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Abstract

We revisit a natural zero-sum game from several prior works. A circuit player, armed with a
collection of Boolean circuits, wants to compute a function f with one (or some) of its circuits. An
input player has a collection of inputs, and wants to find one (or some) inputs on which the circuit
player cannot compute f . Several results are known on the existence of small-support strategies for
zero-sum games, in particular the above circuit-input game. We give two new applications of these
classical results to circuit complexity:

Natural properties useful against self-checking circuits are equivalent to circuit lower bounds.
We show how the Natural Proofs barrier may be potentially sidestepped, by simply focusing on ana-
lyzing circuits that check their answers. Slightly more precisely, we prove NP 6⊂ P/poly if and only if
there are natural properties that (a) accept the SAT function and (b) are useful against polynomial-size
circuits that never err when they report SAT. (Note, via self-reducibility, any small circuit can be turned
into one of this kind!) The proof is very general; similar equivalences hold for other lower bound prob-
lems. Our message is that one should search for lower bound methods that are designed to succeed
(only) against circuits with “one-sided error.”

Circuit Complexity versus Testing Circuits With Data. We reconsider the problem of program
testing, which we formalize as deciding if a given circuit computes a (fixed) function f . We define
the “data complexity” of f (as a function of circuit size s) to be the minimum cardinality of a test
suite of inputs: a set of input/output pairs necessary and sufficient for deciding if any given circuit of
size at most s computes a slice of f . (This is a “gray-box testing” problem, where the value s is side
information.) We prove that designing small test suites for f is equivalent to proving circuit lower
bounds on f : the data complexity of testing f is “small” if and only if the circuit complexity of f is
“large.” Therefore, circuit lower bounds may be constructively viewed as data design circuit-testing
problems.

1 Introduction

We consider the following zero-sum game studied in prior work (e.g., [LY94, FIKU08]), which we call
the circuit-input game. Fix a Boolean function f . A circuit player chooses from a set of Boolean circuits,
while an input player chooses from a set of inputs. A payoff goes to the circuit player if its chosen circuit
computes f on the chosen input; otherwise, the input player is paid.
∗A preliminary version of this work appears in ITCS’15.
†Supported by NSF CCF-1212372. Any opinions, findings, and conclusions or recommendations expressed in this material

are those of the author(s) and do not necessarily reflect the views of the National Science Foundation.
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To our knowledge, the circuit-input game was first explicitly studied by Lipton and Young [LY94], in
the context of providing complexity-theoretic applications of strategies for general zero-sum games (see
also [Yao77]). Among other results, they (and independently, Newman [New91] and Althöfer [Alt94])
proved that approximate and succinct strategies exist for any zero-sum game in the sense for an m× n
matrix M, there exists a strategy for the row player with support size O(logn), and a strategy for the
column player with support size O(logm), which together additively approximate the optimal strategy
of the game. This result was used to prove the existence of so-called anti-checkers: for any function
f : {0,1}n→{0,1} with circuit complexity at least s, there exists a set S of O(s) n-bit inputs on which all
circuits of size at most s/n fail to compute f correctly on a 1/2− ε fraction of inputs in S.

In this paper, we start by proving a general extension of these classical results, and we also prove that
our extension cannot be improved in a certain technical way. We then use our extension to present two
new applications of these classical results to the field of circuit complexity.

Natural Properties Equivalent to Lower Bounds In the first part of the paper, we give an alternative
view into the Natural Proofs barrier [RR97]; in particular, we suggest a new pathway around it. Recall that
Natural Proofs have three properties.

• They are constructive: they contain an efficient algorithm A from a complexity class Γ for testing
Boolean functions given as truth tables,

• They are large: algorithm A accepts a large fraction (at least 1/2O(n)) of all n-bit Boolean functions,
and

• They are useful: algorithm A rejects all functions which are truth tables of circuits from a circuit
class C , for infinitely many input lengths.

Such an algorithm A is called a Γ-natural property useful against C , and Razborov-Rudich showed that
there are no P/poly-natural properties useful against P/poly unless every pseudorandom function candi-
date can be broken. Hence a natural proof is not capable of proving P/poly lower bounds, or statements
like NP 6⊂ P/poly. This ruled out many potential methods for proving circuit lower bounds.

We show that a minor (and in hindsight, obvious) modification to the “useful” condition of Natural
Proofs not only makes the barrier disappear, but it makes circuit lower bounds equivalent to the existence
of such modified natural properties. Our minor modification is perhaps best illustrated by considering NP
vs P/poly and the SAT problem (although any self-reducible NP-complete problem would suffice). We
begin with the well-known observation that any polynomial-size circuit C can be assumed, without loss of
generality, to never err when it reports satisfiability. That is, given a circuit C that potentially solves SAT,
C can be augmented to print a satisfying assignment: create a larger circuit C′ that contains copies of C,
such that when C reports “SAT” on a formula, C′ repeatedly plugs in values for variables of the formula
and queries C on the reduced formulas to check if satisfiability still holds. Either C will eventually be in
error (in which case C′ reports “UNSAT”) or C will produce a SAT assignment, in which case C′ reports
“SAT” without error.

