and
all x ∈ {0, 1,−1}, it suffices for us to consider multilinear polynomials, of the form

p(x1, . . . , xn) =
∑
S⊆[n]

cS
∏
i∈S

xi,

where cS ∈ R for all S. The degree of p is therefore the maximum cardinality of a subset S
such that cS 6= 0, and the sparsity of a polynomial is the number of S such that cS 6= 0.

3.1 Exact Representations
I Definition 1. An n-variate polynomial p(x1, . . . , xn) over R exactly represents f if for all
(a1, . . . , an) ∈ {0, 1}n, p(a1, . . . , an) = f(a1, . . . , an).

When R is a field, every Boolean function f has a unique exact representation as a
(multilinear) polynomial p. To give two simple examples, the function AND : {0, 1}2 → {0, 1}
is exactly represented by the polynomial p(x1, x2) = x1x2, and OR : {0, 1}2 → {0, 1} is
represented by p(x1, x2) = x1 + x2 − x1x2, over any field.

Exact representations are often implicitly used in algorithms, but their influence can
be somewhat hidden. For example, the inclusion-exclusion principle from combinatorics
can be applied to solve several hard problems more efficiently, e.g., counting the number of
Hamiltonian Paths in n-node graphs in 2n ·nO(1) time and nO(1) space [23]. This principle is
a consequence of the fact that the OR function on n variables can be exactly represented as:

OR(x1, . . . , xn) = 1−
n∏
i=1

(1− xi) =
∑

S⊆[n],|S|>0

(−1)|S|+1
∏
i∈S

xi.

In many situations, it is preferable to think of the Boolean function f with domain {−1, 1}
and codomain {−1, 1} instead, where −1 corresponds to true and 1 corresponds to false.
Then, a monomial x1x2 · · ·xn represents the PARITY of n bits rather than the AND of n
bits. Studying Boolean functions via this representation is often called the Fourier analysis
of Boolean functions and is a world unto itself; we recommend O’Donnell’s comprehensive
textbook on the subject [32].

3.2 Probabilistic Representations
The next representation we consider is a “randomized” notion of polynomial, which is
surprisingly powerful.

I Definition 2. Let D be a finite distribution of polynomials on n variables over R. The
distribution D is a probabilistic polynomial over R representing f with error δ if for all
(a1, . . . , an) ∈ {0, 1}n, Prp∼D[p(a1, . . . , an) = f(a1, . . . , an)] > 1− δ.

The degree of D is the maximum degree over all polynomials in D.

4 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

One may also define a probabilistic polynomial as a single polynomial with n “input”
variables and r “random” variables over a finite domain. Then, the distribution D in the
above definition is obtained by assigning the r variables to uniform random values. However,
it’s not hard to see that, for every finite distribution D of s polynomials of maximum degree
d and maximum sparsity m, one can recover a single probabilistic polynomial of degree d (in
the input variables) with only O(log s) random variables and sparsity O(m · s), by simple
interpolation (see also Tarui [40]).

Another important fact is that, (essentially) without loss of generality, the distribution
D contains only O(n) polynomials. Given any D for a function f and a parameter ε > 0,
uniformly sample t = O(n/ε2) polynomials p1, . . . , pt ∼ D, and form the distribution D′ over
{p1, . . . , pt} (as a multiset). By a standard Chernoff bound and union bound argument, the
distribution D′ is also a probabilistic polynomial for f , with essentially the same error (to
within ±ε).

Probabilistic polynomials were first utilized by Razborov [33] and Smolensky [36] in their
proofs that the MAJORITY function and MOD3 functions cannot be computed efficiently
with ACC circuits of constant depth and modulus 2, respectively. In particular, they showed
that every low-depth circuit with modulus 2 has a low-degree probabilistic representation
over the field F2. Here, we cite a strengthened version by Kopparty and Srinivasan:

I Theorem 3 ([36, 25]). For every ACC circuit C of depth d, size s, modulus 2, and n inputs,
and ε > 0, there is a probabilistic polynomial DC over F2 representing C with error ε, and
degree at most (4 log s)d−1 · (log 1/ε), such that a polynomial p can be sampled from DC in
nO(log s)d−1(log 1/ε) time.

The basic idea of the proof is to randomly replace each gate in the circuit with very
low-degree polynomials over F2, such that their composition leads to a low-degree polynomial
for the entire circuit C. (The proof of Theorem 3 gives a clever way of composing these
polynomials so as to keep the degree low, as a function of ε.) How do we construct these
very low-degree polynomials? Gates which are MOD2 functions are simply additions over F2.
A gate g which is a NOT of a gate h can be written as g = 1 + h over F2. Gates which are
ANDs can be expressed with NOTs and ORs by DeMorgan’s law. Finally, gates which are
ORs can be simulated probabilistically by multiplying a few sums of random subsets of the
inputs, modulo 2. For example, if the OR of x1, . . . , xn is 1, then

Pr
r1,...,rn∈{0,1}

[
n∑
i=1

rixi = 1 mod 2
]

= 1
2 .

