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It is shown that the integer linear programming problem with a fixed number of variables is
polynomially solvable. The proof depends on methods from geometry of numbers.

The integer linear programming problem is formulated as follows. Let n and m be
positive integers, 4 an m X n-matrix with integral coefficients, and b € 7™. The
question is to decide whether there exists a vector x & 7" satisfying the system of m
inequalities 4x < b. No algorithm for the solution of this problem is known which has
a running time that is bounded by a polynomial function of the length of the data. This
length may, for our purposes, be defined to be n - m - log(a + 2), where a denotes the
maximum of the absolute values of the coefficients of 4 and b. Indeed, no such
polynomial algorithm is likely to exist, since the problem in question is NP-complete [3],
{12].

In this paper we consider the integer linear programming problem with a fixed value
of n. In the case n =1 it is trivial to design a polynomial algorithm for the solution of
the problem. For »n =2, Hirschberg and Wong [5] and Kannan [6] have given
polynomial algorithms in special cases. A complete treatment of the case n =2 was
given by Scarf [10]. It was conjectured [5], [10] that for any fixed value of n there exists
a polynomial algorithm for the solution of the integer linear programming problem. In
the present paper we prove this conjecture by exhibiting such an algorithm. The degree
of the polynomial by which the running time of our algorithm can be bounded is an
exponential function of n.

Our algorithm is described in §1. Using tools from geometry of numbers [1] we show
that the problem can be transformed into an equivalent one having the following
additional property: either the existence of a vector x € Z" satisfying Ax < b is
obvious; or it is known that the last coordinate of any such x belongs to an interval
whose length iz bounded by a constant only depending on n. In the latter case, the
problem is reduced to a bounded number of lower dimensional problems.

If in the original problem each coordinate of x is required to be in {0,1}, no
transformation of the problem is needed to achieve the condition just stated. This
suggests that in this case our algorithm is equivalent to complete enumeration. We
remark that the {0, 1} linear programming problem is NP-complete.

In the general case we need two auxiliary algorithms for the construction of the
required transformation. The first of these, which “remodels™ the convex set {x € R":
Ax < b}, is given in §2. L. Lovdsz observed that my original algorithm for this could
be made polynomial even for varying n, by employing the polynomial solvability of
the linear programming problem [8], [4]. I am indebted to Lovasz for permission to
describe the improved algorithm in §2.
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The second auxiliary algorithm is a reduction process for n-dimensional lattices.
Such an algorithm, also due to Lovasz, appeared n [9, §1], and a brief sketch 1s given
i §3 of the present paper. This algorithm 1s polynomial even for varyng n. It
supersedes the much mferior algorithm that was described in an earher version of this
paper.

In §4 we prove, following a suggestion of P van Emde Boas, that the integer linear
programming problem with a fixed value of m 1s also polynomually solvable This i1s an
mmmediate consequence of our main result.

§5 1s devoted to the muxed integer lLnear programmung problem. Combining our
methods with Khachiyan’s results {8], [4] we show that this problem s polynomially
solvable for any tixed value of the number of mteger variables This generalizes both
our main 1esult and Khachiyan’s theorem

The algorithms presented 1n this paper were designed for theoretical purposes only,
and there are several modifications that might improve their practical performance. It
1s to be expected that the practical value of our algorithms 1s restricted to small values
of n.

It 15 a pleasure to acknowledge my indebtedness to P. van Emde Boas, not only for
permission to mclude §4, but also for suggesting the problem solved in this paper and
for several inspiring and stimulating discussions.

1. Description of the algorithm. Let K denote the closed convex set
K={xeR" 4x < b}

The question to be decided 1s whether K N Z" = @ 1In the description of the algorithm
that follows, we make the following two simplifying assumptions about K:

(1) K 1s bounded;

(2) K has positive volume.

The first assumption 1s justified by the following result, which is obtamed by
combiming a theorem of Von zur Gathen and Sieveking [12] with Hadamard’s
determinant 1nequality (cf. (6) below)  the set K N Z" 1s nonempty 1f and only if
K N Z" contains a vector whose coefficients are bounded by (n 4+ 1)n"/%a” in absolute
value, where a 15 as 1n the introduction. Adding these inequalities to the system makes
K bounded.