Let C be a Boolean circuit on n inputs. Define C to be a SAT solver if for all n-bit formulas F , C(F) = 1
implies that F is satisfiable. (We call such circuits “SAT solvers” because one could use these circuits
to print satisfying assignments to formulas, when the circuits report “SAT.”) The class of functions com-
putable by polynomial-size SAT solvers is an expressive class, including special cases such as 2-SAT,
Horn-SAT, etc. By the previous paragraph, to prove NP 6⊂ P/poly it suffices to prove that no polynomial-
size family of SAT solvers can compute SAT. That is, a lower bound proof only needs to be useful against
small SAT solvers. But how might we prove this? If we used combinatorial or probabilistic methods, we
might expect to find an efficient test for Boolean functions, such that random functions (and SAT) pass,
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but SAT solver circuits do not pass. This looks very much like Natural Proofs, except instead of rejecting
all polynomial-size circuits, our test will only try to reject the polynomial-size SAT solvers. It turns out
that such tests always exist, if NP 6⊂ P/poly. More formally, let SATn denote the restriction of SAT to
formulas encoded in n bits. We prove:

Theorem 1.1 NP 6⊂ P/poly if and only if there is an AC0/no(1)-natural property that is useful against
polynomial-size SAT solvers and accepts SATn for all n.

Compare with the main theorem of Razborov-Rudich: if there are P/poly-natural properties useful
against P/poly, then there are no strong pseudorandom generators. The above theorem suggests that, to
circumvent “naturalness” and prove circuit lower bounds for SAT, we should try to look for proof methods
which fail on arbitrary polynomial-size circuits, but succeed on circuits that try to print full satisfying
assignments. This point also gives intuition for why Theorem 1.1 holds without hurting cryptography: the
truth tables of SAT solvers do not look at all like random functions, so a natural property useful against
SAT solvers is in no danger of distinguishing pseudorandom functions from truly random ones.1

Equivalences similar to Theorem 1.1 hold for other circuit lower bound problems. In general, for
any function f that permits a zero-error or one-sided error corrector in a complexity class C , there is an
equivalence between proving f 6∈ C and exhibiting natural properties useful against “error-corrected f -
solving circuits.” We also show how a version of our statement holds for f with (randomized) polynomial-
time program checkers [BK95].

Testing Circuits for Functionality Using Data In the second part of the paper, we apply succinct strate-
gies for zero-sum games to set up a framework that is “dual” to the usual computational view of circuits
computing functions on inputs, treating inputs as the “programs” and circuits as the “input data”. We
generalize Lipton-Young’s anti-checkers, showing how the general problem of circuit lower bounds can
be seen in a constructive light: as designing small data sets that can be used to conclusively test whether
a given circuit computes a particular function. This also yields a complexity-theoretic perspective on the
practical problem of software testing (see [Pat05, UL07]).

To describe the results, we need to fix some terminology. Let C be the collection of Boolean circuits
over the standard basis B2, the set of all two-bit Boolean functions. The size of a circuit C ∈C is measured
by its number of gates; let |C| denote the size of C. Let f : {0,1}?→ {0,1} be a decision problem. The
nth slice of f is the function fn : {0,1}n → {0,1} that agrees with f on all n-bit inputs. Function fn is
computed by Cn ∈ C if for every x ∈ {0,1}n we have Cn(x) = fn(x), and the circuit complexity of f is the
function g : N→ N such that g(n) equals the minimum |Cn| over all Cn ∈ C computing fn.

Define the computational problem of TESTING FOR f , which we abbreviate as TEST- f , to be the union
(over all n) of the set of all circuits Cn which compute fn. For simplicity, we define the sth slice of TEST- f
to be the set of all size-s circuits computing some slice of f (rather than the set of all circuits encoded in s
bits that compute some slice).

Let {0,1}≤n be the set of all bit strings of length at most n. Let Xs ⊆ {0,1}≤s×{0,1}. That is, Xs is a
collection of pairs of (≤ s)-bit strings with bit labels.

Definition 1.1 The set Xs is said to test size-s for f if:
• for all (x,b) ∈ Xs, f (x) = b, and
• for every size-s circuit C ∈ (C \TEST- f ) with n inputs (that is, C 6= fn), there is a pair (x,b) ∈ Xs

such that |x|= n and C(x) 6= b.2

1As a reviewer succinctly noted, one might interpret this result as saying, “pseudorandom functions have no hope of computing
SAT, so why should we care about them?”

