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Abstract. We present a new way to encode weighted sums into
unweighted pairwise constraints, obtaining the following results.

– Define the k-SUM problem to be: given n integers in [−n2k, n2k]
are there k which sum to zero? (It is well known that the same
problem over arbitrary integers is equivalent to the above def-
inition, by linear-time randomized reductions.) We prove that
this definition of k-SUM remains W[1]-hard, and is in fact W[1]-
complete: k-SUM can be reduced to f(k) · no(1) instances of
k-Clique.

– The maximum node-weighted k-Clique and node-weighted k-
dominating set problems can be reduced to no(1) instances of
the unweighted k-Clique and k-dominating set problems, re-
spectively. This implies a strong equivalence between the time
complexities of the node weighted problems and the unweighted
problems: any polynomial improvement on one would imply an
improvement for the other.

– A triangle of weight 0 in a node weighted graph with m edges
can be deterministically found in m1.41 time.

1 Introduction

One of the most basic problems over integers, studied in geometry, cryptography,
and combinatorics, is k-SUM, the parameterized version of the classical NP-
complete problem SUBSET-SUM.

Definition 1.1 (k-SUM). The (k,M)-SUM problem is to determine, given n
integers x1, . . . , xn ∈ [0,M ] and a target integer t ∈ [0,M ], if there exists a
subset S ⊆ [n] of size |S| = k such that

∑
i∈S xi = t. 1 We define k-SUM ,

(k, n2k)-SUM.

Our definition of k-SUM is justified via the following known proposition:

Proposition 1.2. Every instance S of (k,M)-SUM can be randomly reduced in
O(kn logM) time to an instance S′ of k-SUM as defined above.

1 Without loss of generality, the range of integers can be [−M,M ] and the target
integer can be zero.



2 Amir Abboud, Kevin Lewi, and Ryan Williams

That is, there is an efficient randomized reduction from k-SUM over arbitrary
integers, which we call k-SUM-Z, to our definition of k-SUM. Furthermore, we
show in the full version that this reduction can be made deterministic under
standard hardness assumptions.

A classical meet-in-the-middle algorithm solves k-SUM in Õ(ndk/2e) time and
it has been a longstanding open problem to obtain an O(ndk/2e−ε) algorithm for
any integer k ≥ 3 and constant ε > 0. Logarithmic improvements are known
for the k = 3 case [5,18] (that is, the famous 3-SUM problem). The k-SUM
conjecture [25,1] states that k-SUM requires ndk/2e−o(1) time and is known to
imply tight lower bounds for many problems in computational geometry [17,19,6]
(and many more) and has recently been used to show conditional lower bounds
for discrete problems as well [25,29,21,2]. A matching Ω(ndk/2e) lower bound for
k-SUM was shown for a restricted model of computation called k-linear decision
trees (LDTs) [15,3], although it was recently shown that depth O(nk/2

√
log n)

suffices for (2k − 2)-LDTs [18]. It is also known that if there is an unbounded
function s : N → N such that for infinitely many k, k-SUM is in nk/s(k), then
the Exponential Time Hypothesis is false [26].

Despite intensive research on this simple problem, our understanding is still
lacking in many ways, one of which is from the viewpoint of parameterized
complexity. In their seminal work on parameterized intractability, Downey and
Fellows [12,13] proved that k-SUM-Z is W[1]-hard and is contained in W[P ]. The
even simpler Perfect Code problem was conjectured to lie between the classes
W[1] and W[2] [13] until Cesati proved it was W[1]-complete in 2002 [10]. Clas-
sifying k-SUM-Z within a finite level of the W-hierarchy was open until in 2007,
when Buss and Islam [8] proved that k-SUM-Z ∈W[3].

