The parameterized complexity of counting problems

Jorg Flunt Martin Grohé

January 22, 2004

Abstract

We develop a parameterized complexity theory for countiodplems. As the basis of this theory, we
introduce a hierarchy of parameterized counting completésses #W], for ¢ > 1, that corresponds to
Downey and Fellows’s W-hierarchy [13] and show that a fewtie@WW-completeness results for decision
problems translate to #W-completeness results for thespoanding counting problems.

Counting complexity gets interesting with problems whoseision version is tractable, but whose
counting version is hard. Our main result states that cogriycles and paths of lengkhin both directed
and undirected graphs, parameterizedkbys #W[1]-complete. This makes it highly unlikely that any
of these problems is fixed-parameter tractable, even ththajhdecision versions are fixed-parameter
tractable. More explicitly, our result shows that most Ijkénere is nof (k) - n°-algorithm for counting
cycles or paths of length in a graph of size: for any computable functiori : N — N and constant,
even though there is2f’*) . n2-376 algorithm for finding a cycle or path of length[2].

1 Introduction

Counting problem&ave been the source for some of the deepest and most fasgiregults in computa-
tional complexity theory, ranging from Valiant’'s fundantairesult [29] that counting perfect matchings
of bipartite graphs is #P-complete over Toda’s theorem {8} the class # contains the polynomial
hierarchy to Jerrum, Sinclair, and Vigoda'’s [20] fully polymial randomised approximation scheme for
computing the number of perfect matchings of a bipartitglyran this paper, we develop a basic parame-
terized complexity theory for counting problems.

Parameterized complexity thegoyovides a framework for a fine-grain complexity analysialgbrith-
mic problems that are intractable in general. In recentsjgdeas from parameterized complexity theory
have found their way into various areas of computer sciesigeh) as database theory [19, 24], artificial
intelligence [18], and computational biology [6, 27]. Cethto the theory is the notion diked-parameter
tractability, which relaxes the classical notion of tractability, palymial time computability, by admitting
algorithms whose running time is exponential, but only inme of someparameterof the problem in-
stance that can be expected to be small in the typical apipitsa A good example is the evaluation of
database queries: Usually, the sizef the query to be evaluated is very small compared to thersize
the database. An algorithm evaluating the query in 2" - n) may therefore be acceptable, even quite
good. On the other hand, &\(n*) evaluation algorithm can usually not be considered feasiBixed-
parameter tractability is based on this distinction: A paeterized problem iixed-parameter tractabli
there is a computable functighand a constant such that the problem can be solved in tiff(&) - n¢,
wheren is the input size anél the parameter value.

A standard example of a fixed-parameter tractable problaheisertex cover problem parameterized
by the sizek of the vertex cover. Itis quite easy to see that a vertex cofisize k of a graph of sizex can
be computed in timé&(2* - n) by a simple search tree algorithm based on the fact that st éee of the
two endpoints of each edge must be contained in a vertex.c@era matter of fact, such an algorithm
computes all minimum vertex covers of size at mkst A standard example of a problem that does not

*Institut fur Mathematische Logik, Albert-Ludwigs-Unigitat Freiburg, Eckerstr. 1, 79104 Freiburg, Germany.
Email: Joer g. Fl um@rat h. uni -frei burg. de

TInstitur fiir Informatik, Humboldt-Universitat zu Benlj Unter den Linden 6, 10099 Berlin, Germany.
Email: gr ohe@ nf or nat i k. hu-berlin. de

seem to be fixed-parameter tractable is the clique problamanpeterized by the size of the clique. Indeed,
all (kr)10wn algorithms for deciding whether a graph of sizkas a clique of sizé have a running time of
nQ k .

To give evidence that parameterized problems such as theecfiroblem are not fixed parameter
tractable, a theory oparameterized intractabilithas been developed (see [11, 12, 13]). It resulted in
a rather unwieldy variety of parameterized complexity &#ss The most important of these classes are
the classes W], for ¢ > 1, forming the so-calledV-hierarchy It is believed that VJ1] strictly contains
the class FPT of all fixed-parameter tractable problems badthe W-hierarchy is strict. Many natural
parameterized problems fall into one of the classes of th@éharchy. For example, the parameterized
clique problem is complete for the clasgMWand the parameterized dominating set problem is complete
for the class VI2] (under suitable parameterized reductions).

So far, the parameterized complexity of counting probleass ot been studied very systematically.
A few tractability results are known: First of all, some fixpdrameter tractable decision problems have
algorithms that can easily be adapted to the correspondingting problems. An example is the vertex
cover problem; since all minimum vertex covers of size attnkas a graph of sizex can be computed in
time O(2* - n), a simple application of the inclusion-exclusion prineigields a fixed-parameter tractable
counting algorithm for the vertex covers of sizeSimilar counting algorithms are possible for other prob-
lems that have a fixed-parameter tractable algorithm bas#uemethod of bounded search tresee [13]).
More interesting are results of Arnborg, Lagergren, ands&¢4], Courcelle, Makowsky, and Rotics [10],
and Makowsky [22] stating that counting problems definablenonadic second-order logic (in various
ways) are fixed-parameter tractable when parameterizdustyde-width of the input graph. For example,
Arnborg et al's result implies that counting the Hamiltam@ycles of a graph is fixed-parameter tractable
when parameterized by the tree-width of the graph, and Makgwresult implies that evaluating the Tutte
polynomial is fixed-parameter tractable when parametédigethe tree-width of the graph. Courcelle et
al. [10] also proved similar results for graphs of boundedqus-width. Frick [16] showed that counting
problems definable in first-order logic are fixed-parametetable on locally tree-decomposable graphs.
For example, this implies that counting dominating setsmlbaar graph is fixed-parameter tractable when
parameterized by the size of the dominating sets.

We focus on théntractability of parameterized counting problems. We define classeg|#ith ¢ > 1,
of parameterized counting problems that correspond to lemses of the W-hierarchy. Our first results
show that a few central completeness results for the claa§ésand W2] translate to corresponding
completeness results for the first two levels #Mand #W2] of the #W-hierarchy. For example, we show
that counting cliques of sizeis #W/[1]-complete and counting dominating sets of dize #\W[2]-complete
(both undeiparsimonious parameterized reductipng/e then characterise the class fi\\as the class of
all counting problems that can be described in terms of nusnbBaccepting computations of certain
nondeterministic programs. To give further evidence thatdlass #W.| strictly contains the class of
fixed-parameter tractable counting problems, we show thiaisiwas not the case there would b4 -
algorithm counting the satisfying assignments of a 3-Chiffaula withn variables. This is the counting
version of a result due to Abrahamson, Downey, and Fellows/jhile these results are necessary to lay
a solid foundation for the theory and not always easy to preyand large they do not give us remarkable
new insights. The theory gets interesting with those cagrpiroblems that are harder than their decision
versions.

Our main result states thabunting cycles and paths of lendilin both directed and undirected graphs,
parameterized by, is #W[1]-complete under parameterized Turing reductioitss an immediate con-
sequence of a theorem of Plehn and Voigt [26] that the detig@sions of these problems are fixed-
parameter tractable (but of course not in polynomial tineeduse if they were the Hamiltonian path/cycle
problem would also be). Alon, Yuster, and Zwick’s [@lor codingtechnique provides algorithms for
finding a path of lengtlt in time O(k! - m) in a graph withm edges and for finding a cycle of lengttin
time O(2°(%) . n+) in a graph withn vertices, wheres < 2.376 is the exponent of matrix multiplication.
The hardness of the cycle counting problem in undirecteghgranay be surprising in view of another
algorithm due to Alon, Yuster, and Zwick [3] showing that ®gup to length 7in an undirected graph
can be counted in tim@(n*). Our result implies that it is very unlikely that there is buam algorithm for
counting cycles of arbitrary fixed length

The paper is organised as follows: After giving the necgspegliminaries in Section 2, in Section 3

we discuss fixed-parameter tractable counting problemis Sdttion has the character of a short survey;
apart from a few observations it contains no new results. dctiSn 4, we introduce the #W-hierarchy
and establish the basic completeness results. The harohessanting cycles and paths is established in
Section 5. Definitions of all parameterized problems cagrgid in this paper can be found in Appendix A.

We would like to point out that some of the results in Sectioha%e independently been obtained
by others in two recent papers: McCartin [23] proves the[#Wompleteness of clique and the WM
completeness of dominating set. (Our proofs of these ieaudt quite different from hers.) Furthermore,
she shows that a number of further completeness resultafameterized decision problems translate to
the corresponding counting problems. Arvind and Ramanl§s]abtain the #W]-completeness of clique.
Their main result is that the number of cycles or paths of lefigcan be approximated by a randomised
fixed-parameter tractable algorithm. Indeed, they proigertbt only for cycles and paths, but for arbitrary
graphs of bounded tree-width. These results nicely comgtgmur main result that exactly counting paths
and cycles is hard.

2 Preliminaries

2.1 Parameterized Complexity Theory A parameterized probleris a setP C ¥* x N, whereX is a
finite alphabet. If{z, k) € ¥* x N is an instance of a parameterized problem, we refer as theinput
and tok as theparameter

Definition 1 A parameterized problerR C ¥* x N is fixed-parameter tractabli there is a computable
function f : N — N, a constant € N, and an algorithm that, given a pdit, k) € ¥* x N, decides if
(z,k) € Pinatmostf(k) - |x|® steps.

We usually usé: to denote the parameter and= |z| to denote the size of the input.
To illustrate our notation, let us give one example of a pat@nized problem, thearameterized vertex
cover problemwhich is well-known to be fixed-parameter tractable:

p-VC
Input: Graphg.
Parameter: k e N.
Problem: Decide ifG has a vertex cover of siZe

From now on, we will only give brief definitions of the parameted problems we consider in the
main text, for exact definitions we refer the reader to AppeAd

To define the classes of the W-hierarchy, we need a few nofions propositional logic. Formulas
of propositional logic are built up fromropositional variablesX;, X, ... by taking conjunctions, dis-
junctions, and negations. The negation of a forntula denoted by-6. We distinguish betweesmall
conjunctionsdenoted by\, which are just conjunctions of two formulas, anig conjunctionsdenoted by
/\, which are conjunctions of arbitrary finite sets of formulAsalogously, we distinguish betwesmall
disjunctions denoted byv, andbig disjunctionsdenoted byy/.

A formula issmallif it only contains small conjunctions and small disjunatio We defind’y = Ag
to be the class of all small formulas. Fo> 1, we definel’; to be the class of all big conjunctions of
formulas inA;_;, and we defing\, to be the class of all big disjunctions of formuladip ;.