2Note that s is the maximal number of input gates in a circuit of size s, so n≤ s.
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That is, a circuit C of size s and n inputs agrees with f on all n-bit inputs in Xs if and only if the circuit C
computes fn. Hence such a collection Xs can be used to conclusively test whether a given circuit computes
the relevant slice of f .

An infinite family of input sets {Xs | s ∈ N+} is said to test for f if for all s ≥ 1, and for every circuit
C ∈ (C \ TEST- f ) of size s, there is a string x ∈ Xs such that C(x) 6= f|x|(s). Thinking of TEST- f as a
decision problem to be computationally solved, the family {Xs} can serve as a test suite for deciding this
problem, by providing pairs (x, f (x)) ∈ Xs, then verifying that a given circuit C agrees with all pairs.

Using inputs to test for whether a circuit computes f leads to a natural definition of the complexity of
testing for f :

Definition 1.2 The data complexity of TEST- f is defined to be the function g :N→N such that g(s) equals
the minimum cardinality of a set Xs testing size-s for f .

(Note that we measure data complexity as a function of the circuit size s, because s measures the “length
of the input” to the problem TEST- f .) The design of a test suite {Xs} with low complexity is an extremely
natural goal that is rather well-motivated practically. It is a data design problem, as opposed to the typical
algorithm/circuit design problem. Just as there are trivial circuits of O(n2n) size for every Boolean function
on n variables, there are also trivial test suites where each Xs contains 2O(s) inputs of length up to s. The
theory of circuits becomes interesting when we restrict the complexities of circuits; the theory of test suites
becomes similarly interesting when restricting the amount of necessary data.

There is an inherent duality between data complexity and circuit complexity. Our main theorem is
that lower bounds on the circuit complexity of f are basically equivalent to upper bounds on the data
complexity of testing f . This also uses the circuit-input game in a crucial way:

Theorem 1.2 Let f : {0,1}?→{0,1}, and let S(n)≥ 2n for all n.

1. If f is in SIZE(S(n)), then the data complexity of testing size-s circuits for f is at least 2Ω(S−1(s))

almost everywhere.

2. If f is not in SIZE(n · S(n)), then the data complexity of testing size-s circuits for f is at most
O(2S−1(s)+S−1(s) · s2 logs) infinitely often.

As a corollary, we can give a different characterization of the NP 6⊂ P/poly problem: it is equivalent to
the existence of a test suite for testing circuits for SAT with subexponential data complexity:

Corollary 1.1 NP 6⊂ P/poly (resp. NP 6⊂ i.o.P/poly) if and only if for every ε > 0 and for infinitely many
s (resp. for every ε > 0 and for every s), the data complexity of testing size-s circuits for SAT is at most
O
(
2sε)

.

We strongly recommend reading (not skipping) the Preliminaries section below, as it introduces nota-
tion, background, and intuitions that will be required at key points in the paper.

2 Preliminaries

2.1 Background

Complexity Theory We assume standard background in complexity theory, along with the following
additional notation: SIZE(S(n)) is the class of functions f : {0,1}? → {0,1} such that f is computable
with a size-S(n) circuit family {Cn} over the basis B2 of all two-bit Boolean functions.
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Zero-Sum Games and Succinct Strategies We think of a zero-sum game as an m× n matrix M with
entries from [0,1] describing the payoff to the row player in a game between a row player and column
player. We now describe the concepts and theorems of Lipton and Young [LY94] relevant to this paper.

Definition 2.1 Let S be any set, and let k ∈ N. A k-uniform distribution on S is a probability distribution
obtained by choosing uniformly from a multiset of k elements from S.

Definition 2.2 Let C be a set of n circuits, let I be a set of m inputs, and let M be an m×n matrix with
entries in [0,1]. (Intuitively, M (C,x) represents some cost of the computation of C (x).) The circuit-input
game w.r.t. M is the two-player zero-sum game given by the matrix M.

For a function f : {0,1}?→ {0,1}, our central game of interest is what we call the circuit-input game
for f on size-s circuits and n inputs, which is the circuit-input game w.r.t. the following matrix M. M has
2n rows (for all strings x in {0,1}n) and 2O(s logs) columns (for all circuits C of size s), and

M (C,x) :=

{
0 if C(x) = f (x)
1 otherwise

Let C , I , and M be as above. Assume without loss of generality that ∃C0,x0 such that M (C0,x0) = 0
and ∃C1,x1 such that M (C1,x1) = 1. We shall use the following two theorems saying that approximately
optimal strategies with small support exist for every game M:

Theorem 2.1 ([New91, Alt94, LY94]) Let ε > 0, let k >
ln |I |

2ε2 , and let ` >
ln |C |
2ε2 .

1. There exists a k-uniform distribution p on C such that for every x ∈I , the expectation E
C∼p

[MC,x]<

V (M)+ ε , where V (M) denotes the value of the circuit-input game w.r.t. M.