For the justification of condition (2) we refer to §2. Under the assumptions (1) and
(2), §2 describes how to construct a nonsmgular endomorphism ¢ of the vector space
R”, such that 7K has a “spherical” appearance. More precisely, let | | denote the
Euclidean length 1n R”, and put

B(p,z)={x€R".[x—p|<z} for pER', zER,,,

the closed ball with center p and radius z. With this notation, the 7 constructed will
satisfy

B(p,1)C 7K C B(p,R) (3)
for some p € 7K, with r and R satisfying
= < ¢, (4)

where ¢, 1s a constant only depending on n.
Let such a 7 be fixed, and put L = 72", This 1s a lattice in R", 1 e, there exists a basis
by,by, ..b, of R such that

L-——ilb,:{}n:mlb, mlEZ(1<l<n)} (5)

=1 =1
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We can take, for example, b, = 7(e), with e, denoting the :th standard basis vector of
R* We call b,,b,, .., b, a basis for L 1f (5) holds. If b,b5, .., b, 1s another basis
for L, then b/=73"_,mb for some n X n-matrix M = (m,)i<,,<n With 1ntegral
coefficients and det(M)= x1. It follows that the positive real number |det(b,,
b,, ., b,)| (the b, being written as column vectors) only depends on L, and not on
the choice of the basis; 1t 1s called the determunant of L, notation: d(L). We can
mterpret d(L) as the volume of the parallelepiped >7_,[0,1)-b,, where [0,1) =
{z €R-0 <z <1}. This interpretation leads to the nequality of Hadamard

d(L) < I:]}]b,l. (6)

The equality sign holds if and only if the basis b,,b,, ..., b, 1s orthogonal. Tt 15 a
classical theorem that I has a basis b;,b,, . .., b, that 1s nearly orthogonal i the
sense that the following mequality holds:

ﬁllb’j < ¢y d(L) (7)

where ¢, 1s a constant only depending on n, cf. [1, Chapter VIII], [11]. In §3 we shall
mdicate a reduction process, 1.e., an algorithm that changes a given basis for L mnto one
satisfying (7).

LrMMmA.  Let by, b,, ..., b, be any basis for L. Then
VxeR" :3ye L:|x—yP<i(bsf+ - +15,]). (8)

Proor We use induction on #, the case n=1 (or n=0) being obvious. Let
L' =S"2)7b,, this 15 a latice i the (n — 1)-dimensional hyperplane H = 3"/ Rb,.
Denote by 4 the distance of b, to H. Clearly we have

h < |b,|. 9)

Now to prove (8), let x € R”. We can find m € Z such that the distance of x ~ mb, to
H1s <1h. Wnte x — mb, = x, + x,, with x; € H and x, perpendicular to H. Then
|x,] <1h <1|b,|. By the mduction hypothesis there exists y; € L such that |x, — y |?
<L(bP+ o+ 1b,_ ). Smce x, is orthogonazl to y, the elemeznty =g/, + mb, of L
now satisfies |x — y[* = |x; =y, + | %o <GBy + - - + b, o[ + [B,[%). This proves
the lemma.

Notice that the proof gives an effective construction of the element y € L that 1s

asserted to exist.
If we number the b, such that |b,| = max{|b,|: 1 < 1 < n}, then (8) imples

VxR Ay € L :|x — y| <ivn|b,l. (10)

Now assume that by, b,, . . ., b, 15 a reduced basis for L 1n the sense that (7) holds,
and let L’ and # have the same meaning as in the proof of the lemma. It 1s easily seen
that

d(L)y=h-d(L"). (11)
From (7), (11) and (6), applied to L', we get

n n—1
[[Ibl< e, d(Ly=c,-h-d(L)y<c,-h- Iﬂ]}lhl

1=
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and therefore, with (9):
c2_] 'bn! <h< 'bn' (12)

After these preparations we describe the procedure by which we decide whether
K NZ"=@ o1, equvalently, 7K N L = @. We assume that b,,b,, . .., b, 1s a basis for
L for which (7) holds, numbered such that |b,| = max{|b].1 < : < n}.

