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Abstract

We develop a parameterized complexity theory for counting problems. As the basis of this theory, we
introduce a hierarchy of parameterized counting complexity classes #W[t], for t ≥ 1, that corresponds to
Downey and Fellows’s W-hierarchy [13] and show that a few central W-completeness results for decision
problems translate to #W-completeness results for the corresponding counting problems.

Counting complexity gets interesting with problems whose decision version is tractable, but whose
counting version is hard. Our main result states that counting cycles and paths of lengthk in both directed
and undirected graphs, parameterized byk, is #W[1]-complete. This makes it highly unlikely that any
of these problems is fixed-parameter tractable, even thoughtheir decision versions are fixed-parameter
tractable. More explicitly, our result shows that most likely there is nof(k) · nc-algorithm for counting
cycles or paths of lengthk in a graph of sizen for any computable functionf : N → N and constantc,
even though there is a2O(k)

· n2.376 algorithm for finding a cycle or path of lengthk [2].

1 Introduction

Counting problemshave been the source for some of the deepest and most fascinating results in computa-
tional complexity theory, ranging from Valiant’s fundamental result [29] that counting perfect matchings
of bipartite graphs is #P-complete over Toda’s theorem [28]that the class P#P contains the polynomial
hierarchy to Jerrum, Sinclair, and Vigoda’s [20] fully polynomial randomised approximation scheme for
computing the number of perfect matchings of a bipartite graph. In this paper, we develop a basic parame-
terized complexity theory for counting problems.

Parameterized complexity theoryprovides a framework for a fine-grain complexity analysis ofalgorith-
mic problems that are intractable in general. In recent years, ideas from parameterized complexity theory
have found their way into various areas of computer science,such as database theory [19, 24], artificial
intelligence [18], and computational biology [6, 27]. Central to the theory is the notion offixed-parameter
tractability, which relaxes the classical notion of tractability, polynomial time computability, by admitting
algorithms whose running time is exponential, but only in terms of someparameterof the problem in-
stance that can be expected to be small in the typical applications. A good example is the evaluation of
database queries: Usually, the sizek of the query to be evaluated is very small compared to the sizen of
the database. An algorithm evaluating the query in timeO(2k · n) may therefore be acceptable, even quite
good. On the other hand, anΩ(nk) evaluation algorithm can usually not be considered feasible. Fixed-
parameter tractability is based on this distinction: A parameterized problem isfixed-parameter tractableif
there is a computable functionf and a constantc such that the problem can be solved in timef(k) · nc,
wheren is the input size andk the parameter value.

A standard example of a fixed-parameter tractable problem isthe vertex cover problem parameterized
by the sizek of the vertex cover. It is quite easy to see that a vertex coverof sizek of a graph of sizen can
be computed in timeO(2k · n) by a simple search tree algorithm based on the fact that at least one of the
two endpoints of each edge must be contained in a vertex cover. (As a matter of fact, such an algorithm
computes all minimum vertex covers of size at mostk). A standard example of a problem that does not
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seem to be fixed-parameter tractable is the clique problem, parameterized by the size of the clique. Indeed,
all known algorithms for deciding whether a graph of sizen has a clique of sizek have a running time of
nΩ(k).

To give evidence that parameterized problems such as the clique problem are not fixed parameter
tractable, a theory ofparameterized intractabilityhas been developed (see [11, 12, 13]). It resulted in
a rather unwieldy variety of parameterized complexity classes. The most important of these classes are
the classes W[t], for t ≥ 1, forming the so-calledW-hierarchy. It is believed that W[1] strictly contains
the class FPT of all fixed-parameter tractable problems and that the W-hierarchy is strict. Many natural
parameterized problems fall into one of the classes of the W-hierarchy. For example, the parameterized
clique problem is complete for the class W[1] and the parameterized dominating set problem is complete
for the class W[2] (under suitable parameterized reductions).

So far, the parameterized complexity of counting problems has not been studied very systematically.
A few tractability results are known: First of all, some fixed-parameter tractable decision problems have
algorithms that can easily be adapted to the corresponding counting problems. An example is the vertex
cover problem; since all minimum vertex covers of size at most k of a graph of sizen can be computed in
timeO(2k · n), a simple application of the inclusion-exclusion principle yields a fixed-parameter tractable
counting algorithm for the vertex covers of sizek. Similar counting algorithms are possible for other prob-
lems that have a fixed-parameter tractable algorithm based on themethod of bounded search tree(see [13]).
More interesting are results of Arnborg, Lagergren, and Seese [4], Courcelle, Makowsky, and Rotics [10],
and Makowsky [22] stating that counting problems definable in monadic second-order logic (in various
ways) are fixed-parameter tractable when parameterized by the tree-width of the input graph. For example,
Arnborg et al’s result implies that counting the Hamiltonian cycles of a graph is fixed-parameter tractable
when parameterized by the tree-width of the graph, and Makowsky’s result implies that evaluating the Tutte
polynomial is fixed-parameter tractable when parameterized by the tree-width of the graph. Courcelle et
al. [10] also proved similar results for graphs of bounded clique-width. Frick [16] showed that counting
problems definable in first-order logic are fixed-parameter tractable on locally tree-decomposable graphs.
For example, this implies that counting dominating sets of aplanar graph is fixed-parameter tractable when
parameterized by the size of the dominating sets.

We focus on theintractability of parameterized counting problems. We define classes #W[t], for t ≥ 1,
of parameterized counting problems that correspond to the classes of the W-hierarchy. Our first results
show that a few central completeness results for the classesW[1] and W[2] translate to corresponding
completeness results for the first two levels #W[1] and #W[2] of the #W-hierarchy. For example, we show
that counting cliques of sizek is #W[1]-complete and counting dominating sets of sizek is #W[2]-complete
(both underparsimonious parameterized reductions). We then characterise the class #W[1] as the class of
all counting problems that can be described in terms of numbers of accepting computations of certain
nondeterministic programs. To give further evidence that the class #W[1] strictly contains the class of
fixed-parameter tractable counting problems, we show that if this was not the case there would be a2o(n)-
algorithm counting the satisfying assignments of a 3-CNF-formula withn variables. This is the counting
version of a result due to Abrahamson, Downey, and Fellows [1]. While these results are necessary to lay
a solid foundation for the theory and not always easy to prove, by and large they do not give us remarkable
new insights. The theory gets interesting with those counting problems that are harder than their decision
versions.

Our main result states thatcounting cycles and paths of lengthk in both directed and undirected graphs,
parameterized byk, is #W[1]-complete under parameterized Turing reductions.It is an immediate con-
sequence of a theorem of Plehn and Voigt [26] that the decision versions of these problems are fixed-
parameter tractable (but of course not in polynomial time, because if they were the Hamiltonian path/cycle
problem would also be). Alon, Yuster, and Zwick’s [2]color codingtechnique provides algorithms for
finding a path of lengthk in timeO(k! ·m) in a graph withm edges and for finding a cycle of lengthk in
timeO(2O(k) · nω) in a graph withn vertices, whereω < 2.376 is the exponent of matrix multiplication.
The hardness of the cycle counting problem in undirected graphs may be surprising in view of another
algorithm due to Alon, Yuster, and Zwick [3] showing that cycles up to length 7in an undirected graph
can be counted in timeO(nω). Our result implies that it is very unlikely that there is such an algorithm for
counting cycles of arbitrary fixed lengthk.

The paper is organised as follows: After giving the necessary preliminaries in Section 2, in Section 3
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we discuss fixed-parameter tractable counting problems. This section has the character of a short survey;
apart from a few observations it contains no new results. In Section 4, we introduce the #W-hierarchy
and establish the basic completeness results. The hardnessof counting cycles and paths is established in
Section 5. Definitions of all parameterized problems considered in this paper can be found in Appendix A.

We would like to point out that some of the results in Section 4have independently been obtained
by others in two recent papers: McCartin [23] proves the #W[1]-completeness of clique and the #W[2]-
completeness of dominating set. (Our proofs of these results are quite different from hers.) Furthermore,
she shows that a number of further completeness results for parameterized decision problems translate to
the corresponding counting problems. Arvind and Raman [5] also obtain the #W[1]-completeness of clique.
Their main result is that the number of cycles or paths of length k can be approximated by a randomised
fixed-parameter tractable algorithm. Indeed, they prove this not only for cycles and paths, but for arbitrary
graphs of bounded tree-width. These results nicely complement our main result that exactly counting paths
and cycles is hard.

2 Preliminaries

2.1 Parameterized Complexity TheoryA parameterized problemis a setP ⊆ Σ∗ × N, whereΣ is a
finite alphabet. If(x, k) ∈ Σ∗ × N is an instance of a parameterized problem, we refer tox as theinput
and tok as theparameter.

Definition 1 A parameterized problemP ⊆ Σ∗ × N is fixed-parameter tractableif there is a computable
functionf : N → N, a constantc ∈ N, and an algorithm that, given a pair(x, k) ∈ Σ∗ × N, decides if
(x, k) ∈ P in at mostf(k) · |x|c steps.

We usually usek to denote the parameter andn = |x| to denote the size of the input.
To illustrate our notation, let us give one example of a parameterized problem, theparameterized vertex

cover problem, which is well-known to be fixed-parameter tractable:

p-VC
Input: GraphG.

Parameter: k ∈ N.
Problem: Decide ifG has a vertex cover of sizek.

From now on, we will only give brief definitions of the parameterized problems we consider in the
main text, for exact definitions we refer the reader to Appendix A.

To define the classes of the W-hierarchy, we need a few notionsfrom propositional logic. Formulas
of propositional logic are built up frompropositional variablesX1, X2, . . . by taking conjunctions, dis-
junctions, and negations. The negation of a formulaθ is denoted by¬θ. We distinguish betweensmall
conjunctions, denoted by∧, which are just conjunctions of two formulas, andbig conjunctions, denoted by
∧

, which are conjunctions of arbitrary finite sets of formulas. Analogously, we distinguish betweensmall
disjunctions, denoted by∨, andbig disjunctions, denoted by

∨

.
A formula issmall if it only contains small conjunctions and small disjunctions. We defineΓ0 = ∆0

to be the class of all small formulas. Fort ≥ 1, we defineΓt to be the class of all big conjunctions of
formulas in∆t−1, and we define∆t to be the class of all big disjunctions of formulas inΓt−1.

Thedepthof a propositional formulaθ is the maximum number of nested conjunctions or disjunctions
in θ. Note that the definitions ofΓt and∆t are purely syntactical; every formula inΓt or ∆t is equivalent to
a formula inΓ0. But the translation from a formula inΓt to an equivalent formula inΓ0 usually increases
the depth of a formula. For allt, d ≥ 0 we let Γt,d denote the class of all formulas inΓt whose small
subformulas have depth at mostd (equivalently, we may say that the whole formula has depth atmost
d+ t). We define∆t,d analogously.

Let CNF denote the class of all propositional formulas in conjunctive normal form, that is, conjunctions
of disjunctions of literals; if we ignore arbitrarily nested negations then CNF is justΓ2,0. A formula is in
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d conjunctive normal formif it is a conjunction of disjunctions of at mostd literals; the class of all such
formulas is denoted byd-CNF.