2. There exists an `-uniform distribution p on I such that for every C ∈C , the expectation E
x∼p

[MC,x]>

V (M)− ε , where V (M) denotes the value of the circuit-input game w.r.t. M.

This theorem can be proved using a random sampling argument and standard large deviation (Chernoff-
Hoeffding) bounds. From Theorem 2.1, we may derive the following general consequence which does not
appear in prior work:

Theorem 2.2 Let Cn be a set of 2t circuits where each circuit has n inputs, let In ⊆ {0,1}n, and let
f : {0,1}n→ {0,1}. Let ε : N→Q∩ (0,1], and let p,q : N→ [0,1] with p+q≤ 1− ε . For every n ∈ N,
one of the following must hold:

1. There exists an O(n/ε(n)2)-size multiset Xn ⊆ Cn such that for every y ∈In, C(y) = f (y) for more
than a p(n) fraction of the circuits C ∈ Xn.

2. There exists an O(t/ε(n)2)-size multiset Yn ⊆In such that for every C ∈ Cn, C(y) 6= f (y) for more
than a q(n) fraction of the inputs y ∈ Yn.

Proof. Let M be the circuit-input game for a function f . Let ε , p, q, and n be as in the statement of the

theorem. Set a parameter δ := ε (n)/2, set k :=
ln |In|

δ 2 =
O(n)
δ 2 , and set ` :=

ln |Cn|
δ 2 =

O(t)
δ 2 . Then by

Theorem 2.1, there exists a k-uniform distribution Xn on Cn such that for all y ∈In,

E
C∼Xn

[M[C,y]]< V (M)+δ , (1)
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and there exists an `-uniform distribution Yn on In such that for every C ∈ Cn,

E
y∼Yn

[M[C,y]]> V (M)−δ . (2)

Assume that there exists y∗ ∈ In such that C (y∗) 6= f (y∗) for at least a 1− p(n) fraction of the circuits
C ∈ Xn. Since M is a Boolean matrix, we have for every C∗ ∈ Cn that

q(n) ≤ 1− p(n)− ε (n)

≤ Pr
C∼Xn

[C (y∗) 6= f (y∗)]− ε (n) (by choice of y∗)

< V (M)−δ (by choice of δ and (1))

< Pr
y∼Yn

[C∗ (y) 6= f (y)] . (by (2))

This completes the proof. �
That is, we can trade off between the “measure of success” p of the succinct strategy for the circuit

player, and the measure of success q of the succinct strategy for the row player. This tradeoff can be
exploited for complexity-theoretic purposes as follows: if item 1 does not hold (because of circuit lower
bounds for computing f with C circuits) then there are small multisets “witnessing” this inability to
compute. Lipton and Young observed this consequence for the special case of p = 1/2 and q = 1/2− ε ,
calling such sets anti-checkers. In our main results, we shall adjust p and q to different values, as needed.
(For example, in our results concerning natural properties, we use the case of p = 0 and q = 1− ε .)

It is natural to ask whether Theorem 2.2 can be improved, so that p+ q = 1. We now show that this
is not possible, at least not in full generality. In particular, while Theorem 2.2 holds for all p+q≤ 1− ε ,
where ε > 0, it does not hold for p = q = 1/2 and all matrices M:

Theorem 2.3 Theorem 2.2 does not hold with p = q = 1/2.

Proof. Let f : {0,1}∗→{0,1} be a Boolean function without circuits of size c ·ns, for a sufficiently large
constant c ≥ 1. Suppose Theorem 2.2 holds with p = q = 1/2 and the circuit-input game for f on size-s
circuits and n inputs. Then at least one of the following holds.

1. There is an O(n)-size multiset Cn of size-s circuits where Pr
C∈Cn

[C (x) 6= f (x)] < 1/2 holds for all

x ∈ {0,1}n.

2. There exists an O(s logs)-size multiset Xn of n-bit inputs such that for every circuit C of size s,
Pr

x∈Xn
[C (x) 6= f (x)]≥ 1/2.

In the first case, f can be implemented with a (strict) MAJORITY circuit on Cn, giving a circuit of size
O(ns), contradicting our choice of f .

The second case also leads to a contradiction. For any Xn, we may take a circuit C of size O(n) that has
a single input x in Xn hardwired along with the value f (x). The circuit C outputs f (x) on input x, and other-
wise it outputs the bit b maximizing the quantity Pr

x′∈Xn\{x}
[ f (x′) = b]. It follows that Pr [C(x) 6= f (x)]< 1

2 .