Applymng (10) with x = p we find a vector y € L with |p — y| <1yn|b,|. If y € 7K
then 7K' N L # @, and we are done. Suppose therefore that y & 7K. Then y & B(p, 1),
by (3), so |p— y| > r, and this implies that r <1yn|b,|. Let now H, L', h have the
same meaning as 1n the proof of the lemma. We have

L=L+17b,CH+1b,= \J (H+ kb,).
kez

Hence L is contained m the union of countably many parallel hyperplanes, which
have successive distances i from each other. We are only interested 1n those hyper-
planes that have a nonempty intersection with 7K, these have, by (3), also a nonempty
intersection with B(p, R). Suppose that precisely ¢ of the hyperplanes # + kb, inter-
sect B(p, R). Then we have cleatly £ — 1 <2R/h. By (4) and (12) we have

2R 2re, < epn |b,), h> ey b,

50 t — 1 < ¢,¢,¥n . Hence the number of values for k that have to be considered 15
bounded by a constant only depending on n Which values of & need be considered
can easily be deduced from a representation of p as a hnear combination of b,

by, ..., b,

If we fix the value of k then we restrict attention to those x = 37_, y,b, for which
y, = k; and this leads to an integer programming pioblem with » — | vanables
Vis Vs -« s Yu_1- 1t 18 straightforward to show that the length of the data of this new

problem 1s bounded by a polynomial function of the length of the original data, 1f the
directions of §2 have been followed for the construction of 7.

Each of the lower dimensional problems s treated recursively. The case of dimen-
sion 1 =1 (or even n = 0) may serve as a basis for the recursion. This finishes our
description of the algorithm.,

We observe that in the case that K N Z" 15 nonempty, our algorithm actually
produces an element x € K N Z".

2. The convex set K. Let K= {x €R": Ax < b}, and assume that K 1s bounded.
In this section we describe an algorithm that can be used to verify that K satisfies
condition (2) of §1; to reduce the number of variables if that condition 1s found not to
be satisfied; and to find the map 7 used m §1. The algorithm is better than what 1s
strictly needed in §1, mn the sense that 1t is polynomial even for varying n. I am
mdebted to L. Lovasz for pointing out to me how this can be achieved.

In the first stage of the algorithm one attempts to construct vertices vg, vy, . . . , v, of
K whose convex hull 1s an n-simplex of positive volume. By maximizing an arbitrary
hnear function on K, employmg Khachiyan’s algorithm [8], [4], one finds a vertex v, of

K, unless K 15 empty. Suppose, mductively, that vertices vy, v,, . . . , 1, of K have been
found for which v, — vy, . . ., v, — vy are hnearly independent, with d < n. Then we
can construct # —~ d linearly independent linear functions f, .. , f,_, on R” such that

the d-dimensional subspace V' = Ej’L]R(v, ~ vg) 1S given by

V={x€ER" . fi(x)=" =f,_,(x)=0}.
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Again employing Khachiyan’s algorithm, we maximize each of the linear functions
fio=J1sfor = Jor o s foeas —fi_q o1 K, until a vertex v,,, of K is found for which
S{(0a1) 7 f(vp) for some j € {1,2, ..., n — d}. If this occurs, then v, — vy, . . ., v; —
vy, Vg4 — Uy are linearly independent, and the inductive step of the construction is
completed. If, on the other hand, no such v, is found after each of the 2(n — d)
functions fy, —f,, ..., f,_ 4 —f,—s has been maximized, then we must have f(x)
= f(vg) for all x € K and all j=1,2,...,n— d, and therefore K C vo+ V. In this
case we reduce the problem to an integer programming problem with only d variables,
as follows.

Choose, forj = 1,2, ..., d, a nonzero scalar multiple W, of v, — vy such that w, 7%,
and denote by W the (n X d)-matrix whose columns are the w,. Notice that W has
rank d. Employing the Hermite normal form algorithm of Kannan and Bachem [7] we
can find, in polynomial time, an integral n X n-matrix U with det(U) = ®1 such that

UW=(k))c,cn, l<y<d

with
k=0 if i>j, (13)
k,#0 for 1<i<d.

