
Infeasibility of Instance Compression

and Succinct PCPs for NP∗

Lance Fortnow
Rahul Santhanam

March 19, 2010

Abstract

The OR-SAT problem asks, given Boolean formulae φ1, . . . , φm each of size at most n,
whether at least one of the φi’s is satisfiable.

We show that there is no reduction from OR-SAT to any set A where the length of the output
is bounded by a polynomial in n, unless NP ⊆ coNP/poly, and the Polynomial-Time Hierarchy
collapses. This result settles an open problem proposed by Bodlaender et. al. [BDFH08] and
Harnik and Naor [HN06b] and has a number of implications.

• A number of parametric NP problems, including Satisfiability, Clique, Dominating Set and
Integer Programming, are not instance compressible or polynomially kernelizable unless
NP ⊆ coNP/poly.

• Satisfiability does not have PCPs of size polynomial in the number of variables unless
NP ⊆ coNP/poly.

• An approach of Harnik and Naor to constructing collision-resistant hash functions from
one-way functions is unlikely to be viable in its present form.

• (Buhrman-Hitchcock) There are no subexponential-size hard sets for NP unless NP is in
co-NP/poly.

We also study probabilistic variants of compression, and show various results about and
connections between these variants. To this end, we introduce a new strong derandomization
hypothesis, the Oracle Derandomization Hypothesis, and discuss how it relates to traditional
derandomization assumptions.

1 Introduction

Bodlaender et al. [BDFH08] and Harnik and Naor [HN06b] raise the following question, which
has relevance to a wide variety of areas, including parameterized complexity, cryptography, prob-
abilistically checkable proofs and structural complexity. This question asks whether the OR-SAT
problem (given a list of formulae, is at least one satisfiable) is compressible.

Question 1.1 Is there a function f that, given as input m Boolean formula φ1, . . . , φm where each
φi has length at most n (possibly much less than m), outputs a Boolean formula, and has the
following properties?
∗An earlier version of this paper appeared in the Proceedings of the 40th Symposium on the Theory of Comput-

ing [FS08].

1

• f is computable in time polynomial in m and n,

• f(φ1, . . . , φm) is satisfiable if and only if at least one of the φi is satisfiable, and

• |f(φ1, . . . , φm)| is bounded by a polynomial in n.

We essentially settle this question in the negative by showing that a positive answer to Question
1.1 implies that the polynomial-time hierarchy collapses. We actually show the following stronger
statement, in which f is allowed to map to an arbitrary set.

Theorem 1.2 If NP is not contained in coNP/poly then there is no set A and function f such
that given m Boolean formula φ1, . . . , φm where each φi has length at most n, f has the following
properties

• f is computable in time polynomial in m and n,

• f(φ1, . . . , φm) ∈ A if and only if at least one of the φi is satisfiable, and

• |f(φ1, . . . , φm)| is bounded by a polynomial in n.

Bodlaender et al. [BDFH08] arrive at Question 1.1 from the perspective of parameterized com-
plexity. Parameterized complexity asks about the complexity of NP problems based on some inher-
ent parameter, like the number of variables in a formula or clique size in a graph. In parameterized
complexity, feasibility is identified with fixed-parameter tractability. A problem is fixed-parameter
tractable (FPT) if it has an algorithm running in time f(k)nO(1) where n is the input size and f(k)
is an arbitrary function of the parameter k. One technique to show fixed-parameter tractability is
kernelization, where one reduces the solution of the given instance to the solution of an instance
of size depending only on the parameter; this new instance is called a “problem kernel”. Chen et
al. [CCDF97] show that a problem is FPT if and only if it has a kernelization. However, in general,
the kernel can be arbitrarily long as a function of the parameter.