On the other hand, if x1 = · · · = xn = 0, then no random sum of the xi’s will evaluate to 1.
In this way, a MOD2 can simulate an OR; multiplying several copies of such a probabilistic
polynomial (carefully) will allow us to reduce the probability of error.

The above ideas can be extended to any finite field; however, the degrees of the probabilistic
polynomials obtained may increase as a function of the field characteristic. (In particular,
sums of variables will need to be raised to their (p−1)th powers, to keep the output Boolean.)
It is natural to then ask how probabilistic polynomials over Z fare in computing AC circuits.

Beigel, Reingold, and Spielman [9] addressed this question, finding an O(log2 n)-degree
probabilistic polynomial for OR. The following improvement is due to Aspnes, Beigel, Furst,
and Rudich [6]:

I Theorem 4. For all ε > 0, there is a probabilistic polynomial over Z for the OR of n
variables with error ε, and degree O(logn · log 1/ε). Furthermore, for every AC circuit C

R. R. Williams 5

of depth d and size s, there is a probabilistic polynomial for C with error ε having degree
O(logd s · logd s/ε).

Let us sketch the proof. To compute the OR of x1, . . . , xn, choose progressively smaller
random subsets S0, . . . , Slogn+1 ⊆ {1, . . . , n}, where S0 = [n], and Si is a uniform random
subset of Si−1. The key claim is that, if the OR of x1, . . . , xn is 1, then with probability at
least 1/3, some Si contains exactly one j such that xj = 1. In that case, the polynomial

p(x1, . . . , xn) =
logn+1∏
i=0

1−
∑
j∈Si

xj


correctly computes the negation of OR (so, 1 − p computes OR). To reduce the error to
arbitrarily small ε, one can take O(log 1/ε) products of independent copies of p.

To get probabilistic polynomials for AC circuits of depth d and size s with error ε, apply
this randomized construction of p (and an analogous construction for AND) independently
to every gate in the AC circuit, with error parameter set to ε/s. Then, a union bound over
all s gates guarantees the result.

3.3 Symmetric Representation
Finally, we consider a polynomial representation of functions which may look somewhat
unusual: we try to represent functions by low-complexity polynomials h whose outputs are
“filtered” through another function g which gives {0, 1} output.

I Definition 5. Let h(x1, . . . , xn) be a polynomial over R, construed as a function h :
{0, 1}n → R. Let g : Im(h) → {0, 1} be arbitrary. We say that (g, h) is a symmetric
representation of f if for all (a1, . . . , an) ∈ {0, 1}n, g(h(a1, . . . , an)) = f(a1, . . . , an).

Why do we call this a “symmetric” representation? Suppose R = Z. If all coefficients of h
are in {0, 1} and h has s monomials, we have Im(h) ⊆ {0, 1, . . . , s}, and the “filter function”
g may then be viewed as a function on s variables which only depends on the number of
inputs which are true. That is, we may think of g as a symmetric Boolean function. To put
it another way, in this situation we can represent g ◦ h as a depth-two Boolean circuit with
s+ 1 gates, where the output gate computes a symmetric function and the layer of gates
nearest the inputs compute ANDs. (The function h counts up the number of ANDs which
output true, and the function g determines the output of the symmetric function.)

Symmetric representations are not as unusual as one might think. The class of polynomial
threshold functions refer to a particular type of symmetric representation, where the symmetric
function is a threshold function (checking whether the sum of all inputs exceeds a fixed value
T). Polynomial threshold functions have been studied for a rather long time, especially in
the context of neural networks ([28]).

We will use a particularly strong result on symmetric representations of functions com-
putable with ACC circuits, first proved by Beigel and Tarui, building on work of Yao:

I Theorem 6 (Yao [49], Beigel and Tarui [10]). There is a function α : N×N→ N such that
every Boolean function computable by an ACC circuit with size s, depth d, and modulus m
has a symmetric representation (g, h) with deg(h) ≤ (log s)α(d,m).

That is, every constant-depth and constant-modulus circuit can be symmetrically repres-
ented with a polynomial of degree that is polylogarithmic in the circuit size. It is widely

6 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

believed that this sort of representation should severely restrict the kinds of functions com-
putable with constant depth and modulus. It is believed that the MAJORITY of n bits
cannot be computed with polynomial-size ACC circuits of any constant depth or constant
modulus.

4 The Applications

Now we discuss how these tools have been recently applied in algorithm design.

4.1 All-Pairs Shortest Paths (APSP)
We first study the dense case of the All-Pairs Shortest Paths problem (APSP) on general
weighted graphs.