Denote by u,,u,, . .., u, the columns of the integral matrix U ~'. These form a basis

of R”, and also of the lattice £": 7" = 377_, Zu,. The subspace V' of R” is generated by
the columns of W = U~"-(k,), so (13) implies that

d
V=3 Ru,. (14)
J=1

Define ry,rp, ..., 1, ERbY v = 37_ 1,15 s0 (r)/_; = Uv,.

Now suppose that x € K N Z". Then x = 3, ), with y, €7, and x € K implies
that x — vy € V. By (14) this means that y, = r, for d <j < n. So if at least one of
Fys1s -+ - ¥, is nOt an integer, then K N Z" = @. Suppose, therefore, that r, ,, ..., 7,
are all integral. Substituting x = Ej‘;, Y+ X a4y, in our original system Ax < b
we then see that the problem is equivalent to an integer programming problem with d

variables y,, y,, . . ., yy, as required. The vertices vy, vy, . . ., v, of K give rise to d + 1
vertices vy, v}, . .., v, of the convex set in R? belonging to the new problem, and
0,0}, - - ., 0y span a d-dimensional simplex of positive volume. This means that for

the new, d-dimensional problem the first stage of the algorithm that we are describing
can be bypassed.

To conclude the first stage of the algorithm, we may now suppose that for each
d=0,1,...,n~— 1 the construction of v, is successful. Then after n steps we have
n + 1 vertices vy, vy, - - . , v, of K for which v, — vy, . . ., v, — v, are linearly indepen-
dent. The n-simplex spanned by vy, v, ..., v, is contained in K, and its volume
equals |det M|/n! where M is the matrix with column vectors v, ~ vy, .. ., v, — 0.
This is positive, so condition (2) of §1 is satisfied.

In the second stage of the algorithm we construct the coordinate transformation 7
needed in §1. To this end we first try to find a simplex of “large” volume in K. This is
done by an iterative application of the following procedure, starting from the simplex

spanned by vg, vy, ..., v, The volume of that simplex is denoted by vol(v,,
Ops « « o5 )
Construct n + 1 linear functions gy, g1, ..., g,: R”—> R such that

g, is constant on {vj :0< j<n,j#i),

15
g(v)#g(y) for 0<j<nj+#i ()
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fori=0,1, ..., n Maximizing the functions g,, — g0, g/, ~ &> -+ - » &> — &, on K by
Khachiyan’s algorithm we can decide whether there exist i € {0,1,...,n} and a
vertex x of K such that

l8.(x —v)| >3|g(v, — v)

for j # i (the choice of j is immaterial, by (15)).
Suppose that such a pair i, x is found. Then we replace v, by x. This replacement
enlarges vol(vg, v, . . ., v,) by a factor |g(x — v)|/|g,(v, — v)| (for j # i), which is
more than 3/2. We now return to the beginning of the procedure (“Construct n + 1
linear functions . .. ).

In every iteration step vol(vg, vy, - . . , v,) increases by a factor > 3/2. On the other
hand, this volume is bounded by the volume of K. Hence after a polynomially
bounded number of iterations we reach a situation in which the above procedure
discovers that

lgz(x - Uj)l <%lg,(0, - Dj)l (16)

for all x€ K and all 4,j€{0,1,...,n} with i#j. In that case we let 7 be a
nonsingular endomorphism of R” with the property that 7(vg), 7(v)), . . ., 7(v,) span a
regular n-simplex. With p=(n + D! 07'(1)) we now claim that B(p, ryCcrk
C B(p,R) for certain positive real numbers r, R satisfying R/r < 2n%? ie., that
conditions (3) and (4) of §1 are satisfied, with ¢, = 213/2. This finishes the description

of our algorithm.
To prove our claim, we write z, = 7(v,), for 0 < j < n; we write § for the regular
n-simplex spanned by zg,z2,, ..., Z,, and we define, for ¢ > 1:

T,={x€ER":vol(zp, ...,z 1, %24y,...,2,)
<c-vol(zg, ..., z,) foralli € (0,1,...,n}}.