Thedepthof a propositional formuld is the maximum number of nested conjunctions or disjunstion
in 0. Note that the definitions df, andA; are purely syntactical; every formulalih or A, is equivalent to
a formulainl'y. But the translation from a formula iy, to an equivalent formula iffy usually increases
the depth of a formula. For atl d > 0 we letI'; ; denote the class of all formulas Iy whose small
subformulas have depth at masg{equivalently, we may say that the whole formula has deptmadt
d +t). We defineA, ; analogously.

Let CNF denote the class of all propositional formulas injaoative normal form, that is, conjunctions
of disjunctions of literals; if we ignore arbitrarily nest@egations then CNF is jut o. A formula is in

d conjunctive normal fornif it is a conjunction of disjunctions of at moatliterals; the class of all such
formulas is denoted by-CNF.

Theweightof a truth value assignment to the variables of a propostifirmula is the number of vari-
ables set taRUE by the assignment. For any cla®f propositional formulas, thereighted satisfiability
problem for®, denoted by W8&T (©), is the problem of deciding whether a formuladnhas a satisfying
assignment of weighit, parameterized by. We are now ready to define the W-hierarchy:

Definition 2 Fort¢ > 1, W[t] is the class of all parameterized problems that can be redod®/ Sat (T, 4)
for somed > 0 by a parameterized many-one reduction.

We omit the definition of parameterized many-one reductioere and refer the reader to [13] for this
definition and further background on parameterized conityléxeory.

2.2 Relational Structures A vocabularyis a finite set of relation symbols. Associated with evergtieh
symbol is a natural number, iggity. The arity of a vocabulary is the maximum of the arities ofrilation
symbols it contains. In the following, always denotes a vocabulary.

A T-structure.A consists of a non-empty set, called theuniverseof A, and a relatiorR* C A" for
eachr-ary relation symbol? € 7. For example, we view directed graphas a structur¢ = (G, E9)
whose vocabulary consists of one binary relation syntha¥ = (G, E9) is an(undirected) graplif E9 is
symmetric. For graphs, we often wrife, b} € EY instead of(a, b) € EY. In this paper, we only consider
structures whose universe is finite. We distinguish betvikersize of the universd of a r-structureA,
which we denote byA|, and thesizeof A, which is defined to be

Al = |7 + Al + Y |RA| - arity(R).

ReT

An expansiorof a r-structureA to a vocabulary’ D 7 is ar/-structured’ with A’ = A andRA" = RA
forall R € 7.

A substructureof A is a structure3 with B C A andR® C RA for all R € 7.t A homomorphism
from ar-structureA to ar-structureB3 is a mapping: : A — B where for allR € 7, say, of arityr, and
all tuples(as, ..., a,) € R* we have(h(a1),...,h(a,)) € RB. An embeddinds a homomorphism that
is one-to-one.

The homomorphism problerasks whether there is a homomorphism from a given structute a
given structure3. We parameterize this problem by the sized&nd denote the resultingarameterized
homomorphism probletwy p-HoM. We will also consider thparameterized embedding problegenoted
by p-EMB, and theparameterized substructure problg®oes structurdS have a substructure isomorphic
to A?), denoted by-SuB. Of course when considered as decision problesrREMB and p-SuB are
equivalent, but as counting problems they are slightlyedéht. All three decision problems are complete
for the class V{1] under parameterized many-one reductions [13].

2.3 Logic and Descriptive Complexity Let us remark that the following notions are not needed for un
derstanding our results on the hardness of counting cyokgaths or their proofs.

The formulas ofirst-order logicare built up fromatomic formulasising the usual Boolean connectives
and existential and universal quantification over the etgsef the universe of a structure. Remember that
anatomic formula or atom is a formula of the forme = y or Rx; ... x,., whereR is anr-ary relation
symbol andr, y, x1, . . ., z, are variables. Aiteral is either an atom or a negated atom. Teabularyof
a formulay is the set of all relation symbols occurringn A free variableof a formulayp is a variable
that is not bound by any existential or universal quantiffep.o

If Ais ar-structure,ay,...,a, are elements of the universe of A, andy(x1,...,z,) is a for-
mula whose vocabulary is a subsetofind whose free variables atg, ..., z,, then we writeA =

INote that in logic, substructures are usually required tisfyathe stronger conditiolR® = R4 N A", wherer is the arity of
R. Our notion of substructure is the direct generalisatiothefstandard graph theoretic notion of subgraph. Since wenainly
dealing with graphs, this seems appropriate. A similar rérapplies to our notion of embedding.

(a1, ...,a,) to denote thad satisfiesp if the variablesey, . . ., x,, are interpreted by, . . ., a,, respec-

tively. We let
o(A) = {(a1,...,an) € A" | A= p(a1,...,an)}.

To get a uniform notation, we le4® be a one-point space and identifyith FALSE and A° with TRUE.
Then for a sentence (i.e. a formula without free variables), we have= ¢ <= ¢(A) = TRUE
Furthermore, if the vocabulary of the formuytds not contained in the vocabulary dfthen we letp(A) =
0.

For every clas® of formulas, we let[7] be the class of alb € & whose vocabulary is containedin
We let bothYy, andIl, be the class of all quantifier free first-order formulas @liph we usually usé,
to denote this class). For> 1, we letX:; be the class of all first-order formulas of the fofm, . .. Jxy 1,
wherek € N andvy € II;_;. Analogously, we lefl; be the class of all first-order formulas of the form
V... Vag ¢, wherek € Nandy € ;4.

We have to define two additional hierarchi@s, .,):>1 and (Il ,):>1 for every fixedu > 1. Again
we let> , = Iy, = IIp. We letIl; ,, be the class of all first-order formulas of the foktn; ... Vz; 1,
wherek < v andy € II,. Fort > 2, we letIl, , be the class of all first-order formulas of the form
V... Vor, 3y ..y, ¢, whereky, ks < wandy € II;_,,,. Fort > 1, we letX, ,, be the class of all
first-order formulas of the forraz; ... 3z ¢, wherek € N andy € II;_, ,,. Note the asymmetry in the
definitions ofIl; ,, andX; ,, — the length of the first quantifier block in¥% ,-formula is not restricted.

Definability of Parameterized Problems I: Model-Checkinglitems

We can use logic to define certain generic families of parariegd problems. For a clagsof formulas,
the model-checking probleffior & is the problem of deciding whether for a given structdrand a given
formulay € ® we havep(A) # 0. We parameterize this problem by the length of the formukand
obtain theparameterized model-checking problerMC(®).

Many parameterized problems can be naturally translatednodel-checking problems. For example,
the parameterized clique problem is essentially the sartfeegsrameterized model-checking problem for
the class

DcLigue = { /\ (Exixj ANy # xj) } k> 1}.

1<i<j<k

Model checking problems provide another basis for the Wanahy: For every > 1, W[t] is the class
of all problems that are reducible teMC(X; ;[7]) for some vocabulary by a parameterized many-one
reduction [14, 15]. Observe, furthermore, that fortalt 1 the problemg-MC(Z; 1) andp-MC(II;_1 1)
are easily reducible to each other, because for every famul

50(171;--~;117k):3y1---3yl 7/)(5171;---7$k7y17---7yl)

and every structurel we havep(A) # 0 if, and only if,)(A) # 0. This explains why the hierarchies
(2¢u)e>1 and(Il; ,)¢>1 are defined asymmetrically.

Definability of Parameterized Problems II: Fagin-definatiyil

There is a second way of defining parameterized problem&#sabeen dubbdehgin-definabilityin [15].
Let ¢ be a sentence of vocabulary) { X }, whereX is a relation symbol not containedin We view X
as arelation variable to illustrate this we usually write)(X') instead of justp. Letr be the arity ofX.
For ar-structure4 we let

p(A) ={RC A" | (A R) [¢},

where(A, R) denotes the U { X }-expansion ofd with X (4.7 = R. For example, lef be unary and
ove(X) =VyVz(Byz — (Xy VvV Xz)).

Then for a grapld, ovc(G) is the set of all vertex covers 6f

With each formulap(X) we associate a parameterized probjefD(¢(X)) which asks whether for
a given structured, the setp(A) contains a relation with: elements (wheré is the parameter). We call
p-FD(¢(X)) the problenfagin-definedy o(X).

For examplep-FD(pvc (X)) is precisely the parameterized vertex cover problem.

Initialise S C Pow(G) by S := {0}
forall {a,b} € EY do
forall S e Sdo
if SN{a,b} =0then
S:=8\ {5}
if |S] < kthenS:=SU{SuU{a},SU{b}}.

~No b WNBRE

output S.

Algorithm 1

3 Tractable parameterized counting problems

A parameterized counting probleisisimply a functionF’ : ¥* x N — N, for some alphabet. Arguably,
this definition includes problems that intuitively we wouldt call counting problems, but there is no harm
in including them.

Definition 3 A parameterized counting problem : ¥* x N — N is fixed-parameter tractableor F' €
FPT, if there is an algorithm computidg(x, k) in time f (k)-|x|° for some computable functioh: N — N
and some constante N.

The standard example of a fixed-parameter tractable daqgis@blem is the parameterized version of
the vertex cover problem. As a first example, we observe leatorresponding counting problem is also
fixed-parameter tractable:

Example 4 The parameterized vertex cover counting problem,

p-#VC
Input: Graphg.
Parameter. k € N.
Problem: Countthe number of vertex covers@bf sizek.

is fixed-parameter tractable.

Proof: Essentially, Algorithm 1 is the standard procedure showiraj the parameterized vertex cover
problem is fixed-parameter tractable. It yields, given @@= (G, EY) asinputand € N as parameter,
a setS of subsets of cardinalitg k of G in time O(2 - ||G||) such that for the set VIZG) of vertex covers
of G of cardinalityk we have

VCL(G) = {XCG]||X|=kandS C X forsomeS € S}.
Now, we can computp/C(G)| by applying the inclusion-exclusion principle to the sets
{XCG||X|=kandS C X}

forS e S. O

We could now go through a list of known fixed-parameter traletgproblems and check if the corre-
sponding counting problems are also fixed-parameter tsictd-ortunately, this boring task can largely
be avoided, because there are a few general principleslymdgmost fixed-parameter tractability results.
They are formulated in the terminology of descriptive coexjtly theory.

(1) Problems definable in monadic second-order logic are fixa@dmeter tractable when parameter-
ized by tree-width of the structu(€ourcelle [9]). This accounts for the fixed-parametertahiity
of NP-complete problems such as 33URABILITY or HAMILTONICITY when parameterized by
the tree-width of the input graph.

(2) Parameterized problems that can be described as modekitgeproblems for first-order logic are
fixed-parameter tractable on classes of structures of bednalcal tree-width and classes of graphs
with excluded minoréFrick and Grohe [17], Flum and Grohe [15]). This impliesttharameterized
versions of problems such as dominating set, independentrseubgraph isomorphism are fixed-
parameter tractable on planar graphs or on graphs of boutedgde.