�

2.2 Additional Prior Work

The problem of approximately solving a zero-sum game has been studied in operations research as well;
for example, Grigoriadis and Khachiyan [GK95b] show how to find an approximately optimal strategy
with randomness in time sublinear in the size of the game matrix.
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Bshouty et al [BCG+96] studied the circuit-input game in the context of learning theory, focusing
on the complexity of finding succinct strategies in the game. They proved (for example) that if NP ⊂
P/poly then one can uniformly construct circuits solving SAT in ZPPNP – this gave a new collapse of
the polynomial-hierarchy under the assumption that NP ⊂ P/poly. Dually, if NP 6⊂ P/poly, then their
results also show that one can uniformly construct multisets of satisfiable formulas that “fool” all small
circuits, in ZPPNP: Fortnow, Pavan, and Sengupta applied this consequence to the “two queries” problem
in structural complexity [FPS08]. Subsequently, Fortnow et al [FIKU08] proved that the problem of
finding approximate succinct strategies in an implicitly represented game (such as the circuit-input game)
is promise-S2-complete. Other works on succinct games include [CR08, SV12].

When circuit lower bounds are true, succinct strategy results like Theorem 2.2 tell us that there are
small distributions of inputs that “fool” all small circuits. Another class of related results have focused on a
different flavor of hardness result: given the code of an efficient algorithm (randomized or otherwise) that’s
supposed to solve SAT, one can construct even smaller distributions that fool the given algorithm [GSTS05,
Ats06, BTW10].

Our ideas for using data to test circuits for a function are vaguely related to the notion of teaching
dimension of a class of concepts, from learning theory (see Goldman and Kearns [GK95a] and Shino-
hara and Miyano [SM91]). The teaching dimension is defined with respect to a collection of functions,
and it bounds the total number of labeled examples needed to identify each concept in the collection (to
distinguish it from the other concepts). However, this notion is information-theoretic: there are no com-
putational bounds placed on what is distinguishing one function from another. In our setting, we have a
collection of programs and a specific function f of interest, and wish to know how many labeled examples
we need to distinguish “bad” programs which do not compute f from “good” ones which do.

Mulmuley’s GCT program [Mul11] has also considered “sets of counterexamples” similar to our test
sets, calling them “obstructions.”

3 Natural Properties Equivalent to Circuit Lower Bounds

In this section, we prove that natural properties useful against self-checking circuits are equivalent to
circuit lower bounds in some important settings.

Let SATn denote the restriction of SAT to formulas encoded in n bits.

Reminder of Theorem 1.1 NP 6⊂ P/poly if and only if there is an AC0/no(1)-natural property that is
useful against polynomial-size SAT solvers and accepts SATn for all n.
Proof. One direction of the equivalence is trivial: if there is any logical property that is false on the
truth tables of all polynomial-size SATn solvers for infinitely many n, yet the property is true of SATn

for all n, then no polynomial-size SAT solving circuit can compute SATn almost everywhere. Therefore
NP 6⊂ P/poly.

Now we proceed with the other direction. Assume NP 6⊂ P/poly. Let s be a polynomial in n. For every
n ∈ N, let Cn denote the set of n-input circuits of size s(n) which are SAT solvers (i.e., they never err on
unsatisfiable formulas). Set In := SATn, i.e., the set of satisfiable formulas encoded in n bits. Consider
the circuit-input game M for SAT, over the set of circuits Cn and set of inputs In.

Applying Theorem 2.2 to this game M (taking p(n) = 0 and q(n) = 1−ε (n) for some inverse polyno-
mial ε(n)), either:

1. there is an poly(s,n)-size set X ⊆Cn such that for every x∈I , at least one C ∈ X computes SAT(x),
or

2. there is an poly(s,n)-size set Y ⊆ In such that every circuit C ∈ Cn computes SAT correctly on at
most an ε (n) fraction of inputs in Y .
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In the first case, we may construct a polynomial-size circuit for SATn by simply taking the OR of the cir-
cuits in X : since the circuits never err on unsatisfiable formulas, this will compute SATn. Our assumption
NP 6⊂ P/poly is therefore contradicted if the first case holds for almost every n.

Suppose the second case holds for infinitely many n. Then we can construct an algorithm A which takes
as input the 2n-bit truth table of a function f : {0,1}n→ {0,1} and is armed with Y as advice. Algorithm
A accepts f if f outputs 1 on at least a 2ε (n) fraction of the inputs in Y , and rejects f if f outputs 1
on at most an ε (n) fraction of the inputs in Y . This A is implementable in polynomial-size AC0 (in fact,
depth-3 AND-OR-AND circuits), by classical results on distinguishing strings with many 1’s from strings
with many 0’s [Ajt83, Vio11]. Furthermore, A trivially accepts SATn for every n, because SATn(y) = 1 for
every input y ∈ Y .