It is a fundamental question in parameterized complexity as to which problems have polynomial-
size kernels [FG06, GN07]. Bodlaender et. al. [BDFH08] develop a theory of polynomial kernel-
izability, and define a notion of strong distillation which is useful in this context. A problem L
has a strong distillation function if there is a polynomial-time computable function f that takes
inputs x1, . . . , xm and outputs a y with |y| bounded by a polynomial in maxi |xi|, such that y is in
L if and only if at least one of the xi’s are in L. Question 1.1 is equivalent to asking if SAT has a
strong distillation. Bodlaender et al. conjectured that the answer to Question 1.1 is negative, and
under that conjecture showed that the parameterized versions of several NP-complete problems
do not have polynomial kernelizations, including k-Path and k-Cycle. Theorem 1.1 confirms the
conjecture of Bodlaender et al. modulo a widely-believed complexity-theoretic assumption, a rare
connection between parameterized complexity and a traditional complexity-theoretic hypothesis.

Harnik and Naor [HN06b] arrived at essentially Question 1.1 with a very different motivation,
cryptographic in nature. An NP language L is instance compressible if there is some polynomial-
time computable function f and a set A in NP such that x is in L if and only if (f(x), 1|x|) is
in A, and |f(x)| is bounded by a polynomial in the length of a witness for x.1 They showed

1Harnik and Naor actually allow |f(x)| to be bounded by a polynomial in both the length of the witness and
log |x|. This variation is actually equivalent to our formulation, as discussed in Section 2

2

that if the Satisfiability problem is compressible then collision resistant hash functions can be
constructed from one-way functions. If an even stronger compressibility assumption holds, then
oblivious transfer protocols can be constructed from one-way functions. This would imply that
public-key cryptography can be based on one-way functions, solving one of the outstanding open
problems in theoretical cryptography.

The cryptographic reductions of Harnik and Naor also follow from a weaker assumption than
compressibility of SAT, namely the compressibility of the OR-SAT problem. In the OR-SAT
problem, a list of m formulae φ1 . . . φm each of size at most n is given as input, and a “yes”
instance is one in which at least one of these formulae is satisfiable. Note that the size of a
witness for OR-SAT is bounded above by n, hence compressibility of OR-SAT implies a positive
answer to Question 1.1. Harnik and Naor describe a hierarchy of problems including Satisfiability,
Clique, Dominating Set and Integer Programming, the compression of any of which would imply
the compression of the OR-SAT problem. Thus Theorem 1.2 shows that none of these problems
are compressible unless the polynomial-time hierarchy collapses. From a cryptographic point of
view, our result indicates that the approach of Harnik and Naor may not be viable in its current
form. But rather than considering this as a purely negative result, we hope it stimulates research
into whether weaker and more plausible conditions already suffice for their constructions to work.

Theorem 1.2 also has applications to probabilistically checkable proofs (PCPs), and to structural
complexity.

The result is directly relevant to the question of whether there are succinct PCPs for NP, which
has been raised recently by Kalai and Raz [KR07]. A succinct PCP for an NP language L is a
probabilistically checkable proof for L where the size of the proof is polynomial in the witness size
n rather than in the instance size m. Current proofs of the PCP theorem [AS98, ALM+98, Din07]
do not yield such PCPs. Kalai and Raz state that the existence of succinct PCPs “would have
important applications in complexity theory and cryptography, while a negative result would be
extremely interesting from a theoretical point of view”. We show such a negative result: unless
NP ⊆ coNP/poly and the Polynomial Hierarchy collapses, SAT does not have succinct PCPs, nor do
problems like Clique and DominatingSet. On the other hand, polynomially kernelizable problems
such as VertexCover do have succinct PCPs.

Buhrman and Hitchcock [BH08] use Theorem 1.2 to show implications of NP-complete problems
reducing to subexponential-size sets. Mahaney [Mah82] showed that if there are NP-complete
sparse sets (polynomial number of strings at every length) then P=NP. Karp and Lipton [KL82]
show that if NP has a Turing-reduction to sparse sets than NP is in P/poly. But we had no known
polynomial-time consequences of reductions to larger sets. Buhrman and Hitchcock use our result
to show that there are no NP-complete sets of size 2n

o(1)
unless NP is in coNP/poly. More generally

they show that if NP is not in coNP/poly then for every set A of size 2n
o(1)

, there is no reduction
from Satisfiability to A using n1−ε adaptive queries to A for any fixed ε > 0.