The primary contribution of this work is a novel and generic way to efficiently
convert problems concerning sums of numbers into problems on unweighted pair-
wise constraints. We call this technique “Losing weight by gaining edges” and
report several interesting applications of it. One application is a new parame-
terized reduction from k-SUM to k-Clique and therefore the resolution of the
parameterized complexity of k-SUM (for numbers in [−n2k, n2k]). Under stan-
dard lower bound hypotheses, we also obtain a deterministic reduction from
k-SUM-Z to k-Clique as well.

Theorem 1.3. k-SUM is W[1]-complete.

The significance of showing W[1]-hardness for a problem is well known (as
it rules out FPT algorithms). The significance of showing that a problem is in
W[1] is less obvious, so let us provide some motivation. First, although W[1]-
complete problems are probably not FPT, prominent problems in W[1] (such as
k-Clique) can still be solved substantially faster than exhaustive search over all(
n
k

)
subsets [23]. In contrast, analogous problems in W[2] (such as k-Dominating

Set) do not have such algorithms unless CNF Satisfiability is in 2δn time for
some δ < 1 [26], which is a major open problem in exact algorithms. There-
fore, understanding which parameterized problems lie in W[1] is closely related
to understanding which problems can be solved faster than exhaustive search.
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Second, showing that a problem is in W[1] rather than W[3] means that it can be
expressed in an apparently weaker logic than before, with fewer quantifiers [16].
That is, putting a problem in W[1] decreases the descriptive complexity of the
problem.

Theorem 1.3 has applications to parameterized complexity, yielding a new
characterization of the class W[1] as the problems FPT-reducible to k-SUM.
Since k-SUM is quite different in nature from the previously known W[1]-complete
problems, we are able to put other such “intermediate” problems in W[1], in-
cluding weighted graph problems and problems with application to coding the-
ory such as Weight Distribution [9] (for which the details are given in the full
version).

To show that k-SUM ∈ W[1], we prove a very tight reduction from k-SUM
to k-Clique. Given an instance of k-SUM on n numbers, we generate f(k) ·no(1)
instances of k-Clique on n node graphs, such that one of these graphs contains a
k-clique if and only if our k-SUM instance has a solution. This implies that any
algorithm for k-Clique running in time O(nc) for some c ≥ 2 yields an algorithm
for k-SUM running in time nc+o(1). Hence, the k-SUM conjecture implies an
ndk/2e−o(1) lower bound for k-Clique as well.

Generalizing our ideas further, we are able to prove surprising consequences
regarding other weighted problems.

Removing node weights. Two fundamental graph problems are k-Clique and
k-Dominating Set. Natural extensions of these problems allow the input graph
to have weights on its nodes. The problem can then be to find a k-clique or a k-
dominating set of minimum or maximum sum of node weights (the min and max
versions), or to find a k-clique or a k-dominating set with total weight exactly 0
(the exact version, defined below).

Definition 1.4 (The Node-Weight k-Clique-Sum Problem). For integers
k,M > 0, the (k,M)-NW-CLIQUE problem is to determine, given a graph G, a
node-weight function w : V (G)→ [0,M ], and a target weight t ∈ [0,M ], if there
is a set S of k nodes which form a clique such that

∑
v∈S w(v) = t. We define

the Node-Weight k-Clique-Sum problem as (k, n2k)-NW-CLIQUE.

Definition 1.5 (Node-Weight k-Dominating-Set-Sum). For an integer k >
0, the Node-Weight k-Dominating-Set-Sum problem is to determine, given a
graph G, a node-weight function w : V (G) → [0, n2k], and a target weight
t ∈ [0, n2k], if there is a set S of k nodes which form a dominating set such
that

∑
v∈S w(v) = t.