Notice that, while A rejects the truth tables of SAT solving circuits of s(n) size, A will accept a randomly
chosen Boolean function with probability 1−o(1). Notice that the advice needed is s(n)≤O(nk), which is
polylogarithmic in the input length, 2n. Therefore, A is an AC0/no(1)-natural property that is useful against
SAT solving circuits of s(n) size. Such an A can be constructed for every polynomial s(n), assuming
NP 6⊂ P/poly. �

A reviewer pointed out that the above theorem holds not only for SAT solvers, but for any circuit which
computes a NP-complete problem with one-sided error, regardless of whether the problem in question
exhibits self-reducibility. We consider SAT specifically because self-reducibility allows us to construct a
SAT solver from an arbitrary circuit with only polynomial overhead.

3.1 Natural Properties from Circuit Lower Bounds for Checkable Functions

It is easy to extend the previous theorem to general functions f with deterministic one-sided checkers:
functions f that allow polynomial-size circuits with oracle gates for f which never err when they output 0
(or never err when they output 1). Now we consider languages which have (randomized) polynomial time
program checkers, such as EXP-complete sets [BFL91, BK95], the Permanent [Lip91], etc. Such ran-
domized program checkers can be adapted to give polynomial size circuit families which act as program
checkers that deterministically check all functions computable by small circuits. These deterministic pro-
gram checkers can then be used to prove (as above with SAT) equivalences between circuit lower bounds
and the existence of natural properties. Here we use the following definition of a program checker.

Definition 3.1 Let L ∈ {0,1}∗. A randomized (polynomial time) program checker for L is a randomized
(polynomial time) algorithm with oracle access to an arbitrary function f , which when given an n-bit input
x and randomness r will accept with probability greater than 2/3 (over the choice of r) if L = f and will
reject with probability greater than 2/3 if L(x) 6= f (x).

In order for a randomized program checker to be adapted to produce a deterministic circuit family,
we require that the language L be paddable, so that a circuit computing L on inputs of length n can also
compute L on inputs of length less than n. Hence for the rest of the section, we consider only functions
which are paddable in the following sense.

Definition 3.2 A language L is paddable if there exists a language L′ such that L =
{

x01k : x ∈ L′,k ∈ N
}

.

Note that any language L′ can be converted into a paddable language L as above, while preserving both
asymptotic circuit complexity (up to a polynomial factor) and the existence of program checkers.

Theorem 3.1 Let p and t be polynomials, and let L be a paddable language with a randomized t (n)−n
time program checker. Then there exists a polynomial size circuit family which deterministically checks all
functions on n inputs computable by circuits of size at most p(t (n)).
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Proof. Let p and t be polynomials in n. Let L be any paddable language with a randomized t (n)− n
time program checker, i.e. there exists a randomized t (n)− n time algorithm A such that for every input
x ∈ {0,1}n and every f : {0,1}t(n)→ {0,1}, A f (x) = 1 with probability more than 2/3 if f is the t (n)th
slice of L, and A f (x) = 0 with probability more than 2/3 if f

(
x1t(n)−n

)
6= L(x).

We may amplify this success probability to 1−2−q(n) (for some polynomial q(n)> 2p(t (n)) log p(t (n))+
n), by creating another checker A′ which runs A independently 18q(n) times and returns the MAJORITY
of the 18q(n) results; appealing to a Chernoff bound yields the higher success probability.

We may simulate A′ with a polynomial size family {Bn} of oracle circuits which take as input the string
x ∈ {0,1}n and a string of randomness r ∈ {0,1}nk

, and which use oracle gates to compute the function f .
Since there are at most 22p(t(n)) log p(t(n)) circuits of size p(t (n)) and 2n n-bit input strings, we have (using
a union bound) with non-zero probability (over the choice of r ∈ {0,1}nk

), for every x ∈ {0,1}n and every
f computable by a circuit of size p(t (n)),

• f (z) = L(z) for all z ∈ {0,1}t(n) =⇒ B f
n (x,r) = 1 and

• f (x) 6= L(x) =⇒ B f
n (x,r) = 0.

Hence there is some choice of randomness r∗ ∈ {0,1}nk
for which Bn (−,r∗) is a deterministic program

checker (where the randomness r∗ is hard coded into the circuit). �
Fix a polynomial p and a circuit family An which deterministically checks circuits of size at most p(n).

Now for any circuit {C} with t (n) inputs and of size p(t (n)), we may augment C with At(n) to create a
self-checking circuit C′ on n inputs with polynomial overhead. We may treat C′ as a ternary circuit which
outputs 0 (resp. 1) if At(n) outputs 1 and C outputs 0 (resp. 1), and which outputs ⊥ if At(n) outputs 0. We
may treat ⊥ as 0 or 1, in which case C′ gives a circuit with one-sided error (in either direction). Call all
such C′ the self-checked circuits for L.

Theorem 3.2 Let L be a paddable language with a randomized polynomial time program checker. If
L 6∈ P/poly, then for every polynomial s, there exists a natural property computable in AC0/no(1) useful
against size-s(n) self-checked circuits for L.