(3) Parameterized problems that are Fagin-definable by a firdeoformulay(X) whereX does not
occur in the scope of a negation symbol or existential qdi@ntare fixed-parameter tractabl€ai
and Chen [7], Flum and Grohe [15]). This accounts for the figathmeter tractability of the stan-
dard parameterization of minimisation problems in thesgasMIN F 11, [21], for example, mini-
mum vertex cover.

(4) Parameterized problems that can be described as pararaeternodel checking problems 85 -
formulas of bounded tree-width are fixed-parameter tralg@blum and Grohe [15]). This implies,
and is actually equivalent, to the results that the paramzettthomomorphism problem and the pa-
rameterized embedding problem for relational structufd®anded tree-width are fixed-parameter
tractable.

Let us consider the counting versions of these general “thetarems”. It has already been proved by
Arnborg, Lagergren, and Seese [4] that the counting vemsidf) holds. Variants and extensions of this
result have been proved by Courcelle, Makowsky, and Roti@sdnd Makowsky [22]. Frick proved that
(most of) (2) also extends to counting problems [16]. Welste# below that (3) also extends to counting
problems. (4) is more problematic. While the counting \arsof the parameterized homomorphism
problem for structures of bounded tree-width is fixed-pagntractable (actually in polynomial time),
the general equivalence between homomorphism, embedaiitgmodel-checking foE; breaks down
for counting problems. This is the point where counting sheame genuinely new aspects, and in some
sense, most of this paper is devoted to this phenomenon.

Let us turnto (3), the Fagin-definable problems, now: Forafdap(X), we letp-#FD(p (X)) denote
the natural counting version of the problertD(¢ (X)) Fagin-defined byy(X). Recalling the formula
pve(X) that Fagin-defines the parameterized vertex cover promensee that the following proposition
generalises Example 4.

Proposition 5 Letp(X) be a first-order formula in whictX does not occur in the scope of an existential
quantifier or negation symbol. Ther#FD(¢(X)) € FPT.

Proof: Let X be of arityr. As for the vertex cover problem one obtains an FPT-algoriftf. [15]) that,
given a structured andk € N, yields a setS of subsets of cardinalit k£ of A” such that

{(XCA"||X|=kandAE p(X)} = {XCA"||X|=FkandS C X forsomeS € S}.
Again, an application of the inclusion-exclusion prineiglllows to compute the cardinality of the set on
the right hand side. O

This implies that the counting versions of the standardrpatarizations of all minimisation problems
in the class MIN F'II, are fixed-parameter tractable.

As we have mentioned, the situation with item (4) in the lisbe is more complicated. The core
problem for which counting remains tractable is the homagyham problem for graphs of bounded tree-
width. Again, the algorithm showing tractability can bestillustrated by an example.

Example 6 The number of homomorphisms from a given colouredZrée a given coloured graptf can
be computed in polynomial time.

This can be done by a simple dynamic programming algorithtarti8g from the leaves, for every
vertext of the tree we compute a table that stores, for all vertice§the graph, the numbéi (¢, v) of
homomorphismé from 7;, the induced coloured subtree rooted,ab G with h(¢t) = v. Then the total
number of homomorphismfrom toGis)" . H(r,v), wherer is the root of7 .

If tis a leaf, thenH (t,v) = 1 if ¢t andv have the same colour arfd(¢,v) = 0 otherwise. Ift has
childrenty, ..., #;, then ift andv have the same colour we have

l
Hto) =] Y. Hti,w).
=1 G

we
w adjacent ta
If t andv have distinct colours, we havé(t,v) = 0.

The previous example can easily be generalised to strigctditigounded tree-width. We just state the
result and omit a definition of tree-width and the proof, whis a straightforward generalisation of the
example:

Proposition 7 Letw > 1. Then the following restriction of the homomorphism pratis in polynomial
time:

Input: StructureA of tree-width at mostv, structuress.
Problem: Count the homomorphisms frogh to 5.

For a classpb of formulas, we lep-#(®) denote the counting version of the model-checking problem
p-MC(®) (“Given A andy € @, computegp(.A)|, parameterized blyp|").

With every first-order formula we associate a gragh, as follows: The vertices @, are the variables
of o, and there is an edge between two vertices if they occurtiegét an atomic subformula of. The
tree-widthof a formulay is the tree-width ofj,,. For a classp of formulas andv > 1, we let®[tw w]
denote the class of all formulas i of tree-width at mostv. Recall thatll, denotes the class of all
guantifier free formulas.

Proposition 8 For everyw > 1 we havep-#(11,[tw w]) € FPT.

Proof: We can effectively transform every(z) € IIy[tw w] into an equivalent)(z) € IIy[tw w] in
disjunctive normal formy)(z) = ¢1(z) V ... V ¢,(Z), where each);(Z) is a conjunction of literals and
wherey; (Z) A 1;(Z) is unsatisfiable for all, j with ¢ # j. Note that this transformation does not change
the tree-width of the formula because the set of atomic suhitas remains unchanged. Then for every
structure4 we have

(A = [(A)] + ..+ [r (A)].

Thus we can restrict our attention to formuladig[tw w] that are conjunctions of literals. Since every
literal of a formula whose underlying graph has tree-widtmastw contains at mosw + 1 variables, by
standard techniques (cf. the proof of Theorem 14) the cngmtioblem for such formulas can be reduced
to the counting version of the homomorphism problem forcttrres of tree-width at most, which is in
polynomial time by Proposition 7. O

Remark 9 Note that although its core is a reduction to Propositioh& pgroof of the previous proposition
doesnot yield a polynomial time algorithm. The reason is that theasfarmation of a formula to an
equivalent formula in disjunctive normal form is not polynial.

Indeed, it is easy to see that the unparameterized countotggm for quantifier free formulas of
tree-width0 is #P-complete.

Clearly, if p-MC(®) is fixed-parameter tractable then s@i$1C(®*), whered* is the closure ofp
under existential quantification. Thus in particular, for> 1 the problemp-MC(X; [tw w]) is fixed-
parameter tractable. The situation is different for thentimg problems: The formula

k

o(x1,...,z8) = Ty /\(ﬂEyzl Ay = ;)
i=1

is a X;-formula of tree-widthl. For all graphgj, the sety(G) is the set of all tuplega, ..., ax) of
vertices ofG such thaf{ a4, ..., a;} is nota dominating set. Thug has a dominating set of size at mést
if, and only if, |o(G)| < n*, wheren is the number of vertices @. Since the parameterized dominating
set problem is complete for the clasg23)Mhis implies:

Proposition 10 If W[2] £ FPTthenp-#(3; [tw w]) ¢ FPT.

4 Classes of intractable problems

Example 11 Valiant's [29] fundamental theorem states that countirggribmber of perfect matchings of
a bipartite graph is #P-complete (whereas deciding whetlperfect matching exists is in P). We consider
atrivial parameterizatiorof the matching problem, which is obtained by adding a “durhparameter as
follows:

Input: Bipartite Graphg.
Parameter: k € N.
Problem: Decide ifG has a perfect matching.

Clearly, this problem is in polynomial time and thus fixedgraeter tractable. On the other hand, its
counting version (“Count the perfect matchings/d9) cannot be fixed-parameter tractable unless BP.
The reason for this is that the problem is already #P-coraftetthe fixed parameter valde= 1, but if it
was fixed-parameter tractable it would be in polynomial tioveany fixed parameter value.

Of course this example is quite artificial. We are more irgze in the question of whether natural
parameterized counting problems are fixed-parameteatsbctAs examples of such natural problems we
mention: p-#CLIQUE (“Count cliques of sizé: in a graph, wheré is the parameter”)y-#DOMINATING
SET (“Count dominating sets of sizg”), p-#CyCLE (“Count cycles of siz&:”), or as a more natural
parameterization of the matching probleprtMATCHING (“Count the matchings of size in a bipartite
graph”). An argument such as the one in Example 11 cannotédzttosshow that any of these problems
is not fixed-parameter tractable, because for any fixed petemaluek the problems are in polynomial
time.

Recall that the decision problemsCLIQUE and p-DOMINATING SET are complete for the classes
WI(1] and W2], respectively, so the counting problems cannot be fixedspater tractable unless[W =
FPT (W2] = FPT, respectively). We will define classes #\\of counting problems and show for a
few central W1]-complete and W2]-complete problems that their counting versions arg#\Womplete
(#W][2]-complete, respectively). More interestingly, in the reedtion we shall prove that#CyCcLE and a
number of similar problems whose decision versions are fpa@dmeter tractable are complete for g\

Definition 12 Let F': ¥* x N — N andG : IT* x N — N be parameterized counting problems.

(1) A parameterized parsimonious reductirom F' to G is an algorithm that computes for every in-
stance(z, k) of F' an instancéy, ¢) of G in time f(k) - |«|° such that < g(k) and

F(x, k) =Gy, L)

(for computable functiong, g : N — N and a constant € N).
We write F gg’ars G to denote that there is a parameterized parsimonious lieddfodm F' to G.

(2) A parameterized T-reductioffom F' to G is an algorithm with an oracle fo& that solves any
instance(z, k) of Fintime f(k) - |z|° in such a way that for all oracle queries the instangeg)
satisfy/ < g(k) (for computable functiong, ¢ : N — N and a constant € N).

We write F' ngp G to denote that there is a parameterized T-reduction ffoto G.

Obviously, if F' g{fmG thenF ngp G. An easy computation shows thatife FPT andF ngp G then
F € FPT.

For a clas® of propositional formulas, we let #\$(©) be the counting version of the weighted
satisfiability problem fo© (“Count the weight: satisfying assignments for a formu#lac ©”). We define
the counting analogue of the W-hierarchy in a straightfodweay:

Definition 13 Fort > 1, #W([t] is the class of all parameterized counting problems thabeed-parameter
parsimonious reducible to #\W$(T; 4), for somed > 0.

The notation #Vit] may be slightly misleading when compared with the notatiBrofclassical com-
plexity theory (which is not #NP), but since there is no olon&@&FPT, we think that it is appropriate. Note
that we write FPT to denote both the class of fixed-paramedetable decision problems and the class of
fixed-parameter tractable counting problems; the intemdeaning will always be clear from the context.

4.1 #W[1]-complete problems

Theorem 14 The following problems are complete f#W/[1] under parameterized parsimonious reduc-
tions:

(1) #WSAT(2-CNF),
(2) p-#CLIQUE, p-#SUB, p-#HoM, p-#EMB,
(3) p-#(IIy[7]) for every vocabulary that is not monadic.