These additional node weights increase the expressibility of the problem and
allow us to capture more applications. How much harder are these node weighted
versions compared to the unweighted versions? By weight scaling arguments, one
can show that the “exact” version is harder than the max and min versions, in
the sense that any algorithm for “exact” implies an algorithm for max or min
with only a logarithmic overhead [22] (and Theorem 3.3 in [29]). But how much
harder is (for example) Node-Weight k-Clique-Sum than the case where there
are no weights at all?
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For k divisible by 3, the best k-Clique algorithms reduce the problem to
3-Clique on nk/3 nodes, then use an O(nω) time algorithm for triangle de-
tection [20] for a running time of O(nωk/3) [23]. This reduction to the k =
3 case works for the node weighted case as well; combined with the recent
nω+o(1) algorithms for node weighted triangle (3-clique) problems [11,29], we
obtain nωk/3+o(1) running times for node weighted k-clique problems. The best
k-Dominating Set algorithms reduce the problem to a rectangular matrix mul-
tiplication of matrices of dimensions nk/2 × n and n × nk/2 and run in time
nk+o(1) [14]. These algorithms allow us to find all k-dominating sets in the graph
and therefore can also solve the node weighted versions without extra cost.

Therefore, the state of the art algorithms for k-Clique and k-Dominating Set
suggest that adding node weights does not make the problems much harder. Is
that due to our current algorithms for the unweighted problems, or is there a
deeper connection? Using the “Losing weight by gaining edges” ideas, we show
that the node weighted versions of k-Clique and k-Dominating Set (and, in fact,
any problem that allows us to implement certain “pairwise constraints”) are
essentially “equivalent” to the unweighted versions.

Theorem 1.6. If k-Clique on n node and m edge graphs can be solved in time
T (n,m, k), then Node-Weight k-Clique-Sum on n node and m edge graphs can
be solved in time no(1) ·T (kn, k2m, k). If k-Dominating Set on n node graphs can
be solved in time T (n, k), then Node-Weight k-Dominating-Set on n node graphs
can be solved in time no(1) · T (k2n, k).

Interestingly, Theorem 1.6 yields a short and simple nω+o(1) algorithm for
the node-weighted triangle problems, while a series of papers were required to
recently conclude the same upper bound using different techniques [28,30,11,29].
Moreover, unlike the previous techniques, our approach extends to k > 3 and
applies to more problems like k-Dominating Set.

Applying Theorem 1.6 to the O(m
2ω

ω+1 ) triangle detection algorithm of Alon,
Yuster and Zwick [4], we obtain a deterministic algorithm for Node-Weight
Triangle-Sum in sparse graphs, improving the previous nω+o(1) upper bound [29]
and matching the running time of the best randomized algorithm [29].

Corollary 1.7. Node-Weight Triangle-Sum can be solved deterministically in
m1.41+o(1) time.

1.1 Overview of the proofs

Let us give some intuition for Theorem 1.3. Both the containment in W[1] and
the hardness for W[1] require new technical ideas. Downey and Fellows [12,13]
proved that k-SUM-Z is W[1]-hard by a reduction requiring fairly large numbers:
they are exponential in n, but can still be generated in an FPT way. To prove
that k-SUM is W[1]-hard even when the numbers are only exponential in k log n,
we need a much more efficient encoding of k-Clique instances. We apply some
machinery from additive combinatorics, namely a construction of large sets of
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integers avoiding trivial solutions to the linear equation
∑k−1
i=1 xi = (k−1)xk [24].

These sets allow us to efficiently “pack” a k-Clique instance into a (
(
k
2

)
+k)-SUM

instance on small numbers.
Proving that k-SUM is in W[1] takes several technical steps. We provide a

parameterized reduction from k-SUM on n numbers to only f(k) · no(1) graphs
on O(kn) nodes, such that some graph has a k-clique if and only if the orig-
inal n numbers have a k-SUM. To efficiently reduce from numbers to graphs,
we first reduce the numbers to an analogous problem on vectors. We define an
intermediate problem (k,M)-VECTOR-SUM, in which one is given a list of n vec-
tors from {−kM, . . . , 0, . . . , kM}d, and is asked to determine if there are k vec-
tors which sum to the all-zero vector. We give an FPT reduction from k-SUM
to (k,M)-VECTOR-SUM where M and d are “small” (such that Md is approxi-
mately equal to the original weights of the k-SUM instance). Next, we “push”
the weights in these vectors onto the edges of a graph connecting the vectors,
where the edge weights are much smaller than the original numbers: we re-
duce from (k,M)-VECTOR-SUM to edge-weighted k-clique-sum using a polynomial
“squaring trick” which creates a graph with “small” edge weights, closely related
in size to M . Finally, we reduce from the weighted problem to the unweighted
version of the problem by brute-forcing all feasible weight combinations on the
edges; as the edge weights are small, this creates f(k) ·no(1) unweighted k-Clique
instances for some function f .