I Definition 7 (All-Pairs Shortest Paths (APSP)). In APSP, the input is a weighted
adjacency matrix, and the goal is to output a data structure S encoding all shortest paths
between any pair of nodes: when a pair of nodes (s, t) are fed to S, it must reply with the
shortest distance from s to t in Õ(1) time, and an actual shortest path from s to t in Õ(`)
time, where ` is the number of edges on the path.

The O(n3) time algorithms for APSP on n-node graphs [17, 43] are in the canon of
undergraduate computer science. But these algorithms could be suboptimal, as the input
graph can be encoded in Θ(n2 · logm) bits, where m ∈ N upper bounds the edge weights.
Indeed, in the real RAM model of computation (where additions and comparisons on “real-
valued” registers are allowed, and arbitrary bit operations on “word registers” of O(logn)
bits), Fredman [18] showed in 1975 that APSP is solvable in o(n3) time.

Since then, many papers on the dense case of APSP have been published, steadily
decreasing the running time of O(n3) [37, 38, 51, 20, 39, 21, 13, 14]. All of them obtained
only O(n3/ logc n) time algorithms for constants c ≤ 2. A major open problem is whether
APSP is solvable in truly subcubic time, i.e., O(n3−ε) time for some fixed ε > 0. A
recently developed hardness theory for APSP shows that such an algorithm would have many
consequences [34, 41, 3, 2].

Recently, the author gave new algorithms for APSP that run faster than O(n3/ logc n)
time, for every constant c [45]. In fact, the randomized version runs in n3/2Ω(

√
logn) time and

the deterministic version runs in n3/2Ω((logn)δ) time for some δ > 0; these are asymptotically
much better bounds. The algorithms crucially rely on the tools of the previous section: the
problem of efficiently computing APSP is reduced to efficiently computing a particular circuit
evaluation problem, and it is shown how to evaluate such circuits more efficiently than the
obvious approach.

Let us jump directly to the kind of circuit that arises from the proof. Implicit in the
APSP paper [45] is the following theorem, which we isolate for the reader’s convenience. For
d, n ∈ N, define the Boolean function OR-AND-COMP on 2d2 logn inputs as follows:

OR-AND-COMP(a1,1, a1,2, . . . , ad,d, b1,1, b1,2, . . . , bd,d) :=
d∨
i=1

d∧
j=1

[ai,j ≤ bi,j],

where the ai,j , bi,j are construed as logn-bit numbers and [A ≤ B] is true if and only if
A ≤ B.

R. R. Williams 7

I Theorem 8 (Implicit in [45]). Let A,B be two sets of n vectors, where each vector is
of length d2 and each vector component has logn bits. Suppose the function OR-AND-
COMP(a1, . . . , ad2 , b1, . . . , bd2) is computable in Õ(n2) time, for all n2 pairs (a1, . . . , ad2) ∈ A
and (b1, . . . , bd2) ∈ B simultaneously. Then APSP is solvable in Õ(n3/d) time.

Why is this theorem true? Here’s a little intuition. APSP involves comparing the sums
of weights on different paths, and determining which sums of weights are minimal among a
collection of sums. The OR-AND-COMP circuit is effectively finding a minimum sum among
a particular set of paths of length two. The ability to compute this minimum sum for all n2

pairs of vectors roughly corresponds to computing APSP in a tripartite graph with n nodes
in the first part, d nodes in a middle part, and n nodes in the third part, with first and third
part disconnected. Of course this is extremely handwavy, and the reader should consult the
paper for more details.

As the circuit OR-AND-COMP has 2d2 logn inputs, such an evaluation would naively
take O(n2d2 logn) time. Presumably, it is easier to get an Õ(n2) time algorithm when d is
small. The APSP paper [45] shows that for d = 2c

√
logn where c > 0 is some constant, the

Õ(n2) time evaluation required by Theorem 8 is actually possible. Here’s a high-level outline
of the algorithm.

1. First, computing [a ≤ b] for (logn)-bit strings a and b can be done with constant-depth
O((logn)2)-size circuits over AND and OR; that is, OR-AND-COMP is computable with
AC circuits of constant depth and polynomial size. So the first idea is to apply Razborov
and Smolensky (Theorem 3) (or Beigel-Tarui, Theorem 6) to the AC circuit for OR-AND-
COMP, reducing this circuit to a probabilistic polynomial (or a symmetric representation,
respectively). Given that this AC circuit has size O(d2 log2 n) on O(d2 logn) variables, we
find that OR-AND-COMP has a probabilistic polynomial over F2 with 2poly(log d,log logn)

monomials and < 1/n3 error, and there is a symmetric representation of OR-AND-COMP
with a similar monomial upper bound.

2. Second, given two sets A,B of n vectors as in the theorem statement, we show how to
efficiently evaluate polynomials with at most n.1 monomials on all pairs of vectors (one
from A and one from B). This step uses a special rectangular matrix multiplication
algorithm of Coppersmith [15], and runs in Õ(n2) time.