Condition (16) (for all x € K and all i # j) means precisely that 7K C T ,. Further, it
is clear that § C 7K. Our claim now follows from the following lemma.

LeMMA. Let ¢ > 1. With the above noiation we have B(p,r)C S C T, C B(p,R) for
two positive real numbers r, R satisfying

( R )2 e’ 4+ (c2 + l)n7 if niseven,
42— Ze+ DYn’+ (¢ —2c)n  if nisodd.

Proor. Using a similarity transformation we can identify R” with the hyperplane
{(r)y-0 € Rr*: S=or, =1} in R"*' such that z,,z,, ..., z, is the standard basis of
R Then we have

- 1 1
‘D~n+lj§=:021 <n+1’n+1""’n+1)’
and

Tc:{(rjj 0 e R"+! . |rl<cfor0 ]én,and Zorj:l}'
J=

By a straightforward analysis one proves that 7, is the convex hull of the set of points
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obtained by permuting the coordinates of the point

m n
zo—czzj+c > z, if n=2m,
Jj=1 J=m+1
m n
(l—c)zo—czlzl+c >z if n=2m+1
e

J=m+1

It follows that T, C B(p, R), where R is the distance of p to the above point:

. ne? + - Z_ l if niseven,
R2=
(n+ 1)c? = 2c + ;1—_’:_——]— if nisodd.

Further, B(p,r) C S, where r is the distance of p to (0,1/n,1/n, ..., 1/n):
2 1
n(n+1)"
This proves the lemma.

ReMARKS. (a) To the construction of 7 in the above algorithm one might raise the
objection that v need not be given by a matrix with rational coefficients. Indeed, for
n=2,4,56,10,... there exists no regular n-simplex all of whose vertices have
rational coordinates. This objection can be answered in several ways. One might
replace the regular simplex by a rational approximation of it, or indeed by any fixed
n-simplex with rational vertices and positive volume, at the cost of getting a larger
value for ¢;. Alternatively, one might embed R” in R"*!, as was done in the proof of
the lemma. Finally, it can be argued that it is not necessary that the matrix M,
defining 7 be rational, but only the symmetric matrix M," M, defining the quadratic
form (7x,7x); and this can easily be achieved in the above construction of 7.

(b) The proof that the algorithm described in this section is polynomial, even for
varying n, is entirely straightforward. We indicate the main points. The construction of
fis -« - fa_q in the first stage, and of gy, g, . . ., g, in the second stage, can be done
by Gaussian elimination, which is well known to be a polynomial algorithm, cf. [2, §7].
It follows that Khachiyan’s algorithm 1s only applied to problems whose lengths are
bounded by a polynomial function of the length of the original data. The same applies
to the d-dimensional integer programming problem constructed in the first stage.
Further details are left to the reader.

(c) We discuss to which extent the value 2n°/“ for ¢, in (4) is best possible.
Replacing the coefficient 3/2 in (16) by other constants ¢ > 1 we find, using the
lemma, that for any fixed € > 0 we can take

1/2
)

3/2

(1+ €)(n* +2n° if niseven,
C] =

(1+ e)(n3 +n? = n)l/2 if nisodd.

If one is satisfied with an algorithm that is only polynomial for fixed »n one can also
take € = 0 in this formula. To achieve this, one uses a list of all vertices of K to find the
simplex of maximal volume inside K, and transforms this simplex into a regular one.
The following result shows that there is still room for improvement: if K C R” is any
closed convex set satisfying (1) and (2) then there exists a nonsingular endomorphism r
of R" such that (3) and (4) hold with ¢, = n. To prove this, one chooses an ellipsoid E
inside K with maximal volume, and one chooses r such that 7F is a sphere. The case
that K is a simplex shows that the value ¢, = n is best possible. For fixed n and € > 0
there is a polynomial algorithm that achieves ¢; = (1 + €)n. I do not know how well
the best possible value ¢; = n can be approximated by an algorithm that is polynomial
for varying n.
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(d) The algorithm described in this section applies equally well to any class 2%~ of
compact convex bodies in R” for which there exists a polynomial algorithm that
maximizes linear functions on members K of . This remark will play an important
role in §5. In particular, we can take for ¢~ a “solvable” class of convex bodies, in the
terminology of [4, §§1 and 3]. The same remark can be made for the algorithm
presented in §1.