Combining all these steps into one, one can view our approach as follows. We
enumerate over all

(
k
2

)
-tuples of numbers t = (αi,j)i,j∈[k] such that

∑
i,j αi,j = 0

where αi,j ∈ [−M,M ] for M = f(k) · poly log n, and for each such tuple t we
generate an instance of the unweighted problem. In this instance, two nodes are
allowed to both be a part of our final solution (e.g. there is an edge between
them in the k-clique case) if and only if some expression on the weights of the
objects vi and vj evaluates to F (w(vi), w(vj)) = αi,j . The formulas are defined,
via the “squaring trick”, in such a way that there are k nodes satisfying these(
k
2

)
equations for some

(
k
2

)
-tuple t if and only if the sum of the weights of these

k nodes is 0.
To implement our approach for k-Dominating Set we follow similar steps,

except that we cannot implement the constraints on having a certain pair of
objects in our solution by removing the edge between them anymore, since this
does not prevent them from being in a feasible k-dominating set. This can be
done, however, by adding extra nodes X to the graph such that the inclusion
of pairs of nodes vi, vj in the solution S that do not satisfy our equations,
F (w(vi), w(vj)) 6= αi,j , will prevent S from dominating all the nodes in X.

1.2 Related work

There has been recent work in relating the complexity of k-SUM and variations
of k-Clique for the specific case of k = 3. Pǎtraşcu [25] shows a tight reduction
from 3-SUM to listing 3-cliques; a reduction from listing 3-cliques to 3-SUM is
given by Jafargholi and Viola [21]. Vassilevska and Williams [29] consider the
exact edge-weight 3-clique problem and give a tight reduction from 3-SUM. For
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the case of k > 3, less is known, as the techniques used for the case of k = 3
do not seem to generalize easily. Abboud and Lewi [1] give reductions between
k-SUM and various exact edge-weighted graph problems where the goal is to
find an instance of a specific subgraph whose edge weights sum to 0.

2 Preliminaries

For i < j ∈ Z, define [i, j] , {i, . . . , j}. As shorthand, we define [n] , [1, n]. For
a vector v ∈ Zd, we denote by v[j] the value in the jth coordinate of v. We let
0 denote the all zeros vector. The default domain and range of a function is N.

We define the k-Clique problem as follows.

Definition 2.1 (The k-Clique Problem). For integers k, n,m > 0, the k-
clique problem is to determine, given a graph G, if there is a size-k subset S ⊆ [n]
such that S is a clique in G.

The following problems are referred to in Corollary 3.8. They are simply the
unparameterized versions of k-SUM and Exact Edge-Weight k-Clique, respec-
tively.

Definition 2.2 (The Subset-SUM Problem). The Subset-SUM problem is
to determine, given a set of integers x1, . . . , xn, t, if there exists a subset S ⊆ [n]
such that

∑
i∈S xi = t.

Definition 2.3 (The Exact Edge-Weight Clique Problem). For integers
n,m,M > 0, the Exact Edge-Weight k-Clique problem is to determine, given an
instance of a graph G on n vertices and m edges, a weight function w : E(G)→
[−M,M ], if there exists a set of nodes which form a clique with total weight 0.