3. Thirdly, we combine 1 and 2. We use part 1 to generate a polynomial representation
for OR-AND-COMP with m = 2poly(log d,log logn) monomials. Choose d = 2(logn)δ , so
that δ > 0 is small enough to make m ≤ n.1. Now we can apply part 2 and compute
this OR-AND-COMP (with some probability of error) in Õ(n2) time. If our polynomials
are probabilistic, each evaluation may have some errors. However, if we take O(logn)
independent constructions and evaluations of these probabilistic polynomials for OR-
AND-COMP, the MAJORITY values of these O(logn) evaluations will yield the correct
values for OR-AND-COMP on all n2 pairs of points, with high probability. Finally,
applying Theorem 8, we thereby compute APSP in n3/2Ω((logn)δ) time.

With a few pages of technical work, the δ > 0 in the algorithm can be tuned down to
1/2 in the randomized case. The big question is whether we can set δ = 1, and yield a
truly-subcubic APSP algorithm. This looks difficult, and not just because it is a thorny
circuit evaluation problem.

If we try to use Theorem 8 to get truly-subcubic APSP, we would need a fast algorithm for
evaluating OR-AND-COMP with d ≥ nδ for some δ < 1. However, such an algorithm would
also resolve another major open problem: we’d be able to solve CNF-SAT in 2δn time for

8 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

some δ < 1, contradicting the so-called Strong Exponential Time Hypothesis (SETH) [22, 12].
In the following section, we shall explain why.

4.2 Orthogonal Vectors (OV)
We consider a slightly simpler function than the one needed for solving APSP. Define

OR-AND-OR2d1,d2(x1,1, x1,2, . . . , xd1,d2 , y1,1, y1,2, . . . , yd1,d2) =
d1∨
i=1

d2∧
j=1

(xi,j ∨ yi,j).

That is, OR-AND-OR2d1,d2 takes 2d1d2 bits of input. Note that we can easily simulate
OR-AND-OR2d,d with a call to OR-AND-COMP: (xi,j ∨ yi,j) = 1 if and only if [¬xi,j ≤ yi,j].
Therefore, evaluating OR-AND-OR2d,d is only easier than evaluating OR-AND-COMP.
However, quick evaluation of OR-AND-OR2 would yield faster algorithms for other problems
than just APSP. Here is the canonical example of such a problem:

I Definition 9 (Orthogonal Vectors (OV)). In OV, the input is a set S ⊆ {0, 1}d, and
the goal is to output whether there are vectors a, b ∈ S such that 〈a, b〉 = 0.

That is, we wish to know if S contains an orthogonal pair of vectors. There are two
obvious algorithms: one takes O(|S|2d) time, and one takes O(2d|S|) time. So the interesting
case is when we have “high dimensionality”, and d ≥ logn. It is an open question whether
O(|S|2−ε2o(d)) time is possible for some fixed ε > 0. By adding two more dimensions to the
vectors, the following version of OV is equivalent to the above:

I Definition 10 (Orthogonal Vectors’ (OV’)). In OV’, the input is two sets A,B ⊆
{0, 1}d, and the goal is to output whether there are vectors a ∈ A, b ∈ B such that 〈a, b〉 = 0.

OV captures the difficulty of several problems. Consider the partial match problem from
string searching:

I Definition 11 (Batch Partial Match (BPM)). In BPM, the input is a database
D ⊆ {0, 1}d, and queries Q ⊆ {0, 1, ?}d, where |D| = |Q|. The goal is to output, for every
q ∈ Q, whether or not there is an x ∈ D such that for all i = 1, . . . , d, q[i] 6= ? implies
q[i] = x[i].

That is, we wish to know which queries have a “partial match” in the given database.
Recent work with Abboud and Yu [4] proved that BPM is sub-quadratic equivalent to OV:
roughly speaking, an |S|2−εf(d) time algorithm for OV implies an |Q|2−δf(d) time algorithm
for the BPM, and the converse also holds.

Another string problem related to OV is a generalization of the longest common substring
problem to handle wildcard symbols:

I Definition 12 (Longest Common Substring With Don’t Cares (LCS*)). In LCS*,
the input is two strings S, T ∈ Σn of length n, and the goal is to output the length of the
longest string that appears in both S and T as a contiguous substring.

In the same paper with Abboud and Yu, it is proven that LCS* has a faster-than-quadratic
time algorithm, given that OV has one. The importance of solving OV in sub-quadratic
time is further reinforced by the following connection with exponential-time algorithms for
satisfiability.

R. R. Williams 9

I Conjecture 4.1 (Strong Exponential Time Hypothesis (SETH) [22, 12]). For every
δ < 1, there is a k ≥ 3 such that satisfiability of k-CNF formulas on n variables requires
more than 2δn time.