Proof. In the case where⊥= 0 above, we may take Cn to be the set of s(n) size circuits, In := {0,1}n∩L,
and M (C,y) := 1−C (y). From Theorem 2.2 (taking p(n) = 0 and q(n) = 1− ε (n) for some inverse
polynomial ε), either there is a polynomial size set X ⊆ Cn such that for every y ∈I , at least one C ∈ X
computes L(y), or there is a polynomial size set Y ⊆ In such that every circuit C ∈ Cn computes L
correctly on at most an ε (n) fraction of inputs in Y . If the former case holds for almost every n, then we
may construct a polynomial size circuit family for L by taking the OR of the circuits in X . Otherwise,
the latter case holds infinitely often, giving an efficiently computable (AC0/no(1)) natural property useful
against functions with one-sided error which are computable with s(n) size circuits.

Note that the choice to treat⊥ as 0 is arbitrary. We may instead treat⊥ as 1, in which case Theorem 2.2
either gives a polynomial size set of circuits whose AND computes L, or an AC0/no(1)-computable natural
property useful against functions with p(n) size circuits and which are (bitwise) at least L. �

4 Circuit Lower Bounds as Data Design Problems

We now turn to our results on testing circuits and data complexity. In the following, let f : {0,1}?→{0,1}
and let S : N→N satisfy S(n)≥ n for all n. For simplicity, we prove the main theorem (Theorem 1.2) only
for the class of circuits over the basis B2 of all two-bit Boolean functions, although analogous statements
will hold for any complete basis with minor modifications. For a circuit C, let n(C) be its number of inputs.
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Recall that the data complexity of testing size-s circuits for f is the minimum cardinality of a set S of
labeled examples (x, f (x)) (where |x| can range from 1 to s) that suffice to distinguish all size-s circuits
which do not compute a slice of f from those which do. Namely, for all size-s circuits C which do not
compute fn(C), there is some “witness” in S: a pair (x, f (x)) ∈ S with |x|= n(C) such that C(x) 6= f (x).

The data complexity of testing size-s circuits is always at most 2O(s) for any function f : one can simply
include all possible input/output pairs on inputs of length up to s. We are interested to know: for what
functions f can the data complexity be much smaller? We prove an equivalence between upper bounds on
the data complexity of testing f and lower bounds on the circuit complexity of f :

Reminder of Theorem 1.2 Let f : {0,1}?→{0,1}, and let S(n)≥ 2n for all n.

1. If f is in SIZE(S(n)), then the data complexity of testing size-s circuits for f is at least 2Ω(S−1(s))

almost everywhere.

2. If f is not in SIZE(n · S(n)), then the data complexity of testing size-s circuits for f is at most
O(2S−1(s)+S−1(s) · s2 logs) infinitely often.

Since for a uniformly random function fn : {0,1}n→ {0,1}, fn 6∈ SIZE(2n/n2) with high probability,
we have the following corollary:

Corollary 4.1 If f : {0,1}∗ → {0,1} is uniformly random, then almost certainly the data complexity of
testing size-s circuits for f is at most O(s2 log2 s) infinitely often.

We also note that since the circuit complexities of a function f over any complete bases differ by at
most a constant factor (and as noted previously, all results presented hold for an arbitrary complete gate
basis with minor modifications to the proofs), the data complexities of TEST- f over any complete bases
differ by at most a constant factor.

To get some intuition towards a proof of Theorem 1.2, notice that if we replace “data complexity” with
“time complexity” in the above, one direction of the equivalence is easy to establish. Namely, for functions
f computable within exponential time, when the circuit complexity of f is large, the time complexity of
testing circuits for f will be provably low, as follows.

Suppose S(n) is a lower bound on the circuit complexity of computing f on n-bit inputs. To efficiently
test a given circuit C of size s with n inputs, we can immediately reject if s< S(n), otherwise we may try all
2n < 2S−1(s) inputs to C and check whether the truth table obtained for C matches fn on n-bit inputs. For f
computable within 2O(n) time, this algorithm takes 2O(S−1(s)) time; larger S(n) entails a faster running time.
(For example, if some f in 2O(n) time requires 2εn size C -circuits, then testing C for f is in poly(s) time.)
However, this particular connection is not terribly useful: we are basically saying that strong circuit lower
bounds happen to make testing circuits for f trivial, because most circuits can be immediately rejected.
Moreover we do not know if low time complexity for testing circuits for f will imply analogous circuit
lower bounds for f , in general.

The equivalence between circuit complexity and data complexity is far less obvious. We use the fol-
lowing consequence of results on the circuit-input game (Theorem 2.2 in the Preliminaries): when circuits
are too small to compute a function, there are small data sets that will efficiently refute these small circuits.