3 From numbers to edges

Our results begin by showing how to reduce k-SUM to k-Clique. To do this, we
first give a new reduction from k-SUM to k-Vector-Sum on n vectors in Cd for a
set C which is relatively small compared to the numbers in the original instance.
From k-Vector-Sum, we give a reduction to Edge-Weight k-Clique-Sum with
small weights. Then, we can brute-force all possibilities for the

(
k
2

)
edge weights

for k-SUM and reduce to the (unweighted) k-Clique problem. Altogether, we
conclude that k-SUM is in W[1].

3.1 Reducing k-SUM to k-Vector-Sum

We present a generic way to map numbers into vectors over small numbers such
that the k-sums are preserved. We define the k-Vector-Sum problem as follows.

Definition 3.1 (The k-Vector-Sum Problem). For integers k, n,M, d >
0, the k-vector-sum problem (k,M)-VECTOR-SUM is to determine, given vectors
v1, . . . ,vn, t ∈ [0, kM ]d, if there is a size-k subset S ⊆ [n] such that

∑
i∈S vi = t.
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Note that the problem was considered by Bhattacharyya et al. [7] and also
by Cattaneo and Perdrix [9].

Lemma 3.2. Let k, p, d, s,M ∈ N satisfy k < p, pd ≥ kM + 1, and s =
(k + 1)d−1. There is a collection of mappings f1, . . . , fs : [0,M ] × [0, kM ] →
[−kp, kp]d, each computable in time O(poly logM + kd), such that for all num-
bers x1, . . . , xk ∈ [0,M ] and targets t ∈ [0, kM ],

k∑
j=1

xj = t ⇔ ∃ i ∈ [s] such that

k∑
j=1

fi(xj , t) = 0.

The idea is simple: in a natural translation of numbers into vectors, to pre-
serve k-sums we have to keep track of the carries that may occur. These fi’s
effectively try “all possible” carries there can be among a sum of k numbers.
The proof is given in the full version.

Corollary 3.3. Let k, p, d,M, n > 0 be integers with k < p and pd ≥ kM + 1.
k-SUM on n integers in the range [0,M ] can be reduced to O(kd) instances of
(k, p− 1)-VECTOR-SUM on n vectors in [0, p− 1]d.

3.2 Reducing to k-Clique

Here, we consider a generalization of the k-SUM problem—namely, the Node-
Weight k-Clique-Sum problem. We give a reduction from Node-Weight k-Clique-
Sum to Edge-Weight k-Clique-Sum (defined below), where the new edge weights
are much smaller than the original node weights. We then show how to reduce to
many instances of the unweighted version of the problem, where each instance
corresponds to a possible setting of edge weights. Then, we give an application
of this general reduction to the Node-Weight k-Clique-Sum problem.

Definition 3.4 (The Edge-Weight k-Clique-Sum Problem). For integers
k,M > 0, the edge-weight k-clique-sum problem (k,M)-EW-CLIQUE is to deter-
mine, given a graph G, an edge-weight function w : E(G)→ [0,M ], and a target
weight t ∈ [0,M ], if there is a set S of k nodes which form a clique such that∑

(u,v)∈S w(u, v) = t.

Lemma 3.5. Let k, p, d,M > 0 be integers such that k < p and pd ≥ kM + 1,
and let M ′ = O(k3dp2). (k,M)-NW-CLIQUE can be deterministically reduced to
O(kd) instances of (k,M ′)-EW-CLIQUE in time O(kd · n2 · poly logM).

Thinking of p + d as “small”, but poly(p, d) ≈ kM as “large”, we get a
substantial reduction in the weights of the problem by “spreading” the node
weights over the edges.

Proof. Let G = (V,E) be a graph with a node weight function w : V → [0,M ]
and a target number t ∈ [0, kM ]. Recall the mappings fi : [0,M ]××[0, kM ]→
[−kp, kp]d for i ∈ [s] from Lemma 3.2, which maps numbers from [0,M ] into a
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collection of s = O(kd) length-d vectors with entries in [−kp, kp]. We translate
the node-weight vector problem into an edge-weight problem via a “squaring
trick,” as follows. For each i ∈ [s], we define an edge weight function wi : E →
[−M ′,M ′]. For (u, v) ∈ E, let u = fi(w(u), t) and v = fi(w(v), t), and define

wi(u, v) ,
d∑
j=1

(
u[j]2 + v[j]2 + 2(k − 1)u[j] · v[j]

)
.