I Theorem 13 ([44, 48]). Suppose there is an ε > 0 such that for all c ≥ 1, OV can be
solved in O(|S|2−ε) time on instances with c log |S| dimensions. Then SETH is false.

Proof. We prove the contrapositive. Calabro, Impagliazzo, and Paturi [11] show that refuting
SETH is equivalent to giving a δ < 1 such that, for all c ≥ 1, CNF-SAT on instances with n
variables and cn clauses can be solved in O(2δn) time.

We reduce this variant of CNF-SAT to OV. Given a formula F on n variables and
cn clauses C1, . . . , Ccn, divide the variables into two sets V1 and V2 with at most n/2 + 1
variables each. Enumerate all O(2n/2) partial assignments to the variables in V1 and all
partial assignments to the variables in V2. For each such partial assignment A, define a
vector vA with cn+ 2 dimensions as follows. For i = 1, . . . , cn, set vA[i] = 0 iff the clause Ci
is satisfied by A. Then, set vA[cn+ 1] = 1 iff the partial assignment A is on the variables of
set V1, and set vA[cn+ 2] = 1 iff A is from set V2. Put all vA’s in the OV instance S.

Suppose F is satisfiable; let A be a satisfying assignment. For i = 1, 2, let the partial
assignment Ai be the assignment A restricted to variables from Vi. By construction, vA1 [cn+
1] · vA2 [cn+ 1] = vA1 [cn+ 2] · vA2 [cn+ 2] = 0, and for every clause Ci, at least one of A1 or
A2 satisfies Ci, so vA1 [i] · vA2 [i] = 0. It follows that 〈vA1 , vA2〉 = 0. Similarly, 〈vA, vA′〉 = 0
implies that A and A′ come from different sets and jointly satisfy F .

Finally, if OV is in O(|S|2−ε) time for c log |S| dimensional vectors, then we can determine
satisfiability of F in O(2n(1−ε/2)) time. J

Now we can formally illustrate the importance of evaluating OR-AND-OR2 efficiently:

I Theorem 14 (Implicit in [4]). Let A,B be two sets of n bit vectors, where each vector
has t = d1 · d2 bits. Suppose OR-AND-OR2d1,d2(a1, . . . , at, b1, . . . , bt) is computable in Õ(n2)
time, for all n2 pairs (a1, . . . , at) ∈ A and (b1, . . . , bt) ∈ B simultaneously. Then OV with n
vectors in d2 dimensions can be solved in Õ(n2/d1) time.

Proof. For convenience, we work with OV’ (Definition 10) in which we get two sets of vectors
A,B and wish to find a ∈ A and b ∈ B that are orthogonal.

Partition both A and B into
√
d1-size subsets A1, . . . , AO(n/

√
d1) and B1, . . . , BO(n/

√
d1),

respectively. The idea is that with a single OR-AND-OR2d1,d2 computation on 2d1d2 bits,
we can check whether the sub-instance (Ai, Bj) contains an orthogonal pair of vectors, for
all i, j = 1, . . . ,

√
d1.

The function OR-AND-OR2d1,d2 takes the OR over d1 pairs of vectors of the complement
of the Boolean inner product of d2-dimensional vectors. That is, the AND-OR2 parts of the
function output 1 if the two relevant d2-dimensional vectors are orthogonal, and 0 otherwise.
By arranging the

√
d1 vectors of Ai into one d1d2-dimensional vector, and doing the same for

Bj , we can check whether the
√
d1-size set Ai and the

√
d2-size set Bj contain an orthogonal

pair with one call to OR-AND-OR2d1,d2 . There are several ways to do this. For example, if
the vectors of Ai are a1, . . . , a√d1

and the vectors of Bj are b1, . . . , b√d1
, then we may define

the (d1d2)-dimensional vectors

vAi := (a1, . . . , a1, a2, . . . , a2, · · · , a√d1
, . . . , a√d1

),

vBi := (b1, b2, . . . , b√d1
, b1, b2, . . . , b√d1

, · · · , b1, b2, . . . , b√d1
),

10 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

where the ‘. . .’ in the vAi denote
√
d1 repetitions of the same vector. Then,

OR-AND-OR2d1,d2(vAi , vBj) = 0 ⇐⇒ there is no orthogonal pair in (Ai, Bj).

Constructing the sets of vectorsA′ = {vA1 , . . . , vAO(n/
√
d1)
} andB′ = {vB1 , . . . , vBO(n/

√
d1)
},

we conclude that computing OR-AND-OR2d1,d2 on all pairs of vectors in A′ and B′ will
determine whether A,B has an orthogonal vector. By assumption, this computation can be
done in Õ((n/

√
d1)2) ≤ Õ(n2/d1) time, which finishes the proof. J

I Corollary 15. If there is an ε > 0 such that for all c ≥ 1 the hypothesis of Theorem 14 is
true with d1 ≥ nε and d2 ≥ c logn, then SETH is false.