(4) p-#HALT (“Count the k-step accepting computation paths of a nondeterministimgunachine”).

Proof: Basically, the proof of these results amounts to checkiagttihe many-one reductions proving the
W(1]-completeness of the corresponding decision problemsansnponious (or can be made parsimo-
nious by simple modifications). Some of these reductiongjaite simple, and we can sketch them here.
For those that are more complicated, we just give apprapréierences.

A conjunctive querys a first-order formula of the forfz; ... 3z, (a1 A ... A ay), whereay, ..., ay
are atoms. In particular, @uantifier freeconjunctive query is just a conjunction of atoms. We denloge t
class of all conjunctive queries by CQ and the class of alhtjfier free conjunctive queries biyi-CQ.

If ® is a class of formulas, theb[binary] is the class of all formulag € ® whose vocabulary is at most
binary.

We will first establish the following chain of reductions:

p-#(1lo-CQ) SLparsp'#HOM SLparsp'#EMB SLparsp'#(HO'CQ) (*)
p-#(11p-CQ) <Pys p-#HoM :
With every formulap(z, . . .,) € IIp-CQ of vocabulary- we associate aU{EQ}-structureA,,, where
EQ is a binary relation symbol not containedrinThe universe of4,, is {z1, ...,z }, the set of variables
of p. For R € 7, say,r-ary, R*~ is the set of all tuplegz;, , ...,z;,) such thatRz;, ...z;, isan atom
of ¢. Moreover, EQ' is the set of all pairgz;, , z;,) such thatz;, = x;, is an atom ofp. Note that
1ALl € O(#))-

For ar-structureB we let Bgg be ther U {EQ}-expansion of3 in which EQ is interpreted by the
equality relation onB. Then it is easy to see that for &by, ...,by) € B* we have(by,...,by) € o(B)
if, and only if, the mapping:; — b;, for 1 < ¢ < k, is @ homomorphism from#,, to B. This yields a
parsimonious reduction from#(I1,-CQ) to p-#Hom.

10

p-#HOM <[Pys p-#EMB :
Suppose we have structurdsand 3 and want to count the homomaorphisms frofrto 5. Let 7 be the
vocabulary of4 andB andt* = 7 U{P, | a € A}, where for everys € A, P, is a new unary relation
symbol that is not contained in Let . A* be ther*-expansion ofd with P, = {a} fora € A. We can
view A* as the expansion o4 where each element gets its individual colour. Wedétthe be following
T*-structure: The universe &* is A x B. Forr-ary R € T and(ay,b1),...,(ar,b.) € A x B we let
((a1,b1),...,(ar,b;)) € RE"if, and only if, (by,...,b,) € RB. Fora € Alet P5" = {a} x B. For
a homomorphisnk : A — B we leth* : A* — B* be the mapping defined by*(a) = (a, h(a)). It
is easy to see that the mappihg— h* is a bijection between the homomorphisms frgio 5 and the
embeddings fromd* to 5*.
p-#EMB <parsp #(11-CQ) :
For everyr-structure4 we define a formula 4 € I1,-CQ of vocabulary- U {NEQ}, where NEQ is a new
binary relation symbol. Suppose thdt= {a,...,ax}. The formulap 4 has variables:, ..., z. For
everyr-ary R € 7 and every tupléa;, ,...,a;) € RA, ¢4 contains the atonRz;, ... x; . In addition,
4 contains the atoms NEQx; for 1 <i < j < k.

For ar-structureBB we let Byeg be ther U {NEQ}-expansion of3 in which NEQ is interpreted by
the inequality relation orB. Then it is easy to see that for all mappinfgs A — B we have:h is an
embedding of4 into B if, and only if, (h(a1), ..., h(ak)) € ¢a(B).

Next, we establish the following chain of reductions (foeswd > 1):

#WSAT(Fl d) <parsp #(HO'CQ) parsp #(Ho-CQ[blnarM)

(%)
<pa,sp #CLIQUE <pars#WSAT(2 CNF <pa,s#WSAT(F1_,1)

Together with €), this proves the #\l]-completeness of all problems listed in (1) and (2) exgefiBuB.

HWSAT(T'1) <pars p-#(11o-CQ):
The proof of Lemma 21 in [19] showing that VWS(I"; 4) is fixed-parameter many-one reducible to
p-MC(CQ) yields a parsimonious reduction from #WST"; ;) to p-#(I1o-CQ).

p-#(11p-CQ) < parsp #(ITp-CQlbinary}) :

The proof of Lemma 17 in [19] showing that MC(CQ) is fixed-parameter many-one reducible to
p-MC(CQ[binary]) yields the claimed parsimonious reduction. Here and irr |pteofs we use (vari-
ants of) the following observation: Let(z) and«(Z,) be formulas and4 a structure. If for all tuples
a € Awe have

Al v@) < AR35(a,9),
and for all tuplesi € A there exists at most one tuglec A such thatd |= v (a, b), then|p(A)| = [(A)].
p-#(IIp-CQ[binarny]) <parsp #CLIQUE : The reduction in Proposition 22 of [19] is parsimonious.

p-#CLIQUE <pars#WSAT(2-CNF) :
LetG be a graph. For every € G let X, be a propositional variable. Set

ag = A (~XaV=Xp) A\ (XaV—Xo).
a,beG,a#b,(a,b)¢g EY a€eG

Thenag is (equivalent to) a formula in 2-CNF. The second part of trenfula ensures that every variable
X, with a € G occurs inag. The number of cliques of siZeis just the number of assignments of weight
k satisfyingag.

#WSAT (2-CNF) <P s #WSAT(T'y 1)
2-CNF is a subset df; ;, so the reduction is trivial.

This completes the proof ok{). We next show (3). Let be a vocabulary that is not monadic. We
leave it to the reader to show that#CLIQUE <pa,sp #(ITo[7]).

11

p-#(Ilo[7]) Sgparsp'#(HO'CQ) :

Let A be ar-structure andp € IIy[7]. We can assume that = ¢ V ... V ¢,,,, Where eachp; is a
conjunction of literals ang; A ; is unsatisfiable for all # j. Letr’ := 71U {R | R € 7} U{EQ NEQ},
where for allR € 7 the symbolR is a new relation symbol of the same arity/2sand EQNEQ are new
binary relation symbols. Letl’ be ther’-expansion of4 in which R is interpreted as the complement of
R* and EQ and NEQ are interpreted as equality and inequaligeaively. Since the vocabulary is fixed,
A’ can be computed from in polynomial time. Ifn is the size of the universe of, then computing the
relations EG@' and NEQ" requires quadratic time, and for arary R € 7, computingRA’ = A"\ R4
requires timeD(n").

Let ¢’ be the formula obtained by replacing positive literals of formz = y by EQzy and by
replacing negative literals by positive ones in the obvieag using the new relation symbafsand NEQ.
Theny' = ¢} V...V ¢, where eachy, is a conjunction of atoms (i.e., positive literals). Notatth
p(A) = ¢/ () and

fora € A’ there is at most onewith A’ = ¢/ (a). (x**)

Finally we want to get rid of the disjunctionssf. For this purpose we introduce a structutéessentially
consisting ofm copies ofA’, theith one taking care ap;. More precisely: let” := {R| R € 7'} U{<
, T}, where arityR) = arity(R) + 1 and where< andT’ are binary. Define the”-structured” by

A" = {1,...,m}U{1,...,m} x A)
<A" .= the natural ordering ofil, ..., m}
T4 = {((i,a).(i,0) |1 <i<m, abe A}
AAH

= {0, (i,a1),..., (i, qariy(my)) | 1 < i <my R a1 ... gy} U
{(27 (jaal)a DRI (.77 aarity(R))) | 1 S la] S m, 1 7&.77 A1, .. -aaarity(R) S A}

Moreover set

m

(X1, T YLy Ym) = YL < oo < Ym A /\ Tacgacgr/\/\go’i
1<e<<k i=1

Ryi z
Rz’

Wherewg% is obtained fromy) by replacing, for allR € 7/, atomic subformulas of the fortz by

Ry;z. Clearly,p(z,) € I1o-CQ. By (x *), we havelp(A)| = | (A")].

Next, we prove the #\W]-completeness gf-#SuB. We observe that the number of substructures of
a structureB that are isomorphic to a structur equals the number of embeddings4finto 3 divided
by the number of automorphisms @f. Unfortunately, this does not immediately yield a parsiinos
reduction fromp-#SuB to p-#EMB or vice versa. Howevep-#CLIQUE is a restriction ofp-#SuB, thus
we havep-#CLIQUE SI)%rSp-#SUB.

To prove thap-#SuB is in #W[1], we reducer-#SUB to p-#EMB. Let .4, B be r-structures and let
be a binary relation symbol not containedrinLet us call ar U {<}-structureC in which <€ is a linear
order of the universe aorderedr U {< }-structure Let A, ..., A,, be alist of expansions od to ordered
T U {<}-structures such that

(i) for 1 <i < j < m, the structures!; and.4; are not isomorphic,

(i) every expansiomd’ of .4 to an ordered U { < }-structure is isomorphic to ad; for somei, 1 < i <
m.

ThusA,, ..., A, isalist of all ordered expansions &f where each isomorphism type is only listed once.
Let B be an arbitrary expansion #fto an ordered U {<}-structure. Then

{AcBlA=A} =) [{ACB| A=A}

i=1

12

Moreover, for each the number of substructures B isomorphic toA; is equal to the number of em-
beddings of4; into B-.

Let < be another binary relation symbol not contained-io {<} andr* = 7 U {<, <}. Let A* be
the 7*-structure obtained by taking the disjoint union.4f, ..., .4,, and defining<“ such that for all
a; € A;,a; € A; we haveg; <A a; if, and only if, ¢ < j. Forl < i < m, let B} be ther*-structure
obtained by replacing the copy gf; in A* by a copy of53.. Then the number of embeddings.df into
B} is equal to the number of embeddings4finto 5. Finally let 3* be the disjoint union 0Bj, . .., B},.
Then the number of embeddings.df into B* is equal to the sum of the numbers of embeddinggl of
into B} for 1 < i < m. Putting everything together, the number of substructafésisomorphic toA is
equal to the number of embeddingsA4f into B*.

It remains to prove #\\l]-completeness gf-#HALT. The proof of Theorem 8.3 in [15] implicitly con-
tains parsimonious reductions frgm#(I1,-CQlbinary]) to p-#HALT and fromp-#HALT to p-#(I15-CQ).
O

The decision versions of all problems mentioned in Theordnare W1]-complete under parame-
terized many-one reductions. The following theorem isrggéing because it is not known whether the
decision problemp-MC(Ily) is contained in the closure of] under parameterized T-reductions.

Theorem 15 p-#(Il,) is contained in the closure ¢\W/[1] under parameterized T-reductions.