Note that for M ′ = O(kdp2), wi(u, v) ∈ [−M ′,M ′]. We show that there is a k-
clique in (G,w) of node-weight t if and only if for some i ∈ [s], the edge-weighted
graph (G,wi) contains a k-clique of edge-weight 0. First, observe that for any k
vectors v1, . . . ,vk ∈ Zd,

k∑
i=1

vi = 0 ⇐⇒
d∑
j=1

(
k∑
i=1

vi[j]

)2

= 0.

Consider a set S = {u1, . . . , uk} ⊆ V that forms a k-clique in G. For any
i ∈ [s] and ua, ub ∈ S, let ua = fi(w(ua), t) and ub = fi(w(ub), t). Then, the
edge-weight of S in (G,wi) is

∑
1≤a<b≤k

wi(ua, ub) = (k − 1)

k∑
a=1

d∑
j=1

ua[j]2 + 2(k − 1)
∑

1≤a<b≤k

d∑
j=1

ua[j] · ub[j].

Since the sum is evaluated over all pairs a, b ∈ [k] where a < b, the above
quantity is equal to

(k − 1) ·
d∑
j=1

(∑
u∈S

fi(w(u), t)[j]

)2

.

Therefore, for all i ∈ [s], the edge-weight of S in (G,wi) equals 0 if and only
if the sum of the vectors

∑
u∈S fi(w(u), t) equals 0. And, by the properties of

the mappings fi from Lemma 3.2, the latter occurs for some i ∈ [s] if and only
if the node-weight of S in (G,w),

∑
u∈S w(u), is equal to t, as desired.

We observe that in the graphs produced by the above reduction, all k-cliques
have non-negative weight. Therefore, Lemma 3.5 can also be viewed as a reduc-
tion to the “minimum-weight” k-Clique problem with edge weights, where the
edge sum is minimized.

Finally, small weights on edges can simply be eliminated using a brute-force
step. The proof of the following lemma is given in the full version.

Lemma 3.6. For all integers k,M > 0, there is an O(M(k
2) ·n2) time reduction

from the problem (k,M)-EW-CLIQUE to O(M(k
2)) instances of k-Clique on n nodes

and m ·
(
k
2

)
edges.
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3.3 k-SUM is in W[1]

Using the above lemmas, we can efficiently reduce k-SUM to k-Clique. Consider
a k-SUM instance (S, t) where S = {x1, . . . , xn} ⊆ [0,M ] and t ∈ [0, kM ] with
M = n2k. Let G = (V,E) be a node-weighted clique on n nodes V = {v1, . . . , vn}
with weight function w : V → [0,M ] such that w(vi) = xi for all i ∈ [n].
Clearly, (S, t) has a k-SUM solution if and only if the instance (G,w, t) of
(k,M)-NW-CLIQUE has a solution.

Set d = dlog n/ log log ne and p = dlog4k ne, so that pd ≥ (n)4k > kM .
Using Lemma 3.5 the instance (G,w, t) of (k,M)-NW-CLIQUE can be reduced to
O(kd) = O(nlog k/ log logn) instances of (k,M ′)-EW-CLIQUE, where M ′ = O(k3 ·
log8k+1 n/ log log n). Then, using Lemma 3.6, we can generate g(n, k) = O(n

log k
log log n ·

k3k
2

log8k2+k n) graphs on n nodes and O(n2) edges such that some graph has
a k-Clique if and only if the original k-SUM instance has a solution.

For constant k, note that g(n, k) = no(1), and hence:

Theorem 3.7. For any c > 2, if k-Clique can be solved in time O(nc), then
k-SUM can be solved in time nc+o(1).