Theweightof a truth value assignment to the variables of a propositional formula is the number of vari-
ables set toTRUE by the assignment. For any classΘ of propositional formulas, theweighted satisfiability
problem forΘ, denoted by WSAT(Θ), is the problem of deciding whether a formula inΘ has a satisfying
assignment of weightk, parameterized byk. We are now ready to define the W-hierarchy:

Definition 2 For t ≥ 1, W[t] is the class of all parameterized problems that can be reduced to WSAT(Γt,d)
for somed ≥ 0 by a parameterized many-one reduction.

We omit the definition of parameterized many-one reductionshere and refer the reader to [13] for this
definition and further background on parameterized complexity theory.

2.2 Relational Structures A vocabularyis a finite set of relation symbols. Associated with every relation
symbol is a natural number, itsarity. The arity of a vocabulary is the maximum of the arities of therelation
symbols it contains. In the following,τ always denotes a vocabulary.

A τ -structureA consists of a non-empty setA, called theuniverseof A, and a relationRA ⊆ Ar for
eachr-ary relation symbolR ∈ τ . For example, we view adirected graphas a structureG = (G,EG)
whose vocabulary consists of one binary relation symbolE. G = (G,EG) is an(undirected) graphif EG is
symmetric. For graphs, we often write{a, b} ∈ EG instead of(a, b) ∈ EG . In this paper, we only consider
structures whose universe is finite. We distinguish betweenthe size of the universeA of a τ -structureA,
which we denote by|A|, and thesizeof A, which is defined to be

||A|| = |τ | + |A| +
∑

R∈τ

|RA| · arity(R).

An expansionof a τ -structureA to a vocabularyτ ′ ⊇ τ is aτ ′-structureA′ with A′ = A andRA′

= RA

for all R ∈ τ .
A substructureof A is a structureB with B ⊆ A andRB ⊆ RA for all R ∈ τ .1 A homomorphism

from aτ -structureA to aτ -structureB is a mappingh : A → B where for allR ∈ τ , say, of arityr, and
all tuples(a1, . . . , ar) ∈ RA we have

(

h(a1), . . . , h(ar)
)

∈ RB. An embeddingis a homomorphism that
is one-to-one.

The homomorphism problemasks whether there is a homomorphism from a given structureA to a
given structureB. We parameterize this problem by the size ofA and denote the resultingparameterized
homomorphism problemby p-HOM. We will also consider theparameterized embedding problem, denoted
by p-EMB, and theparameterized substructure problem(Does structureB have a substructure isomorphic
to A?), denoted byp-SUB. Of course when considered as decision problems,p-EMB and p-SUB are
equivalent, but as counting problems they are slightly different. All three decision problems are complete
for the class W[1] under parameterized many-one reductions [13].

2.3 Logic and Descriptive Complexity Let us remark that the following notions are not needed for un-
derstanding our results on the hardness of counting cycles and paths or their proofs.

The formulas offirst-order logicare built up fromatomic formulasusing the usual Boolean connectives
and existential and universal quantification over the elements of the universe of a structure. Remember that
anatomic formula, or atom, is a formula of the formx = y or Rx1 . . . xr , whereR is anr-ary relation
symbol andx, y, x1, . . . , xr are variables. Aliteral is either an atom or a negated atom. Thevocabularyof
a formulaϕ is the set of all relation symbols occurring inϕ. A free variableof a formulaϕ is a variable
that is not bound by any existential or universal quantifier of ϕ.

If A is a τ -structure,a1, . . . , an are elements of the universeA of A, andϕ(x1, . . . , xn) is a for-
mula whose vocabulary is a subset ofτ and whose free variables arex1, . . . , xn, then we writeA |=

1Note that in logic, substructures are usually required to satisfy the stronger conditionRB
= RA

∩ Ar, wherer is the arity of
R. Our notion of substructure is the direct generalisation ofthe standard graph theoretic notion of subgraph. Since we are mainly
dealing with graphs, this seems appropriate. A similar remark applies to our notion of embedding.
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ϕ(a1, . . . , an) to denote thatA satisfiesϕ if the variablesx1, . . . , xn are interpreted bya1, . . . , an, respec-
tively. We let

ϕ(A) :=
{

(a1, . . . , an) ∈ An
∣

∣ A |= ϕ(a1, . . . , an)
}

.

To get a uniform notation, we letA0 be a one-point space and identify∅ with FALSE andA0 with TRUE.
Then for a sentenceϕ (i.e. a formula without free variables), we haveA |= ϕ ⇐⇒ ϕ(A) = TRUE.
Furthermore, if the vocabulary of the formulaϕ is not contained in the vocabulary ofA then we letϕ(A) =
∅.

For every classΦ of formulas, we letΦ[τ ] be the class of allϕ ∈ Φ whose vocabulary is contained inτ .
We let bothΣ0 andΠ0 be the class of all quantifier free first-order formulas (although we usually useΠ0

to denote this class). Fort ≥ 1, we letΣt be the class of all first-order formulas of the form∃x1 . . . ∃xk ψ,
wherek ∈ N andψ ∈ Πt−1. Analogously, we letΠt be the class of all first-order formulas of the form
∀x1 . . .∀xk ψ, wherek ∈ N andψ ∈ Σt−1.

We have to define two additional hierarchies(Σt,u)t≥1 and(Πt,u)t≥1 for every fixedu ≥ 1. Again
we letΣ0,u = Π0,u = Π0. We letΠ1,u be the class of all first-order formulas of the form∀x1 . . . ∀xk ψ,
wherek ≤ u andψ ∈ Π0. For t ≥ 2, we letΠt,u be the class of all first-order formulas of the form
∀x1 . . .∀xk1

∃y1 . . . ∃yk2
ψ, wherek1, k2 ≤ u andψ ∈ Πt−2,u. For t ≥ 1, we letΣt,u be the class of all

first-order formulas of the form∃x1 . . . ∃xk ψ, wherek ∈ N andψ ∈ Πt−1,u. Note the asymmetry in the
definitions ofΠt,u andΣt,u — the length of the first quantifier block in aΣt,u-formula is not restricted.

Definability of Parameterized Problems I: Model-Checking Problems
We can use logic to define certain generic families of parameterized problems. For a classΦ of formulas,
themodel-checking problemfor Φ is the problem of deciding whether for a given structureA and a given
formulaϕ ∈ Φ we haveϕ(A) 6= ∅. We parameterize this problem by the length of the formulaϕ and
obtain theparameterized model-checking problemp-MC(Φ).

Many parameterized problems can be naturally translated into model-checking problems. For example,
the parameterized clique problem is essentially the same asthe parameterized model-checking problem for
the class

ΦCLIQUE =
{

∧

1≤i<j≤k

(Exixj ∧ xi 6= xj)
∣

∣ k ≥ 1
}

.

Model checking problems provide another basis for the W-hierarchy: For everyt ≥ 1, W[t] is the class
of all problems that are reducible top-MC(Σt,1[τ ]) for some vocabularyτ by a parameterized many-one
reduction [14, 15]. Observe, furthermore, that for allt ≥ 1 the problemsp-MC(Σt,1) andp-MC(Πt−1,1)
are easily reducible to each other, because for every formula

ϕ(x1, . . . , xk) = ∃y1 . . .∃yl ψ(x1, . . . , xk, y1, . . . , yl)

and every structureA we haveϕ(A) 6= ∅ if, and only if, ψ(A) 6= ∅. This explains why the hierarchies
(Σt,u)t≥1 and(Πt,u)t≥1 are defined asymmetrically.

Definability of Parameterized Problems II: Fagin-definability
There is a second way of defining parameterized problems thathas been dubbedFagin-definabilityin [15].
Letϕ be a sentence of vocabularyτ ∪ {X}, whereX is a relation symbol not contained inτ . We viewX
as arelation variable; to illustrate this we usually writeϕ(X) instead of justϕ. Let r be the arity ofX .
For aτ -structureA we let

ϕ(A) =
{

R ⊆ Ar
∣

∣ (A, R) |= ϕ
}

,

where(A, R) denotes theτ ∪ {X}-expansion ofA with X(A,R) = R. For example, letX be unary and

ϕVC(X) = ∀y∀z
(

Eyz → (Xy ∨Xz)
)

.

Then for a graphG, ϕVC(G) is the set of all vertex covers ofG.
With each formulaϕ(X) we associate a parameterized problemp-FD(ϕ(X)) which asks whether for

a given structureA, the setϕ(A) contains a relation withk elements (wherek is the parameter). We call
p-FD(ϕ(X)) the problemFagin-definedbyϕ(X).

For example,p-FD(ϕVC(X)) is precisely the parameterized vertex cover problem.
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1 InitialiseS ⊆ Pow(G) by S := {∅}
2 for all {a, b} ∈ EG do
3 for all S ∈ S do
4 if S ∩ {a, b} = ∅ then
5 S := S \ {S}
6 if |S| < k thenS := S ∪ {S ∪ {a}, S ∪ {b}}.
7 output S.

Algorithm 1

3 Tractable parameterized counting problems

A parameterized counting problemis simply a functionF : Σ∗ ×N → N, for some alphabetΣ. Arguably,
this definition includes problems that intuitively we wouldnot call counting problems, but there is no harm
in including them.

Definition 3 A parameterized counting problemF : Σ∗ × N → N is fixed-parameter tractable, or F ∈
FPT, if there is an algorithm computingF (x, k) in timef(k)·|x|c for some computable functionf : N → N

and some constantc ∈ N.

The standard example of a fixed-parameter tractable decision problem is the parameterized version of
the vertex cover problem. As a first example, we observe that the corresponding counting problem is also
fixed-parameter tractable:

Example 4 The parameterized vertex cover counting problem,

p-#VC
Input: GraphG.

Parameter: k ∈ N.
Problem: Count the number of vertex covers ofG of sizek.

is fixed-parameter tractable.

Proof: Essentially, Algorithm 1 is the standard procedure showingthat the parameterized vertex cover
problem is fixed-parameter tractable. It yields, given a graphG = (G,EG) as input andk ∈ N as parameter,
a setS of subsets of cardinality≤ k ofG in timeO(2k · ‖G‖) such that for the set VCk(G) of vertex covers
of G of cardinalityk we have

VCk(G) = {X ⊆ G | |X | = k andS ⊆ X for someS ∈ S}.

Now, we can compute|VCk(G)| by applying the inclusion-exclusion principle to the sets

{X ⊆ G | |X | = k andS ⊆ X}

for S ∈ S. 2

We could now go through a list of known fixed-parameter tractable problems and check if the corre-
sponding counting problems are also fixed-parameter tractable. Fortunately, this boring task can largely
be avoided, because there are a few general principles underlying most fixed-parameter tractability results.
They are formulated in the terminology of descriptive complexity theory.
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(1) Problems definable in monadic second-order logic are fixed-parameter tractable when parameter-
ized by tree-width of the structure(Courcelle [9]). This accounts for the fixed-parameter tractability
of NP-complete problems such as 3-COLOURABILITY or HAMILTONICITY when parameterized by
the tree-width of the input graph.

(2) Parameterized problems that can be described as model-checking problems for first-order logic are
fixed-parameter tractable on classes of structures of bounded local tree-width and classes of graphs
with excluded minors(Frick and Grohe [17], Flum and Grohe [15]). This implies that parameterized
versions of problems such as dominating set, independent set, or subgraph isomorphism are fixed-
parameter tractable on planar graphs or on graphs of boundeddegree.