Proof. Follows from combining Theorem 13 and Theorem 14. J

The above relations between OV and other problems show that finding orthogonal pairs
of vectors is of importance. Recently, fast evaluation algorithms for OR-AND-OR2 have
been developed, tailored to run faster than what’s known for OR-AND-COMP (used to solve
APSP in the previous section):

I Theorem 16 (Implicit in Abboud, Williams, Yu [4]). The function OR-AND-OR2s,d can be
evaluated on two sets of n vectors in Õ(n2) time, provided that

s2 ·
(
d+ 1
3 log s

)2
≤ n0.1.

The algorithm of Theorem 16 is obtained by converting OR-AND-OR2 into a probabilistic
polynomial over F2 (via Theorem 3) and carefully counting the monomials that arise in the
construction of the polynomial. In particular, each AND is converted into a 3 log s-degree
probabilistic polynomial with error less than 1/s3, and the topmost OR on s variables
is converted into a product of two random MOD2s. After O(logn) evaluations of these
probabilistic polynomials for OR-AND-OR2, we settle on the correct values for OR-AND-OR2
on all n2 pairs of points. The fast Õ(n2) time evaluation is again done using Coppersmith’s
fast rectangular matrix multiplication [15].

The inequality of Theorem 16 holds for s ≤ nε/ log(d/ logn) where ε > 0 is sufficiently
small. From this and the above theorems, we derive:

I Corollary 17.
OV on n vectors in d dimensions is in n2−1/O(log(d/ logn)) time.
BPM on n strings of length d each is in n2−1/O(log(d/ logn)) time.
LCS* on two strings of length n is in n2/2Ω(

√
logn) time.

CNF-SAT on n variables and m clauses is solvable in 2n(1−1/O(log(m/n)) time.

For the first three problems, these running times significantly improve upon prior work.
The running time stated for CNF-SAT is not new, but it does match (up to constant factors
in the big-O) the best known CNF-SAT algorithms, which is fairly surprising given the
generality of this approach.

4.3 Counting Solutions to OV and CNF-SAT
Applying probabilistic polynomials over Z instead of F2, we can count the number of solutions
to an OV instance or a CNF formula. Let us remark that these results have not appeared in
print before; while they are not significant extensions of the previous section, they should
still give the reader a sense of what else is possible.

R. R. Williams 11

Define the function SUM-AND-OR2d1,d2 : {0, 1}d1·d2 → N as:

SUM-AND-OR2d1,d2(x1,1, x1,2, . . . , xd1,d2 , y1,1, y1,2, . . . , yd1,d2) =
d1∑
i=1

d2∧
j=1

(xi,j ∨ yi,j).

That is, this function outputs the total sum (over the integers) of the true AND-OR2s.

I Theorem 18. There is a probabilistic polynomial for SUM-AND-OR2d1,d2 over Z with
error at most 1/3 and at most (d1)O(log2 d2) monomials.

Proof. Think of the SUM-AND-OR2d1,d2 as a circuit. Replace each of the d1 ANDs of
fan-in d2 in this circuit with a probabilistic polynomial over Z with error set to ε = 1/(3d1).
By Theorem 4, these polynomials have degree O(log d2 · log d1), and therefore they have at
most (d2)O(log d2·log d1) monomials, assuming the output of each OR2 gate is a variable in the
polynomial. Now, each OR2 can be represented exactly as a sum of three monomials in the
original variables, which means we obtain a polynomial with at most (3d2)O(log d2·log d1) ≤
(d1)O(log2 d2) monomials in the original variables. Since each AND had error at most 1/(3d1),
their total sum is correct with probability at least 2/3, by the union bound. J

Now, provided that d1 and d2 satisfy

(d1)O(log2 d2) ≤ n0.1,

the number of monomials is low, and we can apply the same strategy used in Theorem 14 to
solve OV. Since we are taking a SUM instead of an OR, we can now compute the number
of all orthogonal pairs in a set of d2-vectors of size O(

√
d1), in Õ(n2) time. The above

inequality is certainly achieved when d1 ≤ n1/O(log2 d2). Following the proof of Theorem 14
and computing the number of orthogonal pairs for all O(n2/d1) pairs of sets, we obtain:

I Theorem 19. The number of orthogonal pairs among n vectors in d dimensions is comput-
able in n2−1/O(log2 d) time, with high probability. Consequently, one can count the number of
matches in the database on a set of n BPM queries of length d in the same running time, and
we can count the number of satisfying assignments to a CNF on n variables and m clauses
in 2n(1−1/O(log2 m)) time.

For counting OV pairs, the above running time is still much faster than O(n2/poly(logn))
when d = poly(logn). Indeed, it follows that counting the satisfying assignments of a CNF
with n variables and nlogn clauses can be done in 2n−n/poly(logn) time.