Furthermore, we remark that by applying the above reduction from k-SUM to
k-Clique to the respective unparameterized versions of these problems, we obtain
a reduction from Subset-SUM on arbitrary weights to Exact Edge-Weight Clique
with small edge weights.

Corollary 3.8. For any ε > 0, Subset-SUM on n numbers in [−2O(n), 2O(n)]
can be reduced to 2εn instances of Exact Edge-Weight Clique on n nodes with
edge weights are in [−nO(1/ε), nO(1/ε)].

Note that Subset-SUM on n numbers in [−2O(n), 2O(n)] is as hard as the
general case of Subset-SUM (by Lemma ??), and the fastest known algorithm
for Subset-SUM on n numbers runs in time O(2n/2). The unweighted Max-Clique
problem, which asks for the largest clique in a graph on n nodes, can be solved
in time O(2n/4) [27]. Corollary 3.8 shows that even when the edge weights are
small, the edge-weighted version of Max-Clique requires time Ω(2n/2) unless
Subset-SUM can be solved faster.

An FPT Reduction. We show how to make the reduction fixed-parameter
tractable. We can modify the oracle reduction for k-Clique above to get a many-
one reduction to k-Clique if we simply take the disjoint union of the g(n, k)
k-Clique instances as a single k-Clique instance. The resulting graph has n ·
g(n, k) nodes, O(n2 · g(n, k)) edges, and has a k-clique if and only if one of the
original graphs has a k-Clique. Then, we make the following standard argument
to appropriately bound g(n, k) via case analysis. If k < dlog log ne, then g(n, k) ≤
no(1) · 2f(k)·poly(k). If k ≥ dlog log ne, then since n ≤ 22

k

, we have that g(n, k) ≤
22

k+f(k)·poly(k). Therefore, g(n, k) ≤ no(1) ·h(k) for some computable h : N→ N,
and we have shown the following:

Lemma 3.9. k-SUM is in W[1].
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In the full version, we show how to obtain a randomized FPT reduction
from the k-SUM problem over the integers to k-Clique, and how under plausible
circuit lower bound assumptions, we can derandomize this reduction to show
that k-SUM over the integers is in W[1]. This yields the first half of Theorem 1.3
(and we show the remainder, that k-SUM is W[1]-hard, in the next section).

3.4 Node-Weight k-Clique-Sum

The reduction of Section 3.3 shows that the Node-Weight k-Clique-Sum problem
can be reduced to no(1) instances of k-Clique, when k is a fixed constant. We
observe that if the input graph has m edges, then the graphs generated by the
reduction have no more than k2m edges. Therefore, we have a tight reduction
from node-weight clique to k-Clique.

This concludes the proof of the first half of Theorem 1.6 referencing k-Clique.
We defer the proof of the second half of Theorem 1.6 concerning k-Dominating Set
to the full version.

4 From k-Clique to k-SUM

In this section, we give a new reduction from k-clique to k-SUM in which the
numbers generated are all in the interval [−n2k, n2k]. This proves that k-SUM
is in fact W[1]-hard. We can view the result as an alternate proof for the W[1]-
hardness of k-SUM without use of the Perfect Code problem, as done by Downey
and Fellows [12]. The reduction is given from k-Clique to k-Vector-Sum (recall
Definition 3.1), and then from k-Vector-Sum to k-SUM.

The proof of the following lemma is given in the full version.

Lemma 4.1. For an integer k > 1, k-Clique on n nodes and m edges reduces to
an instance of (k +

(
k
2

)
, k · n1+o(1))-VECTOR-SUM deterministically in time O(n2).

The following lemma gives a simple reduction from k-Vector-Sum to k-SUM,
by the usual trick of converting from vectors to integers (via a Freiman isomor-
phism of order k). We give the proof in the full version.