(3) Parameterized problems that are Fagin-definable by a first-order formulaϕ(X) whereX does not
occur in the scope of a negation symbol or existential quantifier are fixed-parameter tractable(Cai
and Chen [7], Flum and Grohe [15]). This accounts for the fixed-parameter tractability of the stan-
dard parameterization of minimisation problems in the classes MIN F+Π1 [21], for example, mini-
mum vertex cover.

(4) Parameterized problems that can be described as parameterized model checking problems forΣ1-
formulas of bounded tree-width are fixed-parameter tractable (Flum and Grohe [15]). This implies,
and is actually equivalent, to the results that the parameterized homomorphism problem and the pa-
rameterized embedding problem for relational structures of bounded tree-width are fixed-parameter
tractable.

Let us consider the counting versions of these general “meta-theorems”. It has already been proved by
Arnborg, Lagergren, and Seese [4] that the counting versionof (1) holds. Variants and extensions of this
result have been proved by Courcelle, Makowsky, and Rotics [10] and Makowsky [22]. Frick proved that
(most of) (2) also extends to counting problems [16]. We shall see below that (3) also extends to counting
problems. (4) is more problematic. While the counting version of the parameterized homomorphism
problem for structures of bounded tree-width is fixed-parameter tractable (actually in polynomial time),
the general equivalence between homomorphism, embedding,and model-checking forΣ1 breaks down
for counting problems. This is the point where counting shows some genuinely new aspects, and in some
sense, most of this paper is devoted to this phenomenon.

Let us turn to (3), the Fagin-definable problems, now: For a formulaϕ(X), we letp-#FD(ϕ(X)) denote
the natural counting version of the problemp-FD(ϕ(X)) Fagin-defined byϕ(X). Recalling the formula
ϕVC(X) that Fagin-defines the parameterized vertex cover problem,we see that the following proposition
generalises Example 4.

Proposition 5 Letϕ(X) be a first-order formula in whichX does not occur in the scope of an existential
quantifier or negation symbol. Thenp-#FD(ϕ(X)) ∈ FPT.

Proof: LetX be of arityr. As for the vertex cover problem one obtains an FPT-algorithm (cf. [15]) that,
given a structureA andk ∈ N, yields a setS of subsets of cardinality≤ k of Ar such that

{X ⊆ Ar | |X | = k andA |= ϕ(X)} = {X ⊆ Ar | |X | = k andS ⊆ X for someS ∈ S}.

Again, an application of the inclusion-exclusion principle allows to compute the cardinality of the set on
the right hand side. 2

This implies that the counting versions of the standard parameterizations of all minimisation problems
in the class MIN F+Π1 are fixed-parameter tractable.

As we have mentioned, the situation with item (4) in the list above is more complicated. The core
problem for which counting remains tractable is the homomorphism problem for graphs of bounded tree-
width. Again, the algorithm showing tractability can best be illustrated by an example.
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Example 6 The number of homomorphisms from a given coloured treeT to a given coloured graphG can
be computed in polynomial time.

This can be done by a simple dynamic programming algorithm. Starting from the leaves, for every
vertext of the tree we compute a table that stores, for all verticesv of the graph, the numberH(t, v) of
homomorphismsh from Tt, the induced coloured subtree rooted att, to G with h(t) = v. Then the total
number of homomorphism fromT to G is

∑

v∈GH(r, v), wherer is the root ofT .
If t is a leaf, thenH(t, v) = 1 if t andv have the same colour andH(t, v) = 0 otherwise. Ift has

childrent1, . . . , tl, then if t andv have the same colour we have

H(t, v) =
l

∏

i=1

∑

w∈G
w adjacent tov

H(ti, w).

If t andv have distinct colours, we haveH(t, v) = 0.

The previous example can easily be generalised to structures of bounded tree-width. We just state the
result and omit a definition of tree-width and the proof, which is a straightforward generalisation of the
example:

Proposition 7 Letw ≥ 1. Then the following restriction of the homomorphism problem is in polynomial
time:

Input: StructureA of tree-width at mostw, structureB.
Problem: Count the homomorphisms fromA to B.

For a classΦ of formulas, we letp-#(Φ) denote the counting version of the model-checking problem
p-MC(Φ) (“GivenA andϕ ∈ Φ, compute|ϕ(A)|, parameterized by|ϕ|”).

With every first-order formulaϕwe associate a graphGϕ as follows: The vertices ofGϕ are the variables
of ϕ, and there is an edge between two vertices if they occur together in an atomic subformula ofϕ. The
tree-widthof a formulaϕ is the tree-width ofGϕ. For a classΦ of formulas andw ≥ 1, we letΦ[tw w]
denote the class of all formulas inΦ of tree-width at mostw. Recall thatΠ0 denotes the class of all
quantifier free formulas.

Proposition 8 For everyw ≥ 1 we havep-#(Π0[tw w]) ∈ FPT.

Proof: We can effectively transform everyϕ(x̄) ∈ Π0[tw w] into an equivalentψ(x̄) ∈ Π0[tw w] in
disjunctive normal form,ψ(x̄) = ψ1(x̄) ∨ . . . ∨ ψr(x̄), where eachψi(x̄) is a conjunction of literals and
whereψi(x̄) ∧ ψj(x̄) is unsatisfiable for alli, j with i 6= j. Note that this transformation does not change
the tree-width of the formula because the set of atomic subformulas remains unchanged. Then for every
structureA we have

|ψ(A)| = |ψ1(A)| + . . .+ |ψr(A)|.

Thus we can restrict our attention to formulas inΠ0[tw w] that are conjunctions of literals. Since every
literal of a formula whose underlying graph has tree-width at mostw contains at mostw + 1 variables, by
standard techniques (cf. the proof of Theorem 14) the counting problem for such formulas can be reduced
to the counting version of the homomorphism problem for structures of tree-width at mostw, which is in
polynomial time by Proposition 7. 2

Remark 9 Note that although its core is a reduction to Proposition 7, the proof of the previous proposition
doesnot yield a polynomial time algorithm. The reason is that the transformation of a formula to an
equivalent formula in disjunctive normal form is not polynomial.

Indeed, it is easy to see that the unparameterized counting problem for quantifier free formulas of
tree-width0 is #P-complete.
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Clearly, if p-MC(Φ) is fixed-parameter tractable then so isp-MC(Φ∗), whereΦ∗ is the closure ofΦ
under existential quantification. Thus in particular, forw ≥ 1 the problemp-MC(Σ1[tw w]) is fixed-
parameter tractable. The situation is different for the counting problems: The formula

ϕ(x1, . . . , xk) := ∃y
k

∧

i=1

(¬Eyxi ∧ ¬y = xi)

is a Σ1-formula of tree-width1. For all graphsG, the setϕ(G) is the set of all tuples(a1, . . . , ak) of
vertices ofG such that{a1, . . . , ak} is not a dominating set. ThusG has a dominating set of size at mostk
if, and only if, |ϕ(G)| < nk, wheren is the number of vertices ofG. Since the parameterized dominating
set problem is complete for the class W[2] this implies:

Proposition 10 If W[2] 6= FPTthenp-#(Σ1[tw w]) /∈ FPT.

4 Classes of intractable problems

Example 11 Valiant’s [29] fundamental theorem states that counting the number of perfect matchings of
a bipartite graph is #P-complete (whereas deciding whethera perfect matching exists is in P). We consider
a trivial parameterizationof the matching problem, which is obtained by adding a “dummy” parameter as
follows:

Input: Bipartite GraphG.
Parameter: k ∈ N.

Problem: Decide ifG has a perfect matching.

Clearly, this problem is in polynomial time and thus fixed-parameter tractable. On the other hand, its
counting version (“Count the perfect matchings ofG.”) cannot be fixed-parameter tractable unless P= #P.
The reason for this is that the problem is already #P-complete for the fixed parameter valuek = 1, but if it
was fixed-parameter tractable it would be in polynomial timefor any fixed parameter value.

Of course this example is quite artificial. We are more interested in the question of whether natural
parameterized counting problems are fixed-parameter tractable. As examples of such natural problems we
mention:p-#CLIQUE (“Count cliques of sizek in a graph, wherek is the parameter”),p-#DOMINATING

SET (“Count dominating sets of sizek”), p-#CYCLE (“Count cycles of sizek”), or as a more natural
parameterization of the matching problem,p-#MATCHING (“Count the matchings of sizek in a bipartite
graph”). An argument such as the one in Example 11 cannot be used to show that any of these problems
is not fixed-parameter tractable, because for any fixed parameter valuek the problems are in polynomial
time.

Recall that the decision problemsp-CLIQUE andp-DOMINATING SET are complete for the classes
W[1] and W[2], respectively, so the counting problems cannot be fixed-parameter tractable unless W[1] =
FPT (W[2] = FPT, respectively). We will define classes #W[t] of counting problems and show for a
few central W[1]-complete and W[2]-complete problems that their counting versions are #W[1]-complete
(#W[2]-complete, respectively). More interestingly, in the nextsection we shall prove thatp-#CYCLE and a
number of similar problems whose decision versions are fixed-parameter tractable are complete for #W[1].

Definition 12 LetF : Σ∗ × N → N andG : Π∗ × N → N be parameterized counting problems.

(1) A parameterized parsimonious reductionfrom F to G is an algorithm that computes for every in-
stance(x, k) of F an instance(y, ℓ) of G in timef(k) · |x|c such thatℓ ≤ g(k) and

F (x, k) = G(y, ℓ)

(for computable functionsf, g : N → N and a constantc ∈ N).

We writeF ≤fp
parsG to denote that there is a parameterized parsimonious reduction fromF toG.
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(2) A parameterized T-reductionfrom F to G is an algorithm with an oracle forG that solves any
instance(x, k) of F in time f(k) · |x|c in such a way that for all oracle queries the instances(y, ℓ)
satisfyℓ ≤ g(k) (for computable functionsf, g : N → N and a constantc ∈ N).

We writeF ≤fp
T G to denote that there is a parameterized T-reduction fromF toG.

Obviously, ifF ≤fp
parsG thenF ≤fp

T G. An easy computation shows that ifG ∈ FPT andF ≤fp
T G then

F ∈ FPT.
For a classΘ of propositional formulas, we let #WSAT(Θ) be the counting version of the weighted

satisfiability problem forΘ (“Count the weightk satisfying assignments for a formulaθ ∈ Θ”). We define
the counting analogue of the W-hierarchy in a straightforward way:

Definition 13 Fort ≥ 1, #W[t] is the class of all parameterized counting problems that arefixed-parameter
parsimonious reducible to #WSAT(Γt,d), for somed ≥ 0.

The notation #W[t] may be slightly misleading when compared with the notation #P of classical com-
plexity theory (which is not #NP), but since there is no obvious #FPT, we think that it is appropriate. Note
that we write FPT to denote both the class of fixed-parameter tractable decision problems and the class of
fixed-parameter tractable counting problems; the intendedmeaning will always be clear from the context.

4.1 #W[1]-complete problems

Theorem 14 The following problems are complete for#W[1] under parameterized parsimonious reduc-
tions:

(1) #WSAT(2-CNF),

(2) p-#CLIQUE, p-#SUB, p-#HOM, p-#EMB,

(3) p-#(Π0[τ ]) for every vocabularyτ that is not monadic.

(4) p-#HALT (“Count thek-step accepting computation paths of a nondeterministic Turing machine”).