5 Conclusion

We have seen several ways in which polynomial tools originally developed in circuit complexity
have recently led to many new algorithms. We have not discussed all recent applications
of the polynomial method: we’ve mostly ignored the (more obvious) application of the
polynomial method for circuit lower bounds to solving circuit satisfiability. For example,
the polynomial method tools discussed here also can be used to give faster algorithms for
satisfiability of ACC circuits [47], as well as 0-1 linear programming [46] and satisfiability of
symmetric Boolean CSPs [4].

We cannot help but point out a discrepancy between the usage of polynomials in circuit
complexity and our algorithmic applications thus far. The majority of circuit lower bound
results using polynomials focus on minimizing the degree of the polynomial representing

12 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

the low-complexity function. However, for our applications, the number of monomials, or
the sparsity, is the most important measure for our algorithmic applications. Certainly, a
degree-d polynomial in n variables has nO(d) monomials, but this may be an undesirable
representation for super-constant d. This survey shows that finding sparse polynomial
representations for low-complexity functions like OR-AND-OR2 would entail significant
algorithmic consequences.

6 Acknowledgements

I am grateful to Venkatesh Raman for suggesting the topic of this article, and his subsequent
patience with me while I was finishing it.

References
1 Scott Aaronson. The polynomial method in quantum and classical computing. In FOCS,

pages 3–3. IEEE, 2008.
2 Amir Abboud, Fabrizio Grandoni, and Virginia Vassilevska Williams. Subcubic equival-

ences between graph centrality problems, APSP and diameter. In SODA, page to appear,
2015.

3 Amir Abboud and Virginia Vassilevska Williams. Popular conjectures imply strong lower
bounds for dynamic problems. In FOCS, 2014.

4 Amir Abboud, Ryan Williams, and Huacheng Yu. More applications of the polynomial
method to algorithm design. In SODA, 2015.

5 Sanjeev Arora and Boaz Barak. Computational complexity: a modern approach. Cambridge
University Press, 2009.

6 James Aspnes, Richard Beigel, Merrick Furst, and Steven Rudich. The expressive power of
voting polynomials. Combinatorica, 14(2):135–148, 1994.

7 Robert Beals, Harry Buhrman, Richard Cleve, Michele Mosca, and Ronald De Wolf.
Quantum lower bounds by polynomials. J. ACM, 48(4):778–797, 2001.

8 Richard Beigel. The polynomial method in circuit complexity. In In Proceedings of the 8th
IEEE Structure in Complexity Theory Conference, pages 82–95. IEEE Computer Society
Press, 1995.

9 Richard Beigel, Nick Reingold, and Daniel Spielman. The perceptron strikes back. In
Structure in Complexity Theory Conference, pages 286–291. IEEE, 1991.

10 Richard Beigel and Jun Tarui. On ACC. Computational Complexity, pages 350–366, 1994.
11 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. A duality between clause

width and clause density for SAT. In IEEE Conf. Computational Complexity, pages 252–
260, 2006.

12 Chris Calabro, Russell Impagliazzo, and Ramamohan Paturi. The complexity of satisfiabil-
ity of small depth circuits. In Parameterized and Exact Computation, pages 75–85. Springer,
2009.

13 Timothy M. Chan. All-pairs shortest paths with real weights in O(n3/ logn) time. Al-
gorithmica, 50(2):236–243, 2008. See also WADS’05.

14 Timothy M. Chan. More algorithms for all-pairs shortest paths in weighted graphs. SIAM
J. Comput., 39(5):2075–2089, 2010. See also STOC’07.

15 Don Coppersmith. Rapid multiplication of rectangular matrices. SIAM J. Comput.,
11(3):467–471, 1982.

16 Richard A. DeMillo and Richard J. Lipton. A probabilistic remark on algebraic program
testing. IPL, 7(4):193–195, 1978.

17 Robert W. Floyd. Algorithm 97. Comm. ACM, 5-6:345, 1962.

R. R. Williams 13

18 Michael L. Fredman. New bounds on the complexity of the shortest path problem. SIAM
J. Comput., 5(1):49–60, 1976. See also FOCS’75.

19 Parikshit Gopalan and Rocco A. Servedio. Learning and lower bounds for AC0 with
threshold gates. In Approximation, Randomization, and Combinatorial Optimization. Al-
gorithms and Techniques, pages 588–601. Springer, 2010.

20 Yijie Han. Improved algorithm for all pairs shortest paths. IPL, 91(5):245–250, 2004.
21 Yijie Han. An O(n3(log logn/ logn)5/4) time algorithm for all pairs shortest path. Algorith-

mica, 51(4):428–434, 2008. See also ESA’06.
22 Russell Impagliazzo and Ramamohan Paturi. On the complexity of k-SAT. J. Comput.