Proof: We shall prove thagp-#(I1,) ngp p-#(11p-CQ).

Note that the reduction from-#(I1,[7]) to p-#(I1,-CQ) we gave in the proof of Theorem 14 does not
yield a parameterized parsimonious reduction fie#(I1,) to p-#(11,-CQ), because if the vocabulary is
not fixed in advance the structuge can get much larger thad.

At least, the same argument as given in the proof of Theoreshaws that we can restrict our attention
to conjunctions of literals (instead of arbitrary quantifiee formulas). Consider a formula

p=a1 A...Nag NP1 A ... \=Lm,
whereay, ..., a4, B1,. . ., By are atoms. The crucial observation is that for any structuvee have

lo(A)| = (@ Ao Aag A=Bi Ao A=f1)(A)]
7|(041 Ao ANag A=A oA 81 Aﬂm)(A”

Note that the two formulas on the left hand side of the equbbtve fewer negated atoms thanWe can
now recursively reduce the number of negated atoms in tiweséormulas using the same trick until we
end up with a family of quantifier free conjunctive queriekislgives us a parameterized Turing reduction
from p-#(I1) to p-#(11p-CQ). O

4.2 A machine characterisation of #W1] As itis also the case for many other parameterized complexit
classes, the definition of the classes#\é a bit unsatisfactory because all the classes are onlyatkdia
the closure of a certain problem under a certain type of réglucin particular, one may ask why we chose
parsimonious reductions and not, say, Turing reductiardeed, McCartin [23] defined her version of the
classes #W] using a different form of reductions, and that makes thertheeem a bit arbitrary. Compare
this with the situation for the claggP, which has a natural machine characterisation: A classicanting
problemF' : ¥* — Nis in #P if, and only if, there is a polynomial time non-determiigturing machine
N such that for every instaneeof the problem F'(z) is the number of accepting pathsdfon inputa.

Recently, a machine characterisation of the clags|Was given [8]. In this subsection, we adapt this
characterisation to give a characterisation of{#\ellong the lines of the above mentioned characterisation
of #P.

The machine model we use, which has been introduced in [#lased on the standard random ac-
cess machines (RAMs) described in [25]. The arithmetic aens are addition, subtraction, and division
by two (rounded off), and we use a uniform cost measure. Theelris non-standard when it comes to

13

nondeterminism. Aondeterministic RAMs a RAM with an additional instruction “GUESS;” whose
semantics is: Guess a natural number less than or equal twthber stored in registérand store it in
registerj. Acceptance of an input by a nondeterministic RAM prograateiined as usually for nondeter-
ministic machines. Steps of a computation of a nondetestiiniRAM that execute a GUESS instruction
are callechondeterministic steps

Following [8], we call a nondeterministic RAM progralth a W-program if there is a computable
function f and a polynomiap such that for every inputz, k) with || = n the progran® on every run

(1) performs at mosf(k) - p(n) steps;
(2) at mostf (k) steps are nondeterministic;
(3) at mostthe firsf (k) - p(n) registers are used;

(4) atevery point of the computation the registers contaimipers< f (k) - p(n).

We call a W-progrant® a\W[1]-program if there is a computable functidnsuch that for every input:, k),
for every run ofP

(5) all nondeterministic steps are among the lgét) steps.

Theorem 16 (Chen, Flum, and Grohe [8]) Let@ C ¥* x N be a parameterized decision problem. Then
Q@ € W[1] if, and only if, there i8N[1]-program deciding?).

The main result of this section is a counting version of thenrem:

Theorem 17 Let F' : ¥* x N — N be a parameterized counting problem. Thére #W/[1] if, and only if,
there is aw([1]-programP such that, for all(z, k) € ¥* x N, F(z, k) is the number of accepting paths of
P on input(x, k).

Proof: First assume thak' € #W/[1]. Then, by Theorem 14, there is a parsimonious reduction ffoio
p-#HALT. Hence, there are computable functigig, a polynomiap, and an algorithm assigning to every
instance(z, k) of F, intime < f(k) - p(n), a nondeterministic Turing machidd = M, ; and a natural
numberk’ = k'(x, k) < g(k) such thatF'(z, k) is the number of accepting pathsf of length%’.

We can assume that the states and the symbols of the alpliatfetie natural numbers f(k) - p(n).
We define a W-prograf that on inputz, k) € ¥* x N proceeds as follows:

1. It computesM andk’;
2. It guesses a sequencefdfconfigurations of\/;

3. It verifies that the sequence of guessed configurations famagcepting computation af .

We can do this, in particular line 1, with a W-program using parameterized parsimonious reduction
from F' to p-#HALT. Moreover, the number of steps needed by line 2 and line 3usided byh (k) for

a suitable computable function Finally, the number of accepting pathsbfis exactly the number of
accepting paths af/.

Assume now that we have a[W-programP such that for al{z, k) € ¥* x N, F(z, k) is the number
of accepting paths dP on input(z, k). Let f,p, h witness thaf® is a W[1]-program. For every instance
(x,k) € £* x N of F' we shall define a non-deterministic Turing machiwe= M, , and an integek’
such thatF'(z, k) is the number of accepting pathsaf of length at most’. Of course we have to do this
in such a way that the mappirig, k) — (M, k') is a parameterized reduction.

So let(z,k) € ¥* x Nandn = |z|. The alphabet oM = M, ; contains0,1,..., f(k) - p(n).
Thus alphabet symbols can be used to represent registeentantd register addresses of all rungPof
on input(x, k). In addition, the alphabet contains a few control symbolée Transition function of
M will be defined in such a way that/ simulates the computation & on input(z, k) from the first
non-deterministic step onward3he content of all the registers before the first non-deftastic step is
hardwired intoM. The changes of the register contents during the at f@st non-deterministic steps

are written on the worktape, so eventually the worktapeaiostpairs(i1, a1), ..., (i¢, a¢) in any order,
where(i;, a;) indicates that the current content of registeis a;, and¢ < h(k). For more details on the
definition of M we refer the reader to [8]. O

14

4.3 #W[1] and counting satisfying assignments of a 3-CNF-formulaThe following theorem gives fur-
ther evidence that #{¥] # FPT, because it seems unlikely that counting the satisfg8gignments of a
3-CNF-formula withn variables is possible in tim2°("). A decision version of this theorem has been
proved by Abrahamson, Downey and Fellows [1].

Theorem 18 If #W[1] = FPTthen there is an algorithm counting the satisfying assigmsief a3-CNF
formula withn variables in time2°(™)

Proof: Suppose that #[¥] = FPT. Then #W&T(3-CNF) is in FPT. Thus there is an algorithm solving
#WSAT (3-CNF) in time f(k) - n© for some computable functiofi: N — N and constant. Then there
exists a functiory : N — N such that

() f(g(n)) <200,
(i) lim, e g(n) = 0o,
(iii) g(n) can be computed in tim@e ("),

Lety = /\;’;1 d;, where each clausg is a disjunction of at most 3 literals, be a formula in 3-CN#j a
letX = {Xy,...,X,} be the set of variables of. We assume that no clause appears twice; thus we have
m < (2n)3. We want to compute the number of satisfying assignmentsiotime 2°("),

Letk = g(n). Note that (ii) implies:/k < o(n); we will use this repeatedly in the following argument.

Forl <j <k, let
n

n
. Y
(-1 PR k}

For everyS C X}, let YjS be a new variable. LeY; be the set of aIYjS andy = U?:l Y;. Then

X = {Xi

V| <k- oln/kl < go(n)

Call a truth value assignment to the variabled/igoodif for 1 < j < k exactly one variable iQ); is set
to true. There is a bijectioh between the truth value assignments to the variablésamd the good truth
value assignments to the variablesirefined by

I(A)(Y?) = TRUE <= VX € X;: (A(X)=TRUE < X €5),

forall A: X — {TRUE,FALSE}, 1 < j <k, andS C &j. Let

S T
8= /\ -y vyl
1<j<k
S, TCX;,S#T

and note thats| < k - (2“1/’“1)2 < 2°(") Observe that the weiglit assignments to the variablesjh
satisfying(are precisely the good assignments. Thus there is a bijelotitween the weighit satisfying
assignments fof and the assignments to the variablegin

Forl < j < k and every variabl& € X, let

S

ox = N\ v
SCX;,X¢S

ox = N
SCX;,XeS

and observe that for every assignmént X — {TRUE, FALSE} we have

A(X) =TRUE <= I(A) satisfiesxx
<= I(A) does not satisfyr_ x

15

Let~’ be the formula obtained from by replacing each literak by the formulacx and each literab X
by a—.x. Then for every assignmerit : X — {TRUE, FALSE} we have

A satisfiesy < I(A) satisfiesy’.

By applying de Morgan’s rule to each clauseof + (or rather to the disjunction of conjunctiods has
become iny’) we can turny’ into an equivalent conjunction of at most

m- (grn/m)3

disjunctions of at most 3 literals each. gtbe this 3-CNF-formulaang* = SA~". ThenI is a bijection
between the satisfying assignmentsyaind the weight satisfying assignments of.

By our initial assumption, we can compute the number of wigigdatisfying assignments of in time
f(E) - (n*)¢, wheren* = |Y| < 2°(") is the number of variables of*. Sincef(k) = f(g(n)) < 200,
this shows that we can compute the number of satisfying msgigts ofy in time 2°(%). O

4.4 #W[2]-complete problems

Theorem 19 The following problems are complete #wW[2] under parameterized parsimonious reduc-
tions:

(1) #WSAT(CNF),
(2) p-#DOMINATING SET,
(3) p-#(II; 1[7]) for every vocabulary that is not monadic.

The equivalence between (1) in (3) in Theorem 19 can be liftatie other classes of the #W-hierarchy,
but we only deal with #V2] here.

Proof (of Theorem 19)Let II, ; [s] denote the class of all formulas I, ; whose vocabulary is at most
s-ary. We will establish the following chain of reductions &veryd > 0 ands > 2:

HWSAT (T'2,0) <{hors p-#(IT11[5]) <fours -#DOMINATING SET <[P, #WSAT (CNF).

Recalling that CNFC I'; o and observing thai-#DOMINATING SET nga,sp-#(HLl[T]) for every vocab-
ulary that is not monadic, we see that this proves the theorem.

HWSAT (F,q) <t p-#(IT1 1[2]) :
By standard means one can show that theredisanly depending or such that every formula ifiz 4 is
equivalent to a formula of the form

o = /\ 51',

icl
where for somel,, < d’ every); is a disjunction of conjunctions of exactly, literals,
0; = \/ Bij
jeJi
with
ﬂij =)\ijl VANPIRAN Aijda . (*)

So let such awy, say with variables(y, ..., X,,, and ak € N be given. If we have an assignment of weight
k settingX;,,..., X;, withi; < ... <, TRUEand satisfyings;; as in), then the positive literals if;;
must be amond(;, , .. ., X;, . Thus for every negative literal.X,. in 8;; we must have < 4, ori; < r or
is < 1 < isy1 fOr somes. We use this fact in our reduction appropriately.