Proof: Basically, the proof of these results amounts to checking that the many-one reductions proving the
W[1]-completeness of the corresponding decision problems are parsimonious (or can be made parsimo-
nious by simple modifications). Some of these reductions arequite simple, and we can sketch them here.
For those that are more complicated, we just give appropriate references.

A conjunctive queryis a first-order formula of the form∃x1 . . .∃xk(α1 ∧ . . . ∧ αℓ), whereα1, . . . , αℓ

are atoms. In particular, aquantifier freeconjunctive query is just a conjunction of atoms. We denote the
class of all conjunctive queries by CQ and the class of all quantifier free conjunctive queries byΠ0-CQ.
If Φ is a class of formulas, thenΦ[binary] is the class of all formulasϕ ∈ Φ whose vocabulary is at most
binary.

We will first establish the following chain of reductions:

p-#(Π0-CQ) ≤fp
parsp-#HOM ≤fp

parsp-#EMB ≤fp
parsp-#(Π0-CQ) (⋆)

p-#(Π0-CQ) ≤fp
parsp-#HOM :

With every formulaϕ(x1, . . . , xk) ∈ Π0-CQ of vocabularyτ we associate aτ ∪{EQ}-structureAϕ, where
EQ is a binary relation symbol not contained inτ . The universe ofAϕ is {x1, . . . , xk}, the set of variables
of ϕ. ForR ∈ τ , say,r-ary,RAϕ is the set of all tuples(xi1 , . . . , xir

) such thatRxi1 . . . xir
is an atom

of ϕ. Moreover, EQAϕ is the set of all pairs(xi1 , xi2) such thatxi1 = xi2 is an atom ofϕ. Note that
||Aϕ|| ∈ O(|ϕ|).

For aτ -structureB we letBEQ be theτ ∪ {EQ}-expansion ofB in which EQ is interpreted by the
equality relation onB. Then it is easy to see that for all(b1, . . . , bk) ∈ Bk we have(b1, . . . , bk) ∈ ϕ(B)
if, and only if, the mappingxi 7→ bi, for 1 ≤ i ≤ k, is a homomorphism fromAϕ to B. This yields a
parsimonious reduction fromp-#(Π0-CQ) to p-#HOM.
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p-#HOM ≤fp
parsp-#EMB :

Suppose we have structuresA andB and want to count the homomorphisms fromA to B. Let τ be the
vocabulary ofA andB andτ∗ = τ ∪ {Pa | a ∈ A}, where for everya ∈ A, Pa is a new unary relation
symbol that is not contained inτ . Let A∗ be theτ∗-expansion ofA with Pa = {a} for a ∈ A. We can
view A∗ as the expansion ofA where each element gets its individual colour. We letB∗ the be following
τ∗-structure: The universe ofB∗ is A × B. For r-aryR ∈ τ and(a1, b1), . . . , (ar, br) ∈ A × B we let
(

(a1, b1), . . . , (ar, br)
)

∈ RB∗

if, and only if, (b1, . . . , br) ∈ RB. For a ∈ A let PB∗

a = {a} × B. For
a homomorphismh : A → B we leth∗ : A∗ → B∗ be the mapping defined byh∗(a) = (a, h(a)). It
is easy to see that the mappingh 7→ h∗ is a bijection between the homomorphisms fromA to B and the
embeddings fromA∗ to B∗.

p-#EMB ≤fp
parsp-#(Π0-CQ) :

For everyτ -structureA we define a formulaϕA ∈ Π0-CQ of vocabularyτ ∪{NEQ}, where NEQ is a new
binary relation symbol. Suppose thatA = {a1, . . . , ak}. The formulaϕA has variablesx1, . . . , xk. For
everyr-aryR ∈ τ and every tuple(ai1 , . . . , air

) ∈ RA, ϕA contains the atomRxi1 . . . xir
. In addition,

ϕA contains the atoms NEQxixj for 1 ≤ i < j ≤ k.
For aτ -structureB we letBNEQ be theτ ∪ {NEQ}-expansion ofB in which NEQ is interpreted by

the inequality relation onB. Then it is easy to see that for all mappingsh : A → B we have:h is an
embedding ofA intoB if, and only if,

(

h(a1), . . . , h(ak)
)

∈ ϕA(B).

Next, we establish the following chain of reductions (for everyd ≥ 1):

#WSAT(Γ1,d) ≤
fp
parsp-#(Π0-CQ) ≤fp

parsp-#(Π0-CQ[binary])

≤fp
parsp-#CLIQUE ≤fp

pars #WSAT(2-CNF) ≤fp
pars #WSAT(Γ1,1)

(⋆⋆)

Together with (⋆), this proves the #W[1]-completeness of all problems listed in (1) and (2) exceptp-#SUB.

#WSAT(Γ1,d) ≤
fp
parsp-#(Π0-CQ):

The proof of Lemma 21 in [19] showing that WSAT(Γ1,d) is fixed-parameter many-one reducible to
p-MC(CQ) yields a parsimonious reduction from #WSAT(Γ1,d) to p-#(Π0-CQ).

p-#(Π0-CQ) ≤fp
parsp-#(Π0-CQ[binary]) :

The proof of Lemma 17 in [19] showing thatp-MC(CQ) is fixed-parameter many-one reducible to
p-MC(CQ[binary]) yields the claimed parsimonious reduction. Here and in later proofs we use (vari-
ants of) the following observation: Letϕ(x̄) andψ(x̄, ȳ) be formulas andA a structure. If for all tuples
ā ∈ A we have

A |= ϕ(ā) ⇐⇒ A |= ∃ȳψ(ā, ȳ),

and for all tuples̄a ∈ A there exists at most one tupleb̄ ∈ A such thatA |= ψ(ā, b̄), then|ϕ(A)| = |ψ(A)|.

p-#(Π0-CQ[binary]) ≤fp
parsp-#CLIQUE : The reduction in Proposition 22 of [19] is parsimonious.

p-#CLIQUE ≤fp
pars #WSAT(2-CNF) :

Let G be a graph. For everya ∈ G letXa be a propositional variable. Set

αG =
∧

a,b∈G,a 6=b,(a,b)/∈EG

(¬Xa ∨ ¬Xb) ∧
∧

a∈G

(Xa ∨ ¬Xa).

ThenαG is (equivalent to) a formula in 2-CNF. The second part of the formula ensures that every variable
Xa with a ∈ G occurs inαG . The number of cliques of sizek is just the number of assignments of weight
k satisfyingαG .

#WSAT(2-CNF) ≤fp
pars #WSAT(Γ1,1) :

2-CNF is a subset ofΓ1,1, so the reduction is trivial.

This completes the proof of (⋆⋆). We next show (3). Letτ be a vocabulary that is not monadic. We
leave it to the reader to show thatp-#CLIQUE ≤fp

parsp-#(Π0[τ ]).
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p-#(Π0[τ ]) ≤
fp
parsp-#(Π0-CQ) :

Let A be aτ -structure andϕ ∈ Π0[τ ]. We can assume thatϕ = ϕ1 ∨ . . . ∨ ϕm, where eachϕi is a
conjunction of literals andϕi ∧ϕj is unsatisfiable for alli 6= j. Let τ ′ := τ ∪ {R̄ | R ∈ τ} ∪ {EQ,NEQ},
where for allR ∈ τ the symbolR̄ is a new relation symbol of the same arity asR and EQ,NEQ are new
binary relation symbols. LetA′ be theτ ′-expansion ofA in which R̄ is interpreted as the complement of
RA and EQ and NEQ are interpreted as equality and inequality, respectively. Since the vocabulary is fixed,
A′ can be computed fromA in polynomial time. Ifn is the size of the universe ofA, then computing the
relations EQA

′

and NEQA
′

requires quadratic time, and for anr-aryR ∈ τ , computingR̄A′

= Ar \ RA

requires timeO(nr).
Let ϕ′ be the formula obtained by replacing positive literals of the form x = y by EQxy and by

replacing negative literals by positive ones in the obviousway using the new relation symbols̄R and NEQ.
Thenϕ′ = ϕ′

1 ∨ . . . ∨ ϕ′
m, where eachϕ′

i is a conjunction of atoms (i.e., positive literals). Note that
ϕ(A) = ϕ′(A′) and

for ā ∈ A′ there is at most onei with A′ |= ϕ′
i(ā). (⋆ ⋆ ⋆)

Finally we want to get rid of the disjunctions inϕ′. For this purpose we introduce a structureA′′ essentially
consisting ofm copies ofA′, theith one taking care ofϕ′

i. More precisely: letτ ′′ := {R̂ | R ∈ τ ′} ∪ {<

, T }, where arity(R̂) = arity(R) + 1 and where< andT are binary. Define theτ ′′-structureA′′ by

A′′ := {1, . . . ,m} ∪ ({1, . . . ,m} ×A)

<A′′

:= the natural ordering on{1, . . . ,m}

TA′′

:= {((i, a), (i, b)) | 1 ≤ i ≤ m, a, b ∈ A}

R̂A′′

:= {(i, (i, a1), . . . , (i, aarity(R))) | 1 ≤ i ≤ m, RA′

a1 . . . aarity(R)} ∪

{(i, (j, a1), . . . , (j, aarity(R))) | 1 ≤ i, j ≤ m, i 6= j, a1, . . . , aarity(R) ∈ A}.

Moreover set

ϕ′′(x1, . . . , xk, y1, . . . , ym) := y1 < . . . < ym ∧
∧

1≤ℓ≤ℓ′≤k

Txℓxℓ′ ∧
m
∧

i=1

ϕ′
i

R̂yiz̄

Rz̄
,

whereϕ′
i
R̂yiz̄
Rz̄ is obtained fromϕ′

i by replacing, for allR ∈ τ ′, atomic subformulas of the formRz̄ by
R̂yiz̄. Clearly,ϕ(x̄, ȳ) ∈ Π0-CQ. By (⋆ ⋆ ⋆), we have|ϕ(A)| = |ϕ′′(A′′)|.

Next, we prove the #W[1]-completeness ofp-#SUB. We observe that the number of substructures of
a structureB that are isomorphic to a structureA equals the number of embeddings ofA into B divided
by the number of automorphisms ofA. Unfortunately, this does not immediately yield a parsimonious
reduction fromp-#SUB to p-#EMB or vice versa. However,p-#CLIQUE is a restriction ofp-#SUB, thus
we havep-#CLIQUE ≤fp

parsp-#SUB.
To prove thatp-#SUB is in #W[1], we reducep-#SUB to p-#EMB. LetA,B beτ -structures and let<

be a binary relation symbol not contained inτ . Let us call aτ ∪ {<}-structureC in which<C is a linear
order of the universe anorderedτ ∪{<}-structure. LetA1, . . . ,Am be a list of expansions ofA to ordered
τ ∪ {<}-structures such that

(i) for 1 ≤ i < j ≤ m, the structuresAi andAj are not isomorphic,

(ii) every expansionA′ of A to an orderedτ ∪{<}-structure is isomorphic to anAi for somei, 1 ≤ i ≤
m.

ThusA1, . . . ,Am is a list of all ordered expansions ofA, where each isomorphism type is only listed once.
LetB< be an arbitrary expansion ofB to an orderedτ ∪ {<}-structure. Then

|
{

A′ ⊆ B
∣

∣ A′ ∼= A
}

| =

m
∑

i=1

|
{

A′ ⊆ B<

∣

∣ A′ ∼= Ai

}

|.
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Moreover, for eachi the number of substructures ofB< isomorphic toAi is equal to the number of em-
beddings ofAi intoB<.