Syst. Sci., 62(2):367–375, 2001.
23 Richard M. Karp. Dynamic programming meets the principle of inclusion and exclusion.

Operations Research Letters, 1(2):49–51, 1982.
24 Adam R. Klivans and Rocco Servedio. Learning DNF in time 2O(n1/3). In STOC, pages

258–265. ACM, 2001.
25 Swastik Kopparty and Srikanth Srinivasan. Certifying polynomials for AC0(parity) circuits,

with applications. In FSTTCS, pages 36–47, 2012.
26 Nathan Linial, Yishay Mansour, and Noam Nisan. Constant depth circuits, Fourier trans-

form, and learnability. J. ACM, 40(3):607–620, 1993.
27 Yishay Mansour. An o(nlog logn) learning algorithm for dnf under the uniform distribution.

J. Comput. Syst. Sci., 50(3):543–550, 1995.
28 Marvin Minsky and Seymour Papert. Perceptrons. MIT Press, 1969.
29 Elchanan Mossel, Ryan O’Donnell, and Rocco A. Servedio. Learning functions of k relevant

variables. J. Comput. Syst. Sci., 69(3):421–434, 2004.
30 Rajeev Motwani and Prabhakar Raghavan. Randomized algorithms. Cambridge University

Press, 1995.
31 Noam Nisan and Mario Szegedy. On the degree of boolean functions as real polynomials.

Computational Complexity, 4(4):301–313, 1994.
32 Ryan O’Donnell. Analysis of boolean functions. Cambridge University Press, 2014.
33 A. A. Razborov. Lower bounds on the size of bounded depth circuits over a complete

basis with logical addition. Mathematical Notes of the Academy of Sciences of the USSR,
41(4):333–338, 1987.

34 Liam Roditty and Uri Zwick. On dynamic shortest paths problems. In Algorithms–ESA
2004, pages 580–591. Springer, 2004.

35 Jacob T. Schwartz. Fast probabilistic algorithms for verification of polynomial identities.
J. ACM, 27(4):701–717, 1980.

36 Roman Smolensky. Algebraic methods in the theory of lower bounds for boolean circuit
complexity. In STOC, pages 77–82, 1987.

37 Tadao Takaoka. A new upper bound on the complexity of the all pairs shortest path
problem. IPL, 43(4):195–199, 1992. See also WG’91.

38 Tadao Takaoka. Subcubic cost algorithms for the all pairs shortest path problem. Algorith-
mica, 20(3):309–318, 1998. See also WG’95.

39 Tadao Takaoka. An O(n3 log logn/ logn) time algorithm for the all-pairs shortest path
problem. IPL, 96(5):155–161, 2005.

40 Jun Tarui. Probabilistic polynomials, AC0 functions and the polynomial-time hierarchy.
Theor. Comput. Sci., 113(1):167–183, 1993.

41 Virginia Vassilevska Williams and Ryan Williams. Subcubic equivalences between path,
matrix and triangle problems. In FOCS, pages 645–654. IEEE, 2010.

42 Heribert Vollmer. Introduction to circuit complexity: a uniform approach. Springer, 1999.
43 Stephen Warshall. A theorem on Boolean matrices. J. ACM, 9:11–12, 1962.

14 The Polynomial Method in Circuit Complexity Applied to Algorithm Design

44 Ryan Williams. A new algorithm for optimal 2-constraint satisfaction and its implications.
Theor. Comput. Sci., 348(2-3):357–365, 2005. See also ICALP’04.

45 Ryan Williams. Faster all-pairs shortest paths via circuit complexity. In STOC, pages
664–673, 2014.

46 Ryan Williams. New algorithms and lower bounds for circuits with linear threshold gates.
In STOC, pages 194–202, 2014.

47 Ryan Williams. Nonuniform ACC circuit lower bounds. J. ACM, 61(1):2, 2014.
48 Ryan Williams and Huacheng Yu. Finding orthogonal vectors in discrete structures. pages

1867–1877. SIAM, 2014.
49 Andrew Chi-Chih Yao. On ACC and threshold circuits. In FOCS, pages 619–627, 1990.
50 Richard Zippel. Probabilistic algorithms for sparse polynomials. In Lecture Notes in Com-

puter Science, volume 72, pages 216–226. Springer, 1979.
51 Uri Zwick. A slightly improved sub-cubic algorithm for the all pairs shortest paths problem

with real edge lengths. In ISAAC 2004, volume 3341 of Springer LNCS, pages 921–932,
2004.

	Introduction
	What This Survey is NOT

	The Circuits
	The Tools
	Exact Representations
	 Probabilistic Representations
	Symmetric Representation

	The Applications
	All-Pairs Shortest Paths (APSP)
	Orthogonal Vectors (OV)
	Counting Solutions to OV and CNF-SAT

	Conclusion
	Acknowledgements