Form € Nset[m] :={1,...,m} and

mls = {(4,j)]0<i<j<m+1}.

16

For a setM andm < N denote by Pow,, (M) := {Y C M | |Y] < m} the set of subsets df/ of
cardinality< m.

We letT = {<, <, E,FIRST, LAST, F, DISJ SAT} with binary <, <, E, F, SAT and unary FIRST,
LAST, DISJ. LetA,, be the followingr-structure: The universe is

A, = [n] U [n]g U POnga([n] U [n]g) @] {61 | xS I}

Recall thatl is the index set of the conjunction in the formula The selection of € [n] means that
the variableX; gets the value TRUE and the selection(fj) € [n]. means that all variableX, with
1 < £ < j getthe truth value FALSE.

The relations of4,, are specified by:

<As .= the natural ordering ofn]
<A« .= atotal (“lexicographic”) ordering on Pow, ([1n] U [n]2);
EAe = {(,(i,) | 0<i<j<n+1}U{(i,(i,5) | 0<i<j<n+1)
FIRST = {(0,j)]0<j<n+1};
LASTA> = {(i,n+1)|0<i<n+1};
FAe = {(i,M)|i€[n], M € Powey, ([n]U[n]2), i€ M} U
{((3,4). M) | (i, 5) € [nlo, M € Powg, ([n] U [nly), (i.) € M};
DISH .= {6 |iel};
SATA = {(M,d;) | M € Powey, ([n] U [n]2), i € I,thereis a € J*suchthatfors =1,...,n

if X is aliteral of3;; thens € M and
if —X, is a literal of 3;; then there ig¢, m) € Mwith ¢ < s < m}.

Letr := |Powcg, ([2 - k + 1])|. Note that|A,| < ||A|¢, wherec = ¢(d), andr < g¢(d, k) for some
computable functiom.

The number of satisfying assignmentsobf weightk is |, . (A)|, where
Gak(T1y -y Ty 21,5« oy Zht1, U, - - -, Uy) 1S thelly ;-formula

Dok :Vy(:zzl <. . <xE A /\le(E:rlzl A Ex;zi11) ANFIRSTz; A LAST 241

/\u1<...<u7«/\/\::1(Fyuiﬂ(\/] ly*zJ\/\/J 1yfzj))
A(DISIy — \/'_, SATujy)).

p-#(I11 1[s]) g‘;,parsp-#DOMmATlNG SET:
For notational simplicity, we assume= 2. Let r be a vocabulary that only contains unary and binary
relation symbols. Assume we are given-atructureA with universeA and all, ;[7]-formula

(,0(551,...7552) = Vy’l/)(zl)"'vxlvy)'
LetG = (G, EY) be the graph defined as follows: The vertex set is
Gi=({1,..., 0} x AUAUAX{ONHU{ [1<i <1 <j<l+2Y0{ |1<j<l+2}

(U denotes disjoint union), Wheﬁ% andb’ are new elements. The edge relatibfi is defined in such a
way that

(i) every(ay,...,a) € A is connected to all elements i} x (A \ {a;}) for1 <i < ¢;
(i) for a € A®and(b,0) € A x {0}: {a, (b,0)} € B9 <= A (a,b).
(iii) 7 is connected t@i,a)for1 <i </,1<j</{(+2,ac A.

(iv) b7 is connectedto ali € A¢for1 < j < ¢+ 2.

17

We claim that:

e Every dominating set of of cardinality/ + 1 contains exactly one element of egah x A, and if
we label these elements s@ya;) for 1 < i < ¢, then the(¢ 4 1)st element in the dominating set is
(at,...,a0) € AL,

e Forallay,...,as € A,

{(i,a;) | 1 <i <t} U{a}is adominating set of < A= ¢(a).

To see this, suppose that is a dominating set off of size/ 4 1. ThenD must contain at least one
vertex of {i} x A for 1 < i < ¢ and one vertex ofA’, because this is the only way the vertidés
andd’, for 1 < j < £+ 2 can be dominated with + 1 vertices. Suppose thd@? contains the vertices
(1,a1),..., (¢, ar). Letd be the remaining element &f. If d = (d1,...,d;) # (a1,...,a), SAYyd1 # a1,
then(1,d;) is not dominated by, ..., a, d. Therefored must be(a,,...,a). However,d must also
dominateA x {0}, and this is only possible il = (a1, ...,a¢,b) forallb € A.

Thus|p(A)| is the number of dominating sets @fof cardinality? 4+ 1. But note tha{j is too big for
a parameterized reduction, sinGecontains the setl’, where the exponent depends on the parameter
So we need a more refined reduction. We can assumeithiayy) = ¢1 A ... A ¢, Where each); is a
disjunction of literals. Each literal contains at mastariables. Therefore, we do not nedd but a copy
A;; of A2for1 < i< j < (. We replaced’ above by all these copies addx {0} by A x {1,...,m}.
We replace (i) by

(i) Every (ai, a;) in the copyA;; of A% is connected to all elements ff} x (4\ {a;}) and all elements
of {j} x (A\ {a;}).
Furthermore, we replace (i) by
(i) for 1 <i < j <Y, (a;,a;)inthe copyA;; of A%, and for(b, k) € A x {1,...,m}:

{(ai,a;),(b,k)} € B9 <= there is a literal\(z;,z;,y) in ¢ whose (at most
two) free variables are among, z;,y such thatd =
)\(ai,aj,b).

Moreover, instead of thb{ and theb’ we add for everyi = 1,...,¢ and for every copy of4? a set of
{+ (ﬁ) + 1 new elements that ensure that every dominating set of caiti + (5) contains exactly one
element of everyi} x A and of every copy ofi.

Then dominating sets of cardinality+ (5) and tuples in4 satisfyingp are related in an one-to-one
fashion.

p-#DOMINATING SET ngars#WSAT(CNF) :
LetG = (G, EY) be a graph. Fou € G let X, be a propositional variable. Letg be the propositional
formula

ag = /\(Xa\/ \/ Xb).

a€G (a,b)eE

Then,ag is (equivalent to) a formula iz o. Clearly the number of satisfying assignmentsigfof weight
k equals the number of dominating setgjoéf sizek. O

Remark 20 As opposed to the proof of Theorem 14, the reductions givethénproof of Theorem 19
are not just variants of the standard reductions showini\{f#8-completeness of the respective problems
under many-one reductions. As a matter of fact, our prodéigia new proof of the complicated result that
p-DOMINATING SET is W[2]-complete under parameterized many-one reductions.

18

5 Counting cycles and paths

Theorem 21 The following problems ar#W/1]-complete under parameterized Turing reductions:
(1) p-#CvcLE andp-#DIRCYCLE (“Count the cycles of length in a (directed) graph”).
(2) p-#PaTH andp-#DIRPATH (“Count the paths of length in a (directed) graph”).

To be precise, let us definepath of lengthk in a directed graphiG, £9) to be a substructure af
isomorphic to({1,...,k},{(i,i + 1) | 1 < i < k}). A cycle of length is a substructure isomorphic
to ({1,...,k},{(i,i+1) | 1 < i< k}U{(k,1)}). Paths and cycles in undirected graphs are defined
similarly.

Thus all problemsin Theorem 21 are restrictions of the subgtre problenp-#Sus and thus in #V}1]
by Theorem 14. The decision versions of the problems are-fiedmeter tractable. This is an immediate
consequence of Plehn and Voigt's [26] theorem that the petenized embedding problem restricted to
graphs of bounded tree-width is fixed-parameter tractabtethe fact that paths have tree-width 1 and
cycles have tree-width 2.

Lemma 22
p-#DIRCYCLE gg;,sp—#CYCLE ngp p-#PATH ngp p-#DIRPATH.

Proof: p-#DIRCYCLE <pa,sp -#CYCLE :
For a directed grapd, letg,' , be the undirected graph obtained frghby the following two steps:

(1) Replace each vertexof G by an undirected path of lengthsuch that the (directed) edges with head
a in G get the first vertex of this path as their new head and the edikdail « in G get the last
vertex of this path as their new tail.

(2) Replace each directed edge in this graph (correspondiag edge ofj) by an undirected path of
lengthg.

Figure 1 gives an example.

Figure 1. A directed grapéi and the correspondir@'

Observe that each cycle @} , has lengtt - p +m - q for some integers, m > 0 with £ < m. Further
observe that each directed cycle of lengtm G lifts to a cycle of lengthk(p + ¢) in G ,. Givenk, we
want to choos@ andq in such a way that each cycle of lengtty + ¢) in G,/ , is the lifting of a directed
cycle of lengthk in G. To achieve this, we have to chogsandq in such a way that

kp+q)#L-p+m-q 1)

forall £, m > 0 with £ < m. If we choosep < ¢, then (1) holds form > 2k. So we have to fulfil (1) for
0 < ¢ < m < 2k. Hence, we have to avoi@’“jl) linear equalities. Clearly we can find natural numbers
p < ¢ satisfying none of these equalities.

19

For suchp andq, the number of directed cycles of lengtlin G equals the number of undirected cycles
of lengthk(p + ¢) in G .

p-#CYCLE ng" p-H#PATH :
Let G be an undirected graph aid> 1. Without loss of generality we can assume that 3 because
counting loops in a graph is easy.

For eacte = {v,w} € FY and all{, m > 0, we letG. (¢, m) be the graph obtained frof by adding
vertices a1, ..., v, w1, ..., w, and edges between andw for 1 < ¢ < ¢ and betweenw; andv for
1<j<m.

We observe that the number of paths of lengttk + 1 from vy to w; in G. (¢, m) is exactly the number
of cycles of lengtht in G containing the edge. We now show how to compute. from the numbers of
paths of lengttt+ 1 in the graphgj. (¢, m) for 0 < ¢,m < 1. This yields a parameterized Turing reduction
from p-#CYCLE to p-#PATH.

We observe that the; andw; can only be endpoints of pathsdh (¢, m), and that each path can have

at most one endpoint among, . .., v, and at most one endpoint among, .. ., w.,, (because each path
ending inv; must go throughw and each path ending in; must go through).
We let

e 1 = x. be the number of paths of length + 1) from vy to wy in Ge(1,1),

¢ y be the number of paths of length + 1) in G.(1, 1) that contairv;, but notw;,

¢ 2 be the number of paths of length + 1) in G.(1, 1) that containw;, but notv,,

e w be the number of paths of length + 1) in G.(1, 1) that neither contain; norws;.