Let ≺ be another binary relation symbol not contained inτ ∪ {<} andτ∗ = τ ∪ {<,≺}. LetA∗ be
the τ∗-structure obtained by taking the disjoint union ofA1, . . . ,Am and defining≺A such that for all
ai ∈ Ai, aj ∈ Aj we haveai ≺A∗

aj if, and only if, i < j. For 1 ≤ i ≤ m, let B∗
i be theτ∗-structure

obtained by replacing the copy ofAi in A∗ by a copy ofB<. Then the number of embeddings ofA∗ into
B∗

i is equal to the number of embeddings ofAi intoB<. Finally letB∗ be the disjoint union ofB∗
1 , . . . ,B

∗
m.

Then the number of embeddings ofA∗ into B∗ is equal to the sum of the numbers of embeddings ofA∗

into B∗
i for 1 ≤ i ≤ m. Putting everything together, the number of substructuresof B isomorphic toA is

equal to the number of embeddings ofA∗ intoB∗.

It remains to prove #W[1]-completeness ofp-#HALT . The proof of Theorem 8.3 in [15] implicitly con-
tains parsimonious reductions fromp-#(Π0-CQ[binary]) to p-#HALT and fromp-#HALT to p-#(Π0-CQ).

2

The decision versions of all problems mentioned in Theorem 14 are W[1]-complete under parame-
terized many-one reductions. The following theorem is interesting because it is not known whether the
decision problemp-MC(Π0) is contained in the closure of W[1] under parameterized T-reductions.

Theorem 15 p-#(Π0) is contained in the closure of#W[1] under parameterized T-reductions.

Proof: We shall prove thatp-#(Π0) ≤
fp
T p-#(Π0-CQ).

Note that the reduction fromp-#(Π0[τ ]) to p-#(Π0-CQ) we gave in the proof of Theorem 14 does not
yield a parameterized parsimonious reduction fromp-#(Π0) to p-#(Π0-CQ), because if the vocabulary is
not fixed in advance the structureA′ can get much larger thanA.

At least, the same argument as given in the proof of Theorem 14shows that we can restrict our attention
to conjunctions of literals (instead of arbitrary quantifier free formulas). Consider a formula

ϕ = α1 ∧ . . . ∧ αℓ ∧ ¬β1 ∧ . . . ∧ ¬βm,

whereα1, . . . , αℓ, β1, . . . , βm are atoms. The crucial observation is that for any structureA we have

|ϕ(A)| =
∣

∣(α1 ∧ . . . ∧ αℓ ∧ ¬β1 ∧ . . . ∧ ¬βm−1)(A)
∣

∣

−
∣

∣(α1 ∧ . . . ∧ αℓ ∧ ¬β1 ∧ . . . ∧ ¬βm−1 ∧ βm)(A)
∣

∣

Note that the two formulas on the left hand side of the equality have fewer negated atoms thanϕ. We can
now recursively reduce the number of negated atoms in these two formulas using the same trick until we
end up with a family of quantifier free conjunctive queries. This gives us a parameterized Turing reduction
from p-#(Π0) to p-#(Π0-CQ). 2

4.2 A machine characterisation of #W[1] As it is also the case for many other parameterized complexity
classes, the definition of the classes #W[t] is a bit unsatisfactory because all the classes are only defined as
the closure of a certain problem under a certain type of reduction. In particular, one may ask why we chose
parsimonious reductions and not, say, Turing reductions. Indeed, McCartin [23] defined her version of the
classes #W[t] using a different form of reductions, and that makes the theory seem a bit arbitrary. Compare
this with the situation for the class#P, which has a natural machine characterisation: A classical counting
problemF : Σ∗ → N is in #P if, and only if, there is a polynomial time non-deterministic Turing machine
N such that for every instancex of the problem,F (x) is the number of accepting paths ofN on inputx.

Recently, a machine characterisation of the class W[1] was given [8]. In this subsection, we adapt this
characterisation to give a characterisation of #W[1] along the lines of the above mentioned characterisation
of #P.

The machine model we use, which has been introduced in [8], isbased on the standard random ac-
cess machines (RAMs) described in [25]. The arithmetic operations are addition, subtraction, and division
by two (rounded off), and we use a uniform cost measure. The model is non-standard when it comes to
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nondeterminism. Anondeterministic RAMis a RAM with an additional instruction “GUESSi j” whose
semantics is: Guess a natural number less than or equal to thenumber stored in registeri and store it in
registerj. Acceptance of an input by a nondeterministic RAM program isdefined as usually for nondeter-
ministic machines. Steps of a computation of a nondeterministic RAM that execute a GUESS instruction
are callednondeterministic steps.

Following [8], we call a nondeterministic RAM programP a W-program, if there is a computable
functionf and a polynomialp such that for every input(x, k) with |x| = n the programP on every run

(1) performs at mostf(k) · p(n) steps;

(2) at mostf(k) steps are nondeterministic;

(3) at most the firstf(k) · p(n) registers are used;

(4) at every point of the computation the registers contain numbers≤ f(k) · p(n).

We call a W-programP aW[1]-program, if there is a computable functionh such that for every input(x, k),
for every run ofP

(5) all nondeterministic steps are among the lasth(k) steps.

Theorem 16 (Chen, Flum, and Grohe [8])LetQ ⊆ Σ∗ × N be a parameterized decision problem. Then
Q ∈ W[1] if, and only if, there isW[1]-program decidingQ.

The main result of this section is a counting version of this theorem:

Theorem 17 LetF : Σ∗ × N → N be a parameterized counting problem. ThenF ∈ #W[1] if, and only if,
there is aW[1]-programP such that, for all(x, k) ∈ Σ∗ × N, F (x, k) is the number of accepting paths of
P on input(x, k).

Proof: First assume thatF ∈ #W[1]. Then, by Theorem 14, there is a parsimonious reduction fromF to
p-#HALT . Hence, there are computable functionsf, g, a polynomialp, and an algorithm assigning to every
instance(x, k) of F , in time≤ f(k) · p(n), a nondeterministic Turing machineM = Mx,k and a natural
numberk′ = k′(x, k) ≤ g(k) such thatF (x, k) is the number of accepting paths ofM of lengthk′.

We can assume that the states and the symbols of the alphabet of M are natural numbers≤ f(k) ·p(n).
We define a W-programP that on input(x, k) ∈ Σ∗ × N proceeds as follows:

1. It computesM andk′;

2. It guesses a sequence ofk′ configurations ofM ;

3. It verifies that the sequence of guessed configurations formsan accepting computation ofM .

We can do this, in particular line 1, with a W-program using our parameterized parsimonious reduction
from F to p-#HALT . Moreover, the number of steps needed by line 2 and line 3 is bounded byh(k) for
a suitable computable functionh. Finally, the number of accepting paths ofP is exactly the number of
accepting paths ofM .

Assume now that we have a W[1]-programP such that for all(x, k) ∈ Σ∗ × N, F (x, k) is the number
of accepting paths ofP on input(x, k). Let f, p, h witness thatP is a W[1]-program. For every instance
(x, k) ∈ Σ∗ × N of F we shall define a non-deterministic Turing machineM = Mx,k and an integerk′

such thatF (x, k) is the number of accepting paths ofM of length at mostk′. Of course we have to do this
in such a way that the mapping(x, k) 7→ (M,k′) is a parameterized reduction.

So let (x, k) ∈ Σ∗ × N andn = |x|. The alphabet ofM = Mx,k contains0, 1, . . . , f(k) · p(n).
Thus alphabet symbols can be used to represent register content and register addresses of all runs ofP

on input (x, k). In addition, the alphabet contains a few control symbols. The transition function of
M will be defined in such a way thatM simulates the computation ofP on input (x, k) from the first
non-deterministic step onwards. The content of all the registers before the first non-deterministic step is
hardwired intoM . The changes of the register contents during the at mosth(k) non-deterministic steps
are written on the worktape, so eventually the worktape contains pairs(i1, a1), . . . , (iℓ, aℓ) in any order,
where(ij , aj) indicates that the current content of registerij is aj , andℓ ≤ h(k). For more details on the
definition ofM we refer the reader to [8]. 2
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4.3 #W[1] and counting satisfying assignments of a 3-CNF-formulaThe following theorem gives fur-
ther evidence that #W[1] 6= FPT, because it seems unlikely that counting the satisfyingassignments of a
3-CNF-formula withn variables is possible in time2o(n). A decision version of this theorem has been
proved by Abrahamson, Downey and Fellows [1].

Theorem 18 If #W[1] = FPT then there is an algorithm counting the satisfying assignments of a3-CNF-
formula withn variables in time2o(n).

Proof: Suppose that #W[1] = FPT. Then #WSAT(3-CNF) is in FPT. Thus there is an algorithm solving
#WSAT(3-CNF) in time f(k) · nc for some computable functionf : N → N and constantc. Then there
exists a functiong : N → N such that

(i) f(g(n)) ≤ 2o(n),

(ii) limn→∞ g(n) = ∞,

(iii) g(n) can be computed in time2o(n).

Let γ =
∧m

i=1 δi, where each clauseδi is a disjunction of at most 3 literals, be a formula in 3-CNF, and
let X = {X1, . . . , Xn} be the set of variables ofγ. We assume that no clause appears twice; thus we have
m ≤ (2n)3. We want to compute the number of satisfying assignments ofγ in time2o(n).

Letk = g(n). Note that (ii) impliesn/k ≤ o(n); we will use this repeatedly in the following argument.
For1 ≤ j ≤ k, let

Xj =
{

Xi

∣

∣

∣
(j − 1) ·

n

k
< i ≤ j ·

n

k

}

.

For everyS ⊆ Xj , letY S
j be a new variable. LetYj be the set of allY S

j andY =
⋃k

j=1 Yj . Then

|Y| ≤ k · 2⌈n/k⌉ ≤ 2o(n).

Call a truth value assignment to the variables inY goodif for 1 ≤ j ≤ k exactly one variable inYj is set
to true. There is a bijectionI between the truth value assignments to the variables inX and the good truth
value assignments to the variables inY defined by

I(A)(Y S
j ) = TRUE ⇐⇒ ∀X ∈ Xj :

(

A(X) = TRUE ⇐⇒ X ∈ S
)

,

for all A : X → {TRUE, FALSE}, 1 ≤ j ≤ k, andS ⊆ Xj . Let

β =
∧

1≤j≤k
S,T⊆Xj,S 6=T

(¬Y S
j ∨ ¬Y T

j )

and note that|β| ≤ k ·
(

2⌈n/k⌉
)2

≤ 2o(n). Observe that the weightk assignments to the variables inY
satisfyingβ are precisely the good assignments. Thus there is a bijection between the weightk satisfying
assignments forβ and the assignments to the variables inX .

For1 ≤ j ≤ k and every variableX ∈ Xj , let

αX =
∧

S⊆Xj,X 6∈S

¬Y S
j ,

α¬X =
∧

S⊆Xj,X∈S

¬Y S
j .

and observe that for every assignmentA : X → {TRUE, FALSE} we have

A(X) = TRUE ⇐⇒ I(A) satisfiesαX

⇐⇒ I(A) does not satisfyα¬X
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Let γ′ be the formula obtained fromγ by replacing each literalX by the formulaαX and each literal¬X
byα¬X . Then for every assignmentA : X → {TRUE, FALSE} we have

A satisfiesγ ⇐⇒ I(A) satisfiesγ′.