3. The reduction process. Let n be a positive integer, and let b,,b,, ..., b, ER"
be n linearly independent vectors. Put L =>"_,7Zb,; this is a lattice in R”. In this
section we indicate an algorithm that transforms the basis b,,b,, . . ., b, for L into one
satisfying (7) with ¢, = 27"~ /% The algorithm is taken from [9, §1], to which we refer
for a more detailed description.

We recall the Gram-Schmidt orthogonalization process. The vectors b* (1 < i < n)
and the real numbers y,, (1 < j <i < n) are inductively defined by

i—1
b 151 mbfs = (b, 57)/ (5. 5),

where (, ) denotes the ordinary inner product on R”. Notice that b* is the projection
of b, on the orthogonal complement of 32} Rb, and that 3)/2} Rb, = 3\ Rb*, for
1 < i< n ltfollows that bF,b%, ..., b 1s an orthogonal basis of R”. The following
result is taken from [9].

PROPOSITION.  Suppose that
Lo | <4 (17)
for 1 < j<i<n,and
|BF + 1B 2 3157 P (18)
for 1 < i< n. Then
[T 5] < 27 =D7%a( L),

1=
i.e., (7) holds with ¢, = 2""=D/4,
Proor. See [9, Proposition 1.6].

To explain condition (18) we remark that the vectors b* + p,_ b* | and b* | are the
projections of b, and b,_, on the orthogonal complement of 2};2 Rb,. Hence if (18)

does not hold for some i, then it does hold for the basis obtained from b,,b,, ..., b,
by interchanging b, | and b,.
To change a given basis b;,b,, ..., b, for L into one satisfying (7) we may now

iteratively apply the following transformations.

First transformation: select i, 1 <i < n, such that (18) does not hold, and inter-
change b,_, and b,;

Second transformation: select i, j, 1 < j <i < n, such that (17) does not hold, and
replace b, by b, — rb,, where r is the integer nearest to y, .

It can be shown that, independently of the order in which these transformations are
applied and independently of the choices of /, and of / and j, that are made, this leads
after a finite number of steps to a basis b,,b,, . . ., b, satisfying (17) and (18). Then (7)
is satisfied as well, by the proposition. This finishes our sketch of the algorithm.

A particularly efficient strategy for choosing which transformation to apply, and for
which 7, or i and j, is described in [9, (1.15)]. If we assume the b, to have integer
coordinates then the resulting algorithm is polynomial, even for varying n, by [9,
Proposition 1.26]. It follows that the same result is true if we allow the coordinates of
the b, to be rational.
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ReMARKS. (a) The algorithm sketched above can be used to find the shortest
nonzero vector in L, in the following way. Suppose that b,,b,, . .., b, is a basis for L
satisfying (7), and let x € L. Then we can write x = >"_, m b, with m, € Z, and from
Cramer’s rule it is easy to derive that |m| < ¢, |x|/|b), for 1 < i< a If x is the
shortest nonzero vector in L then |x| < |5 for all i, so |m,| < ¢,. So by searching the
set {SV_ mb,m €Z, {m|< ¢, for 1 <i< n} we can find the shortest nonzero
vector in L in polynomial time, for fixed n. For variable » this problem is likely to be
NP-hard.

(b) We discuss to which extent our value for ¢, is best possible. The above algorithm
yields ¢, =2"""D/4 We indicate an algorithm that leads to a much better value for
¢,; but the algorithm is only polynomial for fixed n.