Let ps,, be the number of paths of length + 1) in G.(¢, m). Then we have
Pem=wH+Ll-m-x+L-y+m-z.

For0 < ¢,m < 1 we obtain a system of 4 linear equations in the variahles, i, z whose matrix is
nonsingular. Thus it has a unigue solution which, in patiicgives us the desired value

p-#PATH ngp p-#DIRPATH :

This is trivial; just replace each edge of an undirected lgthpat is not a loop by two directed edges. Then
each path (of length at least 2) in the undirected graph spomds to exactly two paths of the same length
in the directed graph. O

Next, we will prove thaip-#CLIQUE ngp p-#DIRCYCLE. This requires a sequence of lemmas. Let
h : H — G be a homomorphism and, far> 1, let k; be the number of verticels € G such that
|h='(b)| > i. Then} ., ki = |H|. Thetypeof h is the polynomial

th(X) = H(X —i+ 1)k = H(X)Url(b)\,

i>1 beG

where the notatio.X); is used for the “falling factorial”, that ig,X)o = 1 and(X);+1 = (X):(X — 1)
for all i > 0. In particular, an embedding frofi into G is a homomorphism of typ& 17|,

Let Dy, denote the directed cycle of lengthwhose vertices arg, . . ., k in cyclic order. We consider
the following generalisation gf-#DIRCYCLE:

p-#TDC
Input: Directed graplg, polynomialt(X).
Parameter: k € N.
Problem: Count the homomorphisnis: D, — G of typet(X).

Lemma 23
p-#TDC < p-#DIRCYCLE

20

Proof: For a directed grapty and natural number§ m > 1, let G, ,,, be the graph obtained frog as
follows:

e The universe ofj; ., is
Goim =G x{1,.... 0} x{1,...,m}.

e There is an edge frorfu, i, j) to (a’,4’, j') in G, ., €ither ifi = ¢ andi’ = 1 and there is an edge
fromatoad inGorifa=a andi’ =7+ 1.

Figure 2 gives an example.

()

Figure 2. A directed grap§ and the corresponding -

Recall that the vertices of the cyd®, arel, .. ., k. Theprojectionof an embedding : Dy — G,
is the homomorphism(e) : Dy, — G which maps vertex € Dy, to the first componentaf((a—1)-¢+1),
that is, we letr(e)(a) = bif e((a — 1) - £+ 1) = (b,4,j) forsomei € {1,...,¢},5 € {1,...,m}.

Observe that for every homomorphigm D, — G there are

l-ty, (m)e

embeddings : Dy., — G, With projectionm(e) = h. Let T be the set of all types of homomorphisms
from D;, into some graph. For every typec T, let z; be the number of homomorphisms: D, — G

with ¢, = t. Then
by = th 0 t(m)*
teT
is the number of embeddings Dy.; — G¢ .

The types inT" are polynomials of degree at mdst Thus for distinctt(X),t'(X) € T there are at
mostk distinctz € N such that(z) = ¢/(z). Therefore, there is am < k - |T'|? such that for all distinct
t(X),t'(X) € T we havet(m) # t'(m). We fix such ann.

We |etg = (bl, ceey b|T|), r= (xt)tETy andA = (a[t)1§g§|T|, whereay; = £ - t(m)e Then

teT

A-Z=b.

Since the matrix%agt)lggﬂ is a Vandermonde matrix and thus nonsingular, the matrig also non-
teT
singular, and thus .
Z=A"1b.
Now our Turing reduction fromp-#TDC top-#DIRCYCLE works as follows:

1 Compute the séf’ and a suitablen.

21

2 Forl < ¢ < |T|, compute the grap&y, ..

3 For1 < ¢ < |T|, compute the numbér, of embeddings : Dy, — Gi..,, (Using the oracle to
p-#DIRCYCLE and noting thaby is & - £ times the number of cycles of length £ in Gy.,,,).

4 Compute the matrixl and solve the system - 7 = b.
5 Returnz,, wheret(X) is the input polynomial. (It ¢ 7', then returr0.)

Since the sef’, the numbern, and the matrix4 only depend on the parameterthis is a parameterized
Turing reduction. O

Fork,? > 1, let Q(k, ¢) denote the space of all mappings: {1,...,%k-¢} — {1,...,k} such that
|f~L1()| = £for1 <i<k.

Lemma 24 Letk > 1, and letH = (H, E™) be a directed graph with universé = {1,...,k} and
E™ £ H?. Then

lim Pr (f is a homomorphism fror®y., to H) =0
t—o0 feQ(k,L)

(wheref is chosen uniformly at random).

Proof: Let (z,y) € H?\ E™ andm < k-¢. We call a tupl€iy, ..., i,,) € H™ goodif (ij,ij11) # (z,y)
for 1 < j < m — 1 andbadotherwise. Fo(iy,...,,) € H™ chosen uniformly at random we have

[m/2]
. 1
Pr((ila"'vi’m) gOOQ) SPI‘(V],lS]Sm/2 (i2j71;7/2j)7£(1',y)): (1@) .

Furthermore, for all+, ..., i, € H we have

Pr (Wj1<j<m: f(j)=i) < (L)m

feQ(k,0) k-£—m

To see this inequality, note that a choosing a random fungtie (k,¢) can be modeled by randomly
picking ki balls without repetitions out of a bin that intially containballs each of colours, ..., k. The
probability that theth ball ist of colorj at most

ot
k-l—(i—1)
because at mogtof the remaining: - £ — (¢ — 1) are of colourj. Now the inequality follows straightfor-
wardly.
Thus
P isah hism fror®;,., t
fesz(rk,e)(f is a homomorphism fror®;,., to H)
< P j)=1i;forl <j<
< > b (fi) =djfori<j<m)

(i1s-vesin) €H™ goOM

< Y ()

(i1-vesin) €H™ goOM

. (ﬁ)mkzm Pr ((i1,...,im) good

(i1,) EH™

l

k-t m 1 [m/2]
<(———) (1-= .
<(wim) (%)

22

Lete > 0. Then there exists am(z, k) such that forn > m(e, k) we have

Lm/2]
1
(-m) =

Moreover, for everyn there exists aifi(m) such that fo# > ¢(m) we have

() - (2g) < =
wew) \TE) frmer st

Thus for all¢ > ¢(m(e, k)) we have

Do | ™

Pr (fis a homomorphism from®;., to H) < e.
FeQ(k,0)

Lemma 25
p-#CLIQUE <P p-#TDC.

Proof: Letk > 1. For a grapi, Iet?Hi denote the directed graph with the same vertex set and etige se
{(a,a) |a € H} U{(a,b) | {a,b} € EMY.

For every grap with k vertices and ever§ > 1, letas, be the number of homomorphisms of ty(€)}
from Dy, into H (that is, homomorphisms for which each point in the imageexagtly ¢ pre-images).

Let EH = (ax1,an2,...) and, for every > 1, éH = (an1,0mH2 - -, ane). We considegH andéH as
vectors in the vector spac& andQ’, respectively.
Letk > 1, and let be the complete graph with vertic€s, . . ., k}. LetH be the set of all graphs with

vertex sef{1, ..., k}, where up to isomorphism each graph occurs only oné® iand letH— = H \ {K}.
For a setS of vectors inQ" or Q°, we let(S) denote the linear span 6t
Claim 1:

ax & ({ar | HeH }).

Proof: Recall that)(k, ¢) denotes the set of all mappinbs {1,...,k-¢} — {1,..., k} with the property
that|h=1(i)| = ¢for1 <i < k.
We first observe that for all > 1,
aie = |Qk, 0)].

On the other hand, by Lemma 24 for all gragtiss H~ we have

lim ane _

Suppose for contradiction that

n

N N
ai = E)\iaHi

i=1

for graphsH;, ..., H, € H~. Choose sufficiently large such that far <i <n

i L T 1
ace QKO T D I

Then

Hi
ae = Niare < axe Y |\ <akey il sy = ke,
P — " ake Al

23

which is a contradiction. This proves Claim 1.

Claim 2: Thereis ar¥ = ¢(k) € N such that
¢ ‘ _
ax & ({ar | HeH }).
Furthermore, the mappinig— ¢(k) is computable.
Proof: For. € NU {N}, let
V.= ({in | HeH}).
Identifying (a1, ..., a;) € Q' with (ai,...,a;,0,0,...) € QY, foralli > 1 we can viewV; a subspace of
V; forall j > i and of Viy. Thus we can find an increasing sequence
BiCB, CB3 C--- CH™

such that for alk > 1, _
{&H ‘ H e IB%l-}
is a basis of/;. Sincely is a finite dimensional vector space, there isiaa N such thaiB, = B,, for all
1 >n.
Now if (iz,c was inV; for all 7 > 1, then for all > 1, the vector(iz,c could be written as a unique linear
combination of the vectors i{ufm ’ He Bi}. For all: > n, these linear combinations would be identical,

thusg,c would be inV4. This contradicts Claim 1 and thus proves that for sé@naeN,

¢
ax € Vi.

Clearly such arf is computable front;, since we can compute all vectqirﬁ for H € H andi € N. This
completes the proof of Claim 2.

Now we are ready to prove the lemma. lket 1 and defineC, H, H~, and the vectors;, as above.
Choose’ = ¢(k) according to Claim 2.

Let G be a graph. For every gragti € H, let x4, be the number of subsets C G such that the
subgraph induced bg on A is isomorphic tgH. We want to determine the numheg. Forl < i < ¢,

o ¢
let b; be the number of homomorphisms frdm..; into G of type (X)¥, and letb = (by,...,bs). The
numbers; can be computed by an oraclegegfTDC.
Observe that fot < : < ¢/ we have
b; = Z T aH;

HeH

£ ¢
b= Z THAH-

HeH

and thus

Sinceé,g is linearly independent fron{éﬁ ‘ H e]HI*}, the coefficientcx. can be computed by solving
this system of linear equations. O

Proof of Theorem 21The theorem follows immediately from Lemmas 22, 23, 25 anéorem 14. [

24

6 Conclusions

We have set up a framework for a parameterized complexityrhef counting problems and proved
a number of completeness results. In particular, we prolrediked-parameter intractability of natural
counting problems whose decision version is fixed-parantetetable.

A lot of interesting problems remain open, let us just memtiwo of them:

¢ Inview of Valiant's #P-completeness result for countingfeet matchings, it would be quite nice to
show that the parameterized matching probje#MATCHING is #W[1]-complete. We conjecture
that this is the case.

e Another interesting question is related to Toda’s theorBwes #W1] contain the whole W-hierar-
chy, or maybe even the A-hierarchy (introduced in [15])?