By applying de Morgan’s rule to each clauseδj of γ (or rather to the disjunction of conjunctionsδj has
become inγ′) we can turnγ′ into an equivalent conjunction of at most

m ·
(

2⌈n/k⌉
)3

disjunctions of at most 3 literals each. Letγ′′ be this 3-CNF-formula andγ∗ = β∧γ′′. ThenI is a bijection
between the satisfying assignments ofγ and the weightk satisfying assignments ofγ∗.

By our initial assumption, we can compute the number of weight k satisfying assignments ofγ∗ in time
f(k) · (n∗)c, wheren∗ = |Y| ≤ 2o(n) is the number of variables ofγ∗. Sincef(k) = f(g(n)) ≤ 2o(n),
this shows that we can compute the number of satisfying assignments ofγ in time2o(n). 2

4.4 #W[2]-complete problems

Theorem 19 The following problems are complete for#W[2] under parameterized parsimonious reduc-
tions:

(1) #WSAT(CNF),

(2) p-#DOMINATING SET,

(3) p-#(Π1,1[τ ]) for every vocabularyτ that is not monadic.

The equivalence between (1) in (3) in Theorem 19 can be liftedto the other classes of the #W-hierarchy,
but we only deal with #W[2] here.

Proof (of Theorem 19):Let Π1,1[s] denote the class of all formulas inΠ1,1 whose vocabulary is at most
s-ary. We will establish the following chain of reductions for everyd ≥ 0 ands ≥ 2:

#WSAT(Γ2,d) ≤
fp
parsp-#(Π1,1[s]) ≤

fp
parsp-#DOMINATING SET ≤fp

pars #WSAT(CNF).

Recalling that CNF⊆ Γ2,0 and observing thatp-#DOMINATING SET ≤fp
parsp-#(Π1,1[τ ]) for every vocab-

ularyτ that is not monadic, we see that this proves the theorem.

#WSAT(Γ2,d) ≤
fp
parsp-#(Π1,1[2]) :

By standard means one can show that there is ad′ only depending ond such that every formula inΓ2,d is
equivalent to a formula of the form

α =
∧

i∈I

δi,

where for somedα ≤ d′ everyδi is a disjunction of conjunctions of exactlydα literals,

δi =
∨

j∈Ji

βij

with
βij = λij1 ∧ . . . ∧ λijdα

. (⋆)

So let such anα, say with variablesX1, . . . , Xn, and ak ∈ N be given. If we have an assignment of weight
k settingXi1 , . . . , Xik

with i1 < . . . < ik TRUE and satisfyingβij as in (⋆), then the positive literals inβij

must be amongXi1 , . . . , Xik
. Thus for every negative literal¬Xr in βij we must haver < i1 or ik < r or

is < r < is+1 for somes. We use this fact in our reduction appropriately.
Form ∈ N set[m] := {1, . . . ,m} and

[m]2 := {(i, j) | 0 ≤ i < j ≤ m+ 1}.
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For a setM andm ∈ N denote by Pow≤m(M) := {Y ⊆ M | |Y | ≤ m} the set of subsets ofM of
cardinality≤ m.

We let τ = {<,≺, E,FIRST, LAST, F,DISJ,SAT} with binary<,≺, E, F,SAT and unary FIRST,
LAST, DISJ. LetAα be the followingτ -structure: The universe is

Aα := [n] ∪ [n]2 ∪ Pow≤dα
([n] ∪ [n]2) ∪ {δi | i ∈ I}.

Recall thatI is the index set of the conjunction in the formulaα. The selection ofi ∈ [n] means that
the variableXi gets the value TRUE and the selection of(i, j) ∈ [n]2 means that all variablesXℓ with
i < ℓ < j get the truth value FALSE.

The relations ofAα are specified by:

<Aα := the natural ordering on[n]

≺Aα := a total (“lexicographic”) ordering on Pow≤dα
([n] ∪ [n]2);

EAα := {(j, (i, j)) | 0 ≤ i < j ≤ n+ 1} ∪ {(i, (i, j)) | 0 ≤ i < j ≤ n+ 1};

FIRSTAα := {(0, j) | 0 ≤ j ≤ n+ 1};

LASTAα := {(i, n+ 1) | 0 ≤ i ≤ n+ 1};

FAα := {(i,M) | i ∈ [n], M ∈ Pow≤dα
([n] ∪ [n]2), i ∈M} ∪

{((i, j),M) | (i, j) ∈ [n]2, M ∈ Pow≤dα
([n] ∪ [n]2), (i, j) ∈M};

DISJAα := {δi | i ∈ I};

SATAα := {(M, δi) |M ∈ Pow≤dα
([n] ∪ [n]2), i ∈ I, there is aj ∈ J i such that fors = 1, . . . , n:

if Xs is a literal ofβij thens ∈M and

if ¬Xs is a literal ofβij then there is(ℓ,m) ∈Mwith ℓ < s < m}.

Let r := |Pow≤dα
([2 · k + 1])|. Note that‖Aα‖ ≤ ‖A‖c, wherec = c(d), andr ≤ g(d, k) for some

computable functiong.
The number of satisfying assignments ofα of weightk is |ϕα,k(Aα)|, where

ϕα,k(x1, . . . , xk, z1, . . . , zk+1, u1, . . . , ur) is theΠ1,1-formula

ϕα,k =∀y
(

x1 < . . . < xk ∧
∧k

i=1(Exizi ∧ Exizi+1) ∧ FIRSTz1 ∧ LAST zk+1

∧u1 ≺ . . . ≺ ur ∧
∧r

i=1

(

Fyui → (
∨k

j=1 y = xj ∨
∨k+1

j=1 y = zj)
)

∧ (DISJy →
∨r

j=1 SATujy)
)

.

p-#(Π1,1[s]) ≤
fp
parsp-#DOMINATING SET :

For notational simplicity, we assumes = 2. Let τ be a vocabulary that only contains unary and binary
relation symbols. Assume we are given aτ -structureA with universeA and aΠ1,1[τ ]-formula

ϕ(x1, . . . , xℓ) = ∀yψ(x1, . . . , xℓ, y).

Let G = (G,EG) be the graph defined as follows: The vertex set is

G := ({1, . . . , ℓ} ×A) ∪̇Aℓ ∪̇ (A× {0}) ∪̇ {bji | 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ+ 2} ∪̇ {bj | 1 ≤ j ≤ ℓ+ 2}

(∪̇ denotes disjoint union), wherebji andbj are new elements. The edge relationEG is defined in such a
way that

(i) every(a1, . . . , aℓ) ∈ Aℓ is connected to all elements of{i} × (A \ {ai}) for 1 ≤ i ≤ ℓ;

(ii) for ā ∈ Aℓ and(b, 0) ∈ A× {0}: {ā, (b, 0)} ∈ EG ⇐⇒ A |= ψ(ā, b).

(iii) bji is connected to(i, a) for 1 ≤ i ≤ ℓ, 1 ≤ j ≤ ℓ+ 2, a ∈ A.

(iv) bj is connected to all̄a ∈ Aℓ for 1 ≤ j ≤ ℓ+ 2.
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We claim that:

• Every dominating set ofG of cardinalityℓ+ 1 contains exactly one element of each{i} ×A, and if
we label these elements say(i, ai) for 1 ≤ i ≤ ℓ, then the(ℓ+ 1)st element in the dominating set is
(a1, . . . , aℓ) ∈ Aℓ.

• For alla1, . . . , aℓ ∈ A,
{

(i, ai)
∣

∣ 1 ≤ i ≤ ℓ
}

∪ {ā} is a dominating set ofG ⇐⇒ A |= ϕ(ā).

To see this, suppose thatD is a dominating set ofG of size ℓ + 1. ThenD must contain at least one
vertex of{i} × A for 1 ≤ i ≤ ℓ and one vertex ofAℓ, because this is the only way the verticesbji
andbj, for 1 ≤ j ≤ ℓ + 2 can be dominated withℓ + 1 vertices. Suppose thatD contains the vertices
(1, a1), . . . , (ℓ, aℓ). Letd be the remaining element ofD. If d = (d1, . . . , dℓ) 6= (a1, . . . , aℓ), sayd1 6= a1,
then(1, d1) is not dominated bya1, . . . , aℓ, d. Therefore,d must be(a1, . . . , aℓ). However,d must also
dominateA× {0}, and this is only possible ifA |= ψ(a1, . . . , aℓ, b) for all b ∈ A.

Thus|ϕ(A)| is the number of dominating sets ofG of cardinalityℓ+ 1. But note thatG is too big for
a parameterized reduction, sinceG contains the setAℓ, where the exponent depends on the parameterϕ.
So we need a more refined reduction. We can assume thatψ(x̄, y) = ψ1 ∧ . . . ∧ ψm where eachψi is a
disjunction of literals. Each literal contains at most2 variables. Therefore, we do not needAℓ but a copy
Aij of A2 for 1 ≤ i < j ≤ ℓ. We replaceAℓ above by all these copies andA × {0} byA × {1, . . . ,m}.
We replace (i) by

(i’) Every (ai, aj) in the copyAij ofA2 is connected to all elements of{i}× (A\{ai}) and all elements
of {j} × (A \ {aj}).

Furthermore, we replace (ii) by

(ii’) for 1 ≤ i < j ≤ ℓ, (ai, aj) in the copyAij of A2, and for(b, k) ∈ A× {1, . . . ,m}:

{(ai, aj), (b, k)} ∈ EG ⇐⇒ there is a literalλ(xi, xj , y) in ψk whose (at most
two) free variables are amongxi, xj , y such thatA |=
λ(ai, aj, b).

Moreover, instead of thebji and thebj we add for everyi = 1, . . . , ℓ and for every copy ofA2 a set of
ℓ+

(

ℓ
2

)

+ 1 new elements that ensure that every dominating set of cardinality ℓ+
(

ℓ
2

)

contains exactly one
element of every{i} ×A and of every copy ofA2.

Then dominating sets of cardinalityℓ +
(

ℓ
2

)

and tuples inA satisfyingϕ are related in an one-to-one
fashion.

p-#DOMINATING SET ≤fp
pars #WSAT(CNF) :

Let G = (G,EG) be a graph. Fora ∈ G letXa be a propositional variable. LetαG be the propositional
formula

αG :=
∧

a∈G

(

Xa ∨
∨

(a,b)∈E

Xb

)

.

Then,αG is (equivalent to) a formula inΓ2,0. Clearly the number of satisfying assignments ofαG of weight
k equals the number of dominating sets ofG of sizek. 2

Remark 20 As opposed to the proof of Theorem 14, the reductions given inthe proof of Theorem 19
are not just variants of the standard reductions showing theW[2]-completeness of the respective problems
under many-one reductions. As a matter of fact, our proof yields a new proof of the complicated result that
p-DOMINATING SET is W[2]-complete under parameterized many-one reductions.

18



5 Counting cycles and paths

Theorem 21 The following problems are#W[1]-complete under parameterized Turing reductions:

(1) p-#CYCLE andp-#DIRCYCLE (“Count the cycles of lengthk in a (directed) graph”).

(2) p-#PATH andp-#DIRPATH (“Count the paths of lengthk in a (directed) graph”).