In (a) we showed how to find the shortest nonzero vector in L by a search
procedure. By an analogous but somewhat more complicated search procedure we can
determine the successive minima |bi|,|by|, . . ., |b,| of L (see [1, Chapter VIII] for the
definition). Here b1, b5, . . ., b, € L are linearly independent, and by [1, Chapter VIII,
Theorem I, p. 205 and Chapter IV, Theorem VII, p. 120] they satisfy

IL 1611 < 3 d(L)

where vy, denotes Hermite’s constant [1, §1X.7, p. 247], for which it is known that

1 I
— 4 < L ~— + —> 0.
Foo o() <v,/n p—” o(1) for n—>
Using a slight improvement of [, Chapter V, Lemma 8, p. 135] we can change

by, b5, ..., b, into a basis by, by, ..., b, for L satisfying
ib,”i<max{l,%\/f}-|b,’1 (1<i<n)
S0

n
TLiBrI< 2742 (2n)'/* 422 d(L)y  (forn > 3).
1=1
We conclude that, for fixed n, the basis b,,b,, ..., b, produced by the algorithm
indicated in this section can be used to find, in polynomial time, a new basis satisfying
(7), but now with ¢, = (¢ - n)". Here ¢ denotes some absolute positive constant.
On the other hand, the definition of v, implies that there exists an n-dimensional
lattice L such that |x| > v)/2- d(L)"/" for all x € L, x % 0, cf. [1, Chapter I, Lemma 4,
p. 21]. Any basis b,,b,, . .., b, for such a lattice clearly satisfies

n

[118)> v/ d(L).

Pk
Therefore the best possible value for ¢, satisfies ¢, > (¢’ - n)"/? for some absolute
positive constant ¢’.

4. A fixed number of constraints. In this section we show that the integer linear
programming problem with a fixed value of m is polynomially solvable. It was noted
by P. van Emde Boas that this is an immediate consequence of our main result.

Let n,m,4,b be as in the introduction. We have to decide whether there exists
x € 7" for which Ax < b. Applying the algorithms of Kannan and Bachem [7] we can
find an (n X n)-matrix U with integral coefficients and determinant = 1 such that the
matrix AU = (a,’j)K,gm.,g]@ satisfies

a,=0 for j>i. (19)
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Putting y = U ~'x we see that the existence of x € Z" with Ax < b is equivalent to the
existence of y € Z" with (AU)y < b. If n > m, then the coordinates y,,,,, ..., p, of y
do not occur in these inequalities, since (19) implies that a,=0 for j > m. We
conclude that the original problem can be reduced to a problem with only min{#n,m}
variables. The latter problem is, for fixed m, polynomially solvable, by the main result
of this paper.

5. Mixed integer linear programming. The mixed integer linear programming prob-
lem is formulated as follows. Let k and m be positive integers, and »n an integer
satisfying 0 < n < k. Let further 4 be an m X k-matrix with integral coefficients, and
b € 7™. The question is to decide whether there exists a vector x = (x[, x5, . . ., X))
with

N

x, €L for 1<i

N

n,
x, €R for n+1<i<k

satisfying the system of m inequalities Ax < b.

In this section we indicate an algorithm for the solution of this problem that is
polynomial for any fixed value of », the number of integer variables. This generalizes
both the result of §1 (n = k) and the result of Khachiyan [8], [4] (n = 0).

Let

K'={xeR:Ax < b),
K={(x,%3,...,%)ER": thereexist x, ., ..., x €R
such that (x;,x,, ..., x) € K'}.

The question is whether K N 7" = @.

Making use of the arguments of Von zur Gathen and Sieveking [12] we may again
assume that K’, and hence K, is bounded. Next we apply the algorithm of §2 to the
compact convex set K C R". To see that this can be done it suffices to show that we
can maximize linear functions on K, see §2, Remark (d). But maximizing linear
functions on K is equivalent to maximizing, on K’, linear functions that depend only
on the first n coordinates x,x,, ..., x,; and this can be done by Khachiyan’s
algorithm.

The rest of the algorithm proceeds as before. At a certain point in the algorithm we
have to decide whether a given vecter y € R" belongs to 7K. This can be done by
solving a linear programming problera with k — » variables. This finishes the descrip-
tion of the algorithm.

As in §4 it can be proved that the mixed integer linear programming problem is also
polynomially solvable if the nuriber of inequalities that involve one or more integer
variables is fixed; or, more gererally, if the rank of the matrix formed by the first »
columns of A is bounded.
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