References

[1] K.A. Abrahamson, R.G. Downey, and M.R. Fellows. Fixeakgmeter tractability and completeness
IV: On completeness for W[P] and PSPACE analofysnals of pure and applied logi@3:235-276,
1995.

[2] N. Alon, R. Yuster, and U. Zwick. Color-codindournal of the ACM42:844—-856, 1995.

[3] N. Alon, R. Yuster, and U. Zwick. Finding and counting giv length cycles. Algorithmicag
17(3):209-223, 1997.

[4] S. Arnborg, J. Lagergren, and D. Seese. Easy problemsderdecomposable graphdournal of
Algorithms 12:308-340, 1991.

[5] V. Arvind and V. Raman. Approximation algorithms for serparameterized counting problems. In
P. Bose and P. Morin, editoBroceedings of the 13th Annual International Symposiumigarihms
and Computationvolume 2518 ofLecture Notes in Computer Sciengmges 453—-464. Springer-
Verlag, 2002.

[6] H.L. Bodlaender, R.G. Downey, M.R. Fellows, M.T. Hatleand H.T. Wareham. Parameterized
complexity analysis in computational biolog@omputer Applications in the Biosciencé4:49-57,
1995.

[7] L. Caiand J. Chen. On fixed-parameter tractability angrapimability of NP optimization problems.
Journal of Computer and System Scienéds465—-474, 1997.

[8] Y. Chen, J. Flum, and M. Grohe. Bounded nondeterminischaternation in parameterized com-
plexity theory. InProceedings of the 18th IEEE Conference on Computationahfilexity pages
13-29, 2003.

[9] B. Courcelle. Graph rewriting: An algebraic and logipapach. In J. van Leeuwen, editetandbook
of Theoretical Computer Scienaoslume B, pages 194-242. Elsevier Science Publisher$).199

[10] B. Courcelle, J.A. Makowsky, and U. Rotics. On the fiyearameter complexity of graph enumera-
tion problems definable in monadic second-order loDiscrete Applied Mathematic$08(1-2):23—
52,2001.

[11] R.G. Downey and M.R. Fellows. Fixed-parameter traititsland completeness I: Basic resul&AM
Journal on Computing?4:873—-921, 1995.

[12] R.G. Downey and M.R. Fellows. Fixed-parameter traititgtand completeness Il: On completeness
for W[1]. Theoretical Computer Scienc#41:109-131, 1995.

[13] R.G. Downey and M.R. Fellows?arameterized Complexityspringer-Verlag, 1999.

25

[14] R.G. Downey, M.R. Fellows, and K. Regan. Descriptivenpdexity and théi -hierarchy. In P. Beame
and S. Buss, editor®roof Complexity and Feasible Arithmetiolume 39 ofAMS-DIMACS Volume
Seriespages 119-134. AMS, 1998.

[15] J. Flum and M. Grohe. Fixed-parameter tractabilityfjrtability, and model checkingSIAM Journal
on Computing31(1):113-145, 2001.

[16] M. Frick. Generalized model-checking over locallygrdecomposable classes. In H. Alt and A. Fer-
reira, editorsProceedings of the 19th Annual Symposium on Theoreticaddspf Computer Sci-
ence volume 2285 of_ecture Notes in Computer Scienpages 632-644. Springer-Verlag, 2002.

[17] M. Frick and M. Grohe. Deciding first-order propertieklocally tree-decomposable structures.
Journal of the ACM48:1184-1206, 2001.

[18] G. Gottlob, N. Leone, and M. Sideri. Fixed-parametanptexity in Al and nonmonotonic reasoning.
In M. Gelfond, N. Leone, and G. Pfeifer, editotsgic Programming and Nonmonotonic Reasoning,
5th International Conference, LPNMR’9@lume 1730 of ecture Notes in Computer Scienpages
1-18. Springer-Verlag, 1999.

[19] M. Grohe. The parameterized complexity of databaseigsie In Proceedings of the 20th ACM
Symposium on Principles of Database Systgrages 82—92, 2001.

[20] M. Jerrum, A. Sinclair, and E. Vigoda. A polynomial-timapproximation algorithm for the permanent
of a matrix with non-negative entries. Proceedings of the 33rd ACM Symposium on Theory of
Computingpages 712—-721, 2001.

[21] Ph.G. Kolaitis and M.N. Thakur. Approximation progeg of NP minimization classeslournal of
Computer and System Science®:391-411, 1995.

[22] J.A. Makowsky. Colored Tutte polynomials and Kauffniackets for graphs of bounded tree width.
In Proceedings of the 12th Annual ACM-SIAM Symposium on Desédgorithms pages 487—495,
2001.

[23] C. McCartin. Parameterized counting problems. In Kkdand W. Rytter, editor®roceedings of
the 27th International Symposium on Mathematical Fourmtetiof Computer Scienceolume 2420
of Lecture Notes in Computer Scienpages 556-567. Springer-Verlag, 2002.

[24] C. H. Papadimitriou and M. Yannakakis. On the complegit database queries. Proceedings of
the 17th ACM Symposium on Principles of Database Systmmngs 12—19, 1997.

[25] C.H. PapadimitriouComputational ComplexityAddison-Wesley, 1994.

[26] J.Plehn and B. Voigt. Finding minimally weighted suaghs. In R. Mohring, editoGraph-Theoretic
Concepts in Computer Science, WG, 90lume 484 ofLecture Notes in Computer Sciengages
18-29. Springer-Verlag, 1990.

[27] U. Stege.Resolving Conflicts in Problems from Computational BioloByD thesis, ETH Zuerich,
2000. PhD Thesis N0.13364.

[28] S. Toda. PP is as hard as the polynomial-time hierai@#M Journal on Computin@0(5):865-877,
1991.

[29] L.G. Valiant. The complexity of computing the permahemheoretical Computer Scienc@:189—
201, 1979.

26

Appendix A: A list of problems appearing in this paper

Vertex cover and related problems A vertex coveof a graphg = (G, EY) is a subse C G such that
for all edgeqv, w) € EY eitherv € X orw € X.

p-VERTEX COVER

sizek.

p-#VERTEX COVER

Input: Graphg. Input: Graphg.
Parameter: k ¢ N. Parameter: k € N.
Problem: Decide ifG has a vertex cover of] Problem: Count the vertex covers @f of

sizek.

A dominating sebf a graphg = (G, E9) is a subseX C G such that for all vertices € G eitherw € X
or (v,w) € EY for somev € X.

p-DOMINATING SET

of sizek.

p-#DOMINATING SET

Input: Graphg. Input: Graphg.
Parameter: k € N. Parameter: k € N.
Problem: Decide ifG has a dominating se Problem: Count the dominating sets ¢f

of sizek.

In general, thetandard parameterizatioof an optimisation problem is the parameterized decisioblem

asking whether there exists a solution of sizevherek is the quantity to be optimised and the parameter.

The counting version can be defined accordingly.

Homomorphisms, embeddings, and substructures

27

p-Howm p-#HOM
Input: Structures4 and5. Input: Structures4 andB.
Parameter: ||A]]. Parameter: ||A]].
Problem: Decide if there exists a homot Problem: Count the homomorphisms
morphism fromA to 5. from A to B.
p-EmMB p-#EMB
Input: Structures4 and5. Input: Structures4 andB.
Parameter: ||A]]. Parameter: ||A]].
Problem: Decide if there exists an embed- Problem: Countthe embeddings of into
ding of A into 5. B.
p-SUB p-#SUB
Input: Structures4 andB. Input: Structures4 andB.
Parameter: ||A]|. Parameter: ||A]].
Problem: Decide if B has a substructure Problem: Count the substructures 5f
isomorphic toA. isomorphic toA.
A cliquein a graphg is a subsef of G such that for all distinct, w € X, (v,w) € E9.
p-CLIQUE
Input: Graphg. p_#CLIQUE_ h
Parameter: k € N. Input.. Graphg.
Problem: Decide ifG has a clique of size| Parameter: < IN. . .
’ 5 Problem: Count the cliques of of sizek.

p-PATH
Input: Graphg. p-H#PATH _
Parameter: k € N. Input.. Graphg.
Problem: Decide if G contains a path of Parameter: & € . .
lenathi. Problem: Countthe paths of lengthin G.
g
p-DIRPATH p-#DIRPATH
Input: Directed graphy;. Input: Directed graply.
Parameter: k € N. Parameter: k € N.
Problem: Decide ifG contains a directed Problem: Count the directed paths of
path of lengthk. lengthk in G.
p-CYCLE p-#CYCLE
Input: Graphg. Input: Graphg.
Parameter: k € N. Parameter: k € N.
Problem: Decide ifG contains a cycle of Problem: Count the cycles of length
lengthk. ingG.
p-DIRCYCLE p-#DIRCYCLE
Input: Directed graphy. Input: Directed graply.
Parameter: k € N. Parameter: k € N.
Problem: Decide ifG contains a directed Problem: Count the directed cycles
cycle of lengthk. of lengthk in G.

A matchingof a graph is a set of edges that pairwise have no endpointimmm.

p-MATCHING
Input: Bipartite graplg.
Parameter: k € N.
Problem: Decide ifG contains a matching
of sizek.

p-#MATCHING

Input:
Parameter:
Problem:

Bipartite graphg.

ke N.

Count the matchings of size
ing.

Logically defined problems Theweightof an assignmeng for the variables of a propositional formula

is the number of variables sett®UE by S. Let © be a class of propositional formulas

WSAT(0)
Input: 60 € ©.
Parameter: k € N.
Problem: Decide iff has a satisfying

assignment of weighit.

#WSAT(O)
Input:
Parameter:
Problem:

0 co.

keN.

Count the satisfying
assignments of of weightk.

|| denotes the length of a formula Let ® be a class of first-order formulas.

p-MC(®)
Input: StructureA, formulay € ®.
Parameter: |¢p|.

Problem: Decide ifip(A) # 0.

p-#(®)
Input:
Parameter:
Problem:

StructureA, formulay € ®.

.
Compute|p(A)|.

Let p(X) be a formula of vocabulary U { X }.

28

i

p-FD(p(X)) p-#FD(p(X))
Input: 7-structureA. Input: StructureA.
Parameter: k € N. Parameter: k£ € N.
Problem: Decide if o(A) contains a rela- Problem: Countthe number of relations o
tion of sizek. sizek in ¢(A).
The parameterized halting problem
p-H#HALT
p-HALT . it ;
] o . Input: Nondeterministic Turing ma-
Input: Nondeterministic Turing ma- .
. chine M.
chineM. .
. Parameter. k € N.
Parameter: k€ . Problem: Count the accepting computg
Problem: Decide if M accepts the empty ' ping P

word in at most: steps.

29

tion paths of M of length at
most#k for the empty word.