To be precise, let us define apath of lengthk in a directed graph(G,EG) to be a substructure ofG
isomorphic to

(

{1, . . . , k}, {(i, i + 1) | 1 ≤ i < k}
)

. A cycle of lengthk is a substructure isomorphic
to

(

{1, . . . , k}, {(i, i + 1) | 1 ≤ i < k} ∪ {(k, 1)}
)

. Paths and cycles in undirected graphs are defined
similarly.

Thus all problems in Theorem 21 are restrictions of the substructure problemp-#SUB and thus in #W[1]
by Theorem 14. The decision versions of the problems are fixed-parameter tractable. This is an immediate
consequence of Plehn and Voigt’s [26] theorem that the parameterized embedding problem restricted to
graphs of bounded tree-width is fixed-parameter tractable and the fact that paths have tree-width 1 and
cycles have tree-width 2.

Lemma 22
p-#DIRCYCLE ≤fp

parsp-#CYCLE ≤fp
T p-#PATH ≤fp

T p-#DIRPATH.

Proof: p-#DIRCYCLE ≤fp
parsp-#CYCLE :

For a directed graphG, letGu
p,q be the undirected graph obtained fromG by the following two steps:

(1) Replace each vertexa of G by an undirected path of lengthp such that the (directed) edges with head
a in G get the first vertex of this path as their new head and the edgeswith tail a in G get the last
vertex of this path as their new tail.

(2) Replace each directed edge in this graph (correspondingto an edge ofG) by an undirected path of
lengthq.

Figure 1 gives an example.

Figure 1. A directed graphG and the correspondingGu
2,3

Observe that each cycle inGu
p,q has lengthℓ · p+m · q for some integersℓ,m ≥ 0 with ℓ ≤ m. Further

observe that each directed cycle of lengthk in G lifts to a cycle of lengthk(p + q) in Gu
p,q. Givenk, we

want to choosep andq in such a way that each cycle of lengthk(p+ q) in Gu
p,q is the lifting of a directed

cycle of lengthk in G. To achieve this, we have to choosep andq in such a way that

k(p+ q) 6= ℓ · p+m · q (1)

for all ℓ,m ≥ 0 with ℓ < m. If we choosep ≤ q, then (1) holds form > 2k. So we have to fulfil (1) for
0 ≤ ℓ < m ≤ 2k. Hence, we have to avoid

(

2k+1
2

)

linear equalities. Clearly we can find natural numbers
p ≤ q satisfying none of these equalities.
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For suchp andq, the number of directed cycles of lengthk in G equals the number of undirected cycles
of lengthk(p+ q) in Gu

p,q.

p-#CYCLE ≤fp
T p-#PATH :

Let G be an undirected graph andk ≥ 1. Without loss of generality we can assume thatk ≥ 3 because
counting loops in a graph is easy.

For eache = {v, w} ∈ EG and allℓ,m ≥ 0, we letGe(ℓ,m) be the graph obtained fromG by adding
vertices asv1, . . . , vℓ, w1, . . . , wm and edges betweenvi andw for 1 ≤ i ≤ ℓ and betweenwj andv for
1 ≤ j ≤ m.

We observe that the numberxe of paths of lengthk+1 from v1 tow1 in Ge(ℓ,m) is exactly the number
of cycles of lengthk in G containing the edgee. We now show how to computexe from the numbers of
paths of lengthk+1 in the graphsGe(ℓ,m) for 0 ≤ ℓ,m ≤ 1. This yields a parameterized Turing reduction
from p-#CYCLE to p-#PATH.

We observe that thevi andwj can only be endpoints of paths inGe(ℓ,m), and that each path can have
at most one endpoint amongv1, . . . , vℓ and at most one endpoint amongw1, . . . , wm (because each path
ending invi must go throughw and each path ending inwj must go throughv).

We let

• x = xe be the number of paths of length(k + 1) from v1 tow1 in Ge(1, 1),

• y be the number of paths of length(k + 1) in Ge(1, 1) that containv1, but notw1,

• z be the number of paths of length(k + 1) in Ge(1, 1) that containw1, but notv1,

• w be the number of paths of length(k + 1) in Ge(1, 1) that neither containv1 norw1.

Let pℓm be the number of paths of length(k + 1) in Ge(ℓ,m). Then we have

pℓm = w + ℓ ·m · x+ ℓ · y +m · z.

For 0 ≤ ℓ,m ≤ 1 we obtain a system of 4 linear equations in the variablesw, x, y, z whose matrix is
nonsingular. Thus it has a unique solution which, in particular, gives us the desired valuex.

p-#PATH ≤fp
T p-#DIRPATH :

This is trivial; just replace each edge of an undirected graph that is not a loop by two directed edges. Then
each path (of length at least 2) in the undirected graph corresponds to exactly two paths of the same length
in the directed graph. 2

Next, we will prove thatp-#CLIQUE ≤fp
T p-#DIRCYCLE. This requires a sequence of lemmas. Let

h : H → G be a homomorphism and, fori ≥ 1, let ki be the number of verticesb ∈ G such that
|h−1(b)| ≥ i. Then

∑

i≥1 ki = |H |. Thetypeof h is the polynomial

th(X) =
∏

i≥1

(X − i+ 1)ki =
∏

b∈G

(X)|h−1(b)|,

where the notation(X)i is used for the “falling factorial”, that is,(X)0 = 1 and(X)i+1 = (X)i(X − i)
for all i ≥ 0. In particular, an embedding fromH intoG is a homomorphism of typeX |H|.

Let Dk denote the directed cycle of lengthk whose vertices are1, . . . , k in cyclic order. We consider
the following generalisation ofp-#DIRCYCLE:

p-#TDC
Input: Directed graphG, polynomialt(X).

Parameter: k ∈ N.
Problem: Count the homomorphismsh : Dk → G of typet(X).

Lemma 23
p-#TDC≤fp

T p-#DIRCYCLE
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Proof: For a directed graphG and natural numbersℓ,m ≥ 1, let Gℓ,m be the graph obtained fromG as
follows:

• The universe ofGℓ,m is
Gℓ,m = G× {1, . . . , ℓ} × {1, . . . ,m}.

• There is an edge from(a, i, j) to (a′, i′, j′) in Gℓ,m either if i = ℓ andi′ = 1 and there is an edge
from a to a′ in G or if a = a′ andi′ = i+ 1.

Figure 2 gives an example.

Figure 2. A directed graphG and the correspondingG3,2

Recall that the vertices of the cycleDk are1, . . . , k. Theprojectionof an embeddinge : Dk·ℓ → Gℓ,m

is the homomorphismπ(e) : Dk → G which maps vertexa ∈ Dk to the first component ofe((a−1)·ℓ+1),
that is, we letπ(e)(a) = b if e((a− 1) · ℓ+ 1) = (b, i, j) for somei ∈ {1, . . . , ℓ}, j ∈ {1, . . . ,m}.

Observe that for every homomorphismh : Dk → G there are

ℓ · th(m)ℓ

embeddingse : Dk·ℓ → Gℓ,m with projectionπ(e) = h. Let T be the set of all types of homomorphisms
from Dk into some graph. For every typet ∈ T , let xt be the number of homomorphismsh : Dk → G
with th = t. Then

bℓ =
∑

t∈T

xt · ℓ · t(m)ℓ

is the number of embeddingse : Dk·ℓ → Gℓ,m.
The types inT are polynomials of degree at mostk. Thus for distinctt(X), t′(X) ∈ T there are at

mostk distinctx ∈ N such thatt(x) = t′(x). Therefore, there is anm ≤ k · |T |2 such that for all distinct
t(X), t′(X) ∈ T we havet(m) 6= t′(m). We fix such anm.

We let~b = (b1, . . . , b|T |), ~x = (xt)t∈T , andA = (aℓt)1≤ℓ≤|T |
t∈T

, whereaℓt = ℓ · t(m)ℓ. Then

A · ~x = ~b.

Since the matrix(1
ℓ aℓt)1≤ℓ≤|T |

t∈T

is a Vandermonde matrix and thus nonsingular, the matrixA is also non-

singular, and thus
~x = A−1~b.

Now our Turing reduction fromp-#TDC top-#DIRCYCLE works as follows:

1 Compute the setT and a suitablem.
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2 For1 ≤ ℓ ≤ |T |, compute the graphGℓ,m.

3 For 1 ≤ ℓ ≤ |T |, compute the numberbℓ of embeddingse : Dk·ℓ → Gℓ·m (using the oracle to
p-#DIRCYCLE and noting thatbℓ is k · ℓ times the number of cycles of lengthk · ℓ in Gℓ·m).

4 Compute the matrixA and solve the systemA · ~x = ~b.

5 Returnxt, wheret(X) is the input polynomial. (Ift 6∈ T , then return0.)

Since the setT , the numberm, and the matrixA only depend on the parameterk, this is a parameterized
Turing reduction. 2

For k, ℓ ≥ 1, let Ω(k, ℓ) denote the space of all mappingsf : {1, . . . , k · ℓ} → {1, . . . , k} such that
|f−1(i)| = ℓ for 1 ≤ i ≤ k.

Lemma 24 Let k ≥ 1, and letH = (H,EH) be a directed graph with universeH = {1, . . . , k} and
EH 6= H2. Then

lim
ℓ→∞

Pr
f∈Ω(k,ℓ)

(

f is a homomorphism fromDk·ℓ toH
)

= 0

(wheref is chosen uniformly at random).

Proof: Let (x, y) ∈ H2 \EH andm ≤ k · ℓ. We call a tuple(i1, . . . , im) ∈ Hm goodif (ij , ij+1) 6= (x, y)
for 1 ≤ j ≤ m− 1 andbadotherwise. For(i1, . . . , im) ∈ Hm chosen uniformly at random we have

Pr
(

(i1, . . . , im) good
)

≤ Pr
(

∀j, 1 ≤ j ≤ m/2 : (i2j−1, i2j) 6= (x, y)
)

=

(

1 −
1

k2

)⌊m/2⌋

.

Furthermore, for alli1, . . . , im ∈ H we have

Pr
f∈Ω(k,ℓ)

(

∀j, 1 ≤ j ≤ m : f(j) = ij
)

≤

(

ℓ

k · ℓ−m

)m

.

To see this inequality, note that a choosing a random function f ∈ Ω(k, ℓ) can be modeled by randomly
pickingkl balls without repetitions out of a bin that intially contains l balls each of colours1, . . . , k. The
probability that theith ball ist of colorj at most

ℓ

k · ℓ− (i− 1)
,

because at mostℓ of the remainingk · ℓ− (i − 1) are of colourj. Now the inequality follows straightfor-
wardly.

Thus

Pr
f∈Ω(k,ℓ)

(f is a homomorphism fromDk·ℓ to H)

≤
∑

(i1,...,im)∈Hm good

Pr
f∈Ω(k,ℓ)

(f(j) = ij for 1 ≤ j ≤ m)

≤
∑

(i1,...,im)∈Hm good

(

ℓ

k · ℓ−m

)m

=

(

ℓ

k · ℓ−m

)m

· km · Pr
(i1,...,im)∈Hm

(

(i1, . . . , im) good
)

≤

(

k · ℓ

k · ℓ−m

)m

·

(

1 −
1

k2

)⌊m/2⌋

.
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Let ε > 0. Then there exists anm(ε, k) such that form ≥ m(ε, k) we have

(

1 −
1

k2

)⌊m/2⌋

≤
ε

2
.