Lemma 4.2. (k,M)-VECTOR-SUM can be reduced to k-SUM on n integers in the
range [0, (kM + 1)d] in O(n logM) time.

We remark that in some cases, the proof can be changed slightly to yield
smaller numbers in the k-SUM instance produced by the reduction. In partic-
ular, when reducing k-Clique to k-Vector-Sum, only the numbers in the first k
coordinates can be as large as k · n1+o(1) while the numbers in the last k2 + 1
coordinates are bounded by k, and therefore, when reducing to (k +

(
k
2

)
,M)-SUM

on kn +
(
k
2

)
m numbers, the numbers generated can be bounded by M = kd ·

(kn1+o(1))k ·kk2+1 = O(k2k
2 ·nk+o(k)). In other words, we have reduced k-Clique

to k′-SUM with numbers in the range
[
−n
√
k′ , n

√
k′
]
, where k′ = k +

(
k
2

)
.

The composition of Lemma 4.1 and Lemma 4.2 yields an FPT reduction, and
we have obtained:
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Lemma 4.3. k-SUM is W[1]-hard.

This concludes the proof of Theorem 1.3.
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9. David Cattanéo and Simon Perdrix. The parameterized complexity
of domination-type problems and application to linear codes. CoRR,
abs/1209.5267, 2012.

10. Marco Cesati. Perfect Code is W[1]-complete. Inf. Process. Lett., 81(3):163–
168, 2002.

11. Artur Czumaj and Andrzej Lingas. Finding a heaviest vertex-weighted trian-
gle is not harder than matrix multiplication. SIAM J. Comput., 39(2):431–
444, 2009.

12. Rodney G. Downey and Michael R. Fellows. Fixed-parameter intractability.
In Structure in Complexity Theory Conference, pages 36–49, 1992.

13. Rodney G. Downey and Michael R. Fellows. Fixed-parameter tractabil-
ity and completeness II: On completeness for W[1]. Theor. Comput. Sci.,
141(1&2):109–131, 1995.

14. Friedrich Eisenbrand and Fabrizio Grandoni. On the complexity of fixed
parameter clique and dominating set. Theor. Comput. Sci., 326(1-3):57–67,
2004.

15. Jeff Erickson. Lower bounds for linear satisfiability problems. In SODA,
pages 388–395, 1995.



12 Amir Abboud, Kevin Lewi, and Ryan Williams

16. Jörg Flum and Martin Grohe. Parameterized Complexity Theory. Springer
Verlag, 2006.

17. Anka Gajentaan and Mark H Overmars. On a class of O(n2) problems in
computational geometry. Computational Geometry, 5(3):165 – 185, 1995.

18. A. Grønlund and S. Pettie. Threesomes, Degenerates, and Love Triangles.
CoRR, abs/1404.0799, 2014.

19. Antonio Hernández-Barrera. Finding an O(n2 log n) Algorithm Is Sometimes
Hard. In CCCG, pages 289–294, 1996.

20. Alon Itai and Michael Rodeh. Finding a minimum circuit in a graph. STOC
’77, pages 1–10, New York, NY, USA, 1977. ACM.

21. Zahra Jafargholi and Emanuele Viola. 3SUM, 3XOR, Triangles. CoRR,
abs/1305.3827, 2013.

22. Jesper Nederlof, Erik Jan van Leeuwen, and Ruben van der Zwaan. Reducing
a target interval to a few exact queries. In MFCS, pages 718–727, 2012.
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28. Virginia Vassilevska and Ryan Williams. Finding a maximum weight triangle

in n3-delta time, with applications. In STOC, pages 225–231, 2006.
29. Virginia Vassilevska and Ryan Williams. Finding, minimizing, and counting

weighted subgraphs. In STOC, pages 455–464, 2009.
30. Virginia Vassilevska, Ryan Williams, and Raphael Yuster. Finding the small-

est h-subgraph in real weighted graphs and related problems. In ICALP (1),
pages 262–273, 2006.


	Losing Weight by Gaining Edges