Proof of Theorem 1.2. (Part 1.) Suppose for all n, there is a circuit C of size S(n) which computes fn on
all inputs of length n. For each n, we claim that every test set Ts for f on circuits of size S′(n) = S(n)+n
satisfies |Ts′ | ≥ 2n. Observe that for every circuit C of size S(n) with n inputs and for all x of length n, there
is a circuit Cx of size at most S′(n) = S(n)+n which agrees with C on all inputs except x, where Cx and C
disagree. In particular, Cx can use a tree of n−1 gates that outputs 1 if and only if the input equals x, and
take the XOR of this tree’s output with the circuit C.
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So given an n-input circuit C computing f with size at most S′(n), in order to distinguish C from all of
the Cx, x must be included in Ts′ . That is, all x of length n = Ω(S−1(s)) must be in Ts′ .

(Part 2.) Suppose the circuit complexity of f is greater than n ·S(n) on inputs of length n. Then there
cannot be a collection D of O(n/ε2) size-S(n) circuits such that for all x ∈ {0,1}n, C(x) = f (x) for more
than a 1/2 fraction of C in D : otherwise, taking the MAJORITY of the outputs of circuits in D would
yield a circuit for f of complexity at most n · S(n). Therefore, item 1 of Theorem 2.2 does not hold with
p = 1/2, and hence item 2 must hold for q≤ 1/2− ε for every sufficiently small ε .

Setting ε appropriately, this implies for all input lengths m ranging from n to n ·S(n), there is a set Xm,s

of m-bit strings x with labels f (x) and cardinality O(S(n) logS(n)), such that every circuit of size S(n)
taking m bits of input fails to compute f correctly on at least 1/10 of the x in the set Xm,s. By adding all
strings in Xm,s to the set Xs, we can refute any circuit with more than n inputs and size S(n), with a set of
O(nS(n)2 logS(n)) strings.

For input lengths m that are below n, there may be a size S(n) circuit for f that works on all m-bit
strings. To cover this case, we simply include (with labels for the value of f ) all bit strings of length up
to n− 1 in the set Xs as well – then, every circuit of size s and at most n inputs can also be checked. In
total, we have a test set Xs of cardinality O(2n +nS(n)2 logS(n)). For size s circuits, we set s := S(n), i.e.,
n = S−1(s), so the cardinality is O(2S−1(s)+S−1(s) · s2 logs) as a function of the circuit size s. �

In the above theorems, the small cardinality test suites Xs have the following structure: for input sizes
which are “too long” to support size-s circuits for f , we have small sets of counterexamples from the
circuit-input game, but as the input sizes decrease, we reach a threshold where it’s possible to compute f
within size s, and must start including all possible inputs and their labels.

When we consider polynomial-size circuits in general, we simply obtain an equivalence:

Corollary 4.2 A function f is in P/poly if and only if for some ε > 0, the data complexity of testing
circuits for f is greater than 2sε

for almost every s.

Proof. If f is in P/poly, then it is in SIZE(nk) for some constant k. By Part 1 of Theorem 1.2, the data
complexity of testing circuits for f is at least 2Ω(s1/k). On the other hand, if f is not in P/poly, then it is
not in SIZE(nk+1) for every k. By Part 2 of Theorem 1.2, the data complexity of testing circuits for f is
then at most O(sk logs+2s1/k

) for all k. �

Reminder of Corollary 1.1 NP 6⊂ P/poly (resp. NP 6⊂ i.o.P/poly) if and only if for every ε > 0 and for
infinitely many s (resp. for every ε > 0 and for every s), the data complexity of testing size-s circuits for
SAT is at most O

(
2sε)

.

5 Conclusion

There are many questions raised by this work that seem worth exploring further, regarding the circum-
vention of natural proofs and regarding the testing of circuits for computing functions. Here are three
questions we particularly like.

1. Can new circuit lower bounds be proved, based on the guidance of Theorem 1.1? Again, this theo-
rem tells us that we should expect there to be combinatorial properties useful against polynomial-size
SAT solving circuits, or in general, circuits which never err when they print solutions to their input
instances.

To be more concrete, let CLIQUEn/2
n2 : {0,1}n2 →{0,1}n be the function which treats its input as an

n×n adjacency matrix A, and outputs a bit vector specifying a clique of size at least n/2 in A, when
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one exists (otherwise, it outputs the all-zeros vector). Can one prove that computing CLIQUEn/2
n2

requires circuits of size at least 4n2 over the basis of all fan-in two Boolean functions?

2. Can the equivalence of Theorem 1.2 be tightened further? Currently there is a gap between the
two implications in the equivalence, amounting to a multiplicative factor of n. Could this gap be
necessary?

3. How does the complexity of f relate to the complexity of testing circuits for f ? Here we mean
“complexity” in the usual, most generic sense: if f is known to be computable in some particular
complexity class, what can we say about the complexity class(es) that support testing for f ?

Acknowledgements We thank the ITCS reviewers for their helpful comments. In particular, one re-
viewer improved an earlier version of Theorem 2.3.
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