Moreover, for everym there exists anℓ(m) such that forℓ ≥ ℓ(m) we have
(

k · ℓ

k · ℓ−m

)m

=

(

1

1 − m
k·ℓ

)m

≤
1

(

1 − m
ℓ

)m ≤ 2.

Thus for allℓ ≥ ℓ(m(ε, k)) we have

Pr
f∈Ω(k,ℓ)

(f is a homomorphism fromDk·ℓ toH) ≤ ε.

2

Lemma 25
p-#CLIQUE ≤fp

T p-#TDC.

Proof: Let k ≥ 1. For a graphH, let
↔

H denote the directed graph with the same vertex set and edge set
{

(a, a)
∣

∣ a ∈ H
}

∪
{

(a, b)
∣

∣ {a, b} ∈ EH
}

.

For every graphH with k vertices and everyℓ ≥ 1, letaHℓ be the number of homomorphisms of type(X)k
ℓ

from Dk·ℓ into
↔

H (that is, homomorphisms for which each point in the image hasexactlyℓ pre-images).

Let
N

aH = (aH1, aH2, . . .) and, for everyℓ ≥ 1,
ℓ
aH = (aH1, aH2 . . . , aHℓ). We consider

N

aH and
ℓ
aH as

vectors in the vector spacesQN andQℓ, respectively.
Let k ≥ 1, and letK be the complete graph with vertices{1, . . . , k}. LetH be the set of all graphs with

vertex set{1, . . . , k}, where up to isomorphism each graph occurs only once inH, and letH− = H \ {K}.
For a setS of vectors inQN or Qℓ, we let〈S〉 denote the linear span ofS.

Claim 1:
N

aK 6∈
〈

{N

aH
∣

∣ H ∈ H−
}

〉

.

Proof: Recall thatΩ(k, ℓ) denotes the set of all mappingsh : {1, . . . , k ·ℓ} → {1, . . . , k} with the property
that|h−1(i)| = ℓ for 1 ≤ i ≤ k.

We first observe that for allℓ ≥ 1,
aKℓ = |Ω(k, ℓ)|.

On the other hand, by Lemma 24 for all graphsH ∈ H− we have

lim
ℓ→∞

aHℓ

|Ω(k, ℓ)|
= 0.

Suppose for contradiction that
N

aK =

n
∑

i=1

λi
N

aHi

for graphsH1, . . . ,Hn ∈ H−. Chooseℓ sufficiently large such that for1 ≤ i ≤ n

aHiℓ

aKℓ
=

aHiℓ

|Ω(k, ℓ)|
<

1
∑n

i=1 |λi|
.

Then

aKℓ =

n
∑

i=1

λiaHiℓ ≤ aKℓ

n
∑

i=1

|λi|
aHiℓ

aKℓ
< aKℓ

n
∑

i=1

|λi|
1

∑n
j=1 |λj |

= aKℓ,
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which is a contradiction. This proves Claim 1.

Claim 2: There is anℓ = ℓ(k) ∈ N such that

ℓ
aK 6∈

〈

{ℓ
aH

∣

∣ H ∈ H−
}

〉

.

Furthermore, the mappingk 7→ ℓ(k) is computable.

Proof: For ι ∈ N ∪ {N}, let

Vι =
〈

{ ι
aH

∣

∣ H ∈ H−
}

〉

.

Identifying(a1, . . . , ai) ∈ Qi with (a1, . . . , ai, 0, 0, . . .) ∈ QN, for all i ≥ 1 we can viewVi a subspace of
Vj for all j ≥ i and ofVN. Thus we can find an increasing sequence

B1 ⊆ B2 ⊆ B3 ⊆ · · · ⊆ H−

such that for alli ≥ 1,
{

i
aH

∣

∣

∣
H ∈ Bi

}

is a basis ofVi. SinceVN is a finite dimensional vector space, there is ann ∈ N such thatBi = Bn for all
i ≥ n.

Now if
i
aK was inVi for all i ≥ 1, then for alli ≥ 1, the vector

i
aK could be written as a unique linear

combination of the vectors in
{

i
aH

∣

∣

∣
H ∈ Bi

}

. For alli ≥ n, these linear combinations would be identical,

thus
N

aK would be inVN. This contradicts Claim 1 and thus proves that for someℓ ∈ N,

ℓ
aK 6∈ Vℓ.

Clearly such anℓ is computable fromk, since we can compute all vectors
i
aH for H ∈ H andi ∈ N. This

completes the proof of Claim 2.

Now we are ready to prove the lemma. Letk ≥ 1 and defineK, H, H−, and the vectors
ι
aH as above.

Chooseℓ = ℓ(k) according to Claim 2.
Let G be a graph. For every graphH ∈ H, let xH be the number of subsetsA ⊆ G such that the

subgraph induced byG onA is isomorphic toH. We want to determine the numberxK. For 1 ≤ i ≤ ℓ,

let bi be the number of homomorphisms fromDk·i into
↔

G of type (X)k
i , and let

ℓ

b = (b1, . . . , bℓ). The
numbersbi can be computed by an oracle top-#TDC.

Observe that for1 ≤ i ≤ ℓ we have
bi =

∑

H∈H

xHaHi

and thus
ℓ

b =
∑

H∈H

xH
ℓ
aH.

Since
ℓ
aK is linearly independent from

{

ℓ
aH

∣

∣

∣
H ∈ H−

}

, the coefficientxK can be computed by solving

this system of linear equations. 2

Proof of Theorem 21:The theorem follows immediately from Lemmas 22, 23, 25 and Theorem 14. 2
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6 Conclusions

We have set up a framework for a parameterized complexity theory of counting problems and proved
a number of completeness results. In particular, we proved the fixed-parameter intractability of natural
counting problems whose decision version is fixed-parameter tractable.

A lot of interesting problems remain open, let us just mention two of them:

• In view of Valiant’s #P-completeness result for counting perfect matchings, it would be quite nice to
show that the parameterized matching problemp-#MATCHING is #W[1]-complete. We conjecture
that this is the case.

• Another interesting question is related to Toda’s theorem:Does #W[1] contain the whole W-hierar-
chy, or maybe even the A-hierarchy (introduced in [15])?
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Appendix A: A list of problems appearing in this paper

Vertex cover and related problems A vertex coverof a graphG = (G,EG) is a subsetX ⊆ G such that
for all edges(v, w) ∈ EG eitherv ∈ X orw ∈ X .

p-VERTEX COVER

Input: GraphG.
Parameter: k ∈ N.

Problem: Decide ifG has a vertex cover of
sizek.

p-#VERTEX COVER

Input: GraphG.
Parameter: k ∈ N.

Problem: Count the vertex covers ofG of
sizek.

A dominating setof a graphG = (G,EG) is a subsetX ⊆ G such that for all verticesw ∈ G eitherw ∈ X
or (v, w) ∈ EG for somev ∈ X .

p-DOMINATING SET

Input: GraphG.
Parameter: k ∈ N.

Problem: Decide ifG has a dominating set
of sizek.

p-#DOMINATING SET

Input: GraphG.
Parameter: k ∈ N.

Problem: Count the dominating sets ofG
of sizek.

In general, thestandard parameterizationof an optimisation problem is the parameterized decision problem
asking whether there exists a solution of sizek, wherek is the quantity to be optimised and the parameter.
The counting version can be defined accordingly.

Homomorphisms, embeddings, and substructures

p-HOM

Input: StructuresA andB.
Parameter: ||A||.

Problem: Decide if there exists a homo-
morphism fromA toB.

p-#HOM

Input: StructuresA andB.
Parameter: ||A||.

Problem: Count the homomorphisms
fromA toB.

p-EMB

Input: StructuresA andB.
Parameter: ||A||.

Problem: Decide if there exists an embed-
ding ofA intoB.

p-#EMB

Input: StructuresA andB.
Parameter: ||A||.

Problem: Count the embeddings ofA into
B.

p-SUB

Input: StructuresA andB.
Parameter: ||A||.

Problem: Decide if B has a substructure
isomorphic toA.

p-#SUB

Input: StructuresA andB.
Parameter: ||A||.

Problem: Count the substructures ofB
isomorphic toA.

A cliquein a graphG is a subsetX of G such that for all distinctv, w ∈ X , (v, w) ∈ EG .

p-CLIQUE

Input: GraphG.
Parameter: k ∈ N.

Problem: Decide ifG has a clique of size
k.

p-#CLIQUE

Input: GraphG.
Parameter: k ∈ N.

Problem: Count the cliques ofG of sizek.
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p-PATH

Input: GraphG.
Parameter: k ∈ N.

Problem: Decide if G contains a path of
lengthk.

p-#PATH

Input: GraphG.
Parameter: k ∈ N.

Problem: Count the paths of lengthk in G.

p-DIRPATH

Input: Directed graphG.
Parameter: k ∈ N.

Problem: Decide ifG contains a directed
path of lengthk.

p-#DIRPATH

Input: Directed graphG.
Parameter: k ∈ N.

Problem: Count the directed paths of
lengthk in G.

p-CYCLE

Input: GraphG.
Parameter: k ∈ N.

Problem: Decide ifG contains a cycle of
lengthk.

p-#CYCLE

Input: GraphG.
Parameter: k ∈ N.

Problem: Count the cycles of lengthk
in G.

p-DIRCYCLE

Input: Directed graphG.
Parameter: k ∈ N.

Problem: Decide ifG contains a directed
cycle of lengthk.

p-#DIRCYCLE

Input: Directed graphG.
Parameter: k ∈ N.

Problem: Count the directed cycles
of lengthk in G.

A matchingof a graph is a set of edges that pairwise have no endpoint in common.

p-MATCHING

Input: Bipartite graphG.
Parameter: k ∈ N.

Problem: Decide ifG contains a matching
of sizek.

p-#MATCHING

Input: Bipartite graphG.
Parameter: k ∈ N.

Problem: Count the matchings of sizek
in G.

Logically defined problems Theweightof an assignmentS for the variables of a propositional formula
is the number of variables set toTRUE by S. Let Θ be a class of propositional formulas

WSAT(Θ)
Input: θ ∈ Θ.

Parameter: k ∈ N.
Problem: Decide ifθ has a satisfying

assignment of weightk.

#WSAT(Θ)
Input: θ ∈ Θ.

Parameter: k ∈ N.
Problem: Count the satisfying

assignments ofθ of weightk.

|ϕ| denotes the length of a formulaϕ. Let Φ be a class of first-order formulas.

p-MC(Φ)
Input: StructureA, formulaϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Decide ifϕ(A) 6= ∅.

p-#(Φ)
Input: StructureA, formulaϕ ∈ Φ.

Parameter: |ϕ|.
Problem: Compute|ϕ(A)|.

Letϕ(X) be a formula of vocabularyτ ∪ {X}.
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p-FD(ϕ(X))
Input: τ -structureA.

Parameter: k ∈ N.
Problem: Decide ifϕ(A) contains a rela-

tion of sizek.

p-#FD(ϕ(X))
Input: StructureA.

Parameter: k ∈ N.
Problem: Count the number of relations of

sizek in ϕ(A).

The parameterized halting problem

p-HALT

Input: Nondeterministic Turing ma-
chineM .

Parameter: k ∈ N.
Problem: Decide ifM accepts the empty

word in at mostk steps.

p-#HALT

Input: Nondeterministic Turing ma-
chineM .

Parameter: k ∈ N.
Problem: Count the accepting computa-

tion paths ofM of length at
mostk for the empty word.
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