All the results mentioned so far concern compressibility using an f that is computable in
deterministic polynomial time or in probabilistic polynomial time with very small error. We also
study the case of general probabilistic compression. Here we do not have strong negative results, but
we do have negative results for restricted notions as well as connections between different notions.
Under a strong derandomization assumption that we call the Oracle Derandomization Hypothesis,
we extend our infeasibility result for succinct PCPs to the more general case of gap amplification
without blowing up the parameter by more than a polynomial factor. This has applications to the
theory of hardness of approximation in the context of parameterized complexity.

3

In Section 2 we formally define the model and the problems. In Section 3 we prove our main
result Theorem 3.1. In Section 4 we describe some applications of our main result and techniques
for succinct PCPs, kernelization and cryptography. In Section 5 we give results about probabilistic
compression. We discuss the feasibility of the Oracle Derandomization Hypothesis in Section 6.

2 Preliminaries

2.1 Basic Complexity Notions

For the definitions of basic complexity classes such as NP, P, E, BPP and AM, we refer the
reader to the Complexity Zoo2. The work of Garey and Johnson [GJ76] is an excellent com-
pendium of NP-complete problems. There are a number of good reference works on parameterized
complexity[DF99, FG06, Nie06].

We use SIZE(s) to refer to the class of languages accepted by Boolean circuits of size O(s), and
NSIZE(s) to refer to the class of languages accepted by non-deterministic Boolean circuits of size
O(s). Given a complexity class C, i.o.C is the class of languages L for which there is some L′ ∈ C
such that L′ agrees with L on infinitely many input lengths.

2.2 Instance Compression

Motivated by cryptographic applications, Harnik and Naor [HN06b] introduced the notion of in-
stance compression for languages in NP. Informally, a language L ∈ NP is instance compressible
if there is a polynomial time algorithm that, for each instance x, produces an instance C(x) of
length polynomial in the witness size for x, such that C(x) ∈ L iff x ∈ L. When the witness size
is significantly smaller than the instance size, this gives a significant compression of the original
instance x with respect to membership in L.

Harnik and Naor actually allow the size of the compressed instance to be polynomial in the
logarithm of the instance size m as well as in the witness size n, but this does not give rise to a more
relaxed notion, for the following reason. There are two cases: either n > log(m), or n 6 log(m). In
the first case, being polynomial in (n+log(m)) is equivalent to being polynomial in n. In the second
case, the instance can be decided in polynomial time in m just by brute-force search over witnesses.
Given a compression algorithm f according to the Harnik-Naor notion, we can define a compression
algorithm f ′ according to our notion which checks which case holds and supposing the second case
holds, solves its instance in polynomial time and correspondingly outputs a constant-sized “yes” or
“no” instance instead of the instance produced by f .

Harnik and Naor [HN06b] define instance compression relative to languages. Since an NP
language could correspond to different relations with varying witness lengths, this notion is not
robust when considering compression of languages. Hence we choose to define instance compression
for parametric problems - problems in which the instance is given with an additional parameter,
and the length of the compressed instance is required to be polynomial in that parameter. Note
that for most problems of interest in NP, such as Vertex Cover and Clique, the traditional instance
specification includes the relevant parameter (respectively, the size of the vertex cover and size of
the clique). For other problems, such as Satisfiability, the relevant parameter is implicit in the

2http://qwiki.caltech.edu/wiki/Complexity Zoo

4

instance, eg., the description of a formula φ also reveals the number of variables in φ, and hence
the witness length.

Our formulation has three other advantages. First, it enables us to pose the question of whether
a given problem has small witnesses or not. Second, the parameter could potentially be used to
represent quantities other than the witness length. Third, the formulation enables us to study com-
pression of languages that are not in NP. In this paper, though, we’ll focus on natural parametric
versions of NP problems, where the parameter corresponds to the witness length.

Definition 2.1 A parametric problem is a subset of {< x, 1n > |x ∈ {0, 1}∗, n ∈ N}.

Definition 2.2 Let L be a parametric problem and A ⊆ {0, 1}∗. L is said to be compressible within
A if there is a polynomial p(·), and a polynomial-time computable function f , such that for each
x ∈ {0, 1}∗ and n ∈ N, |f(< x, 1n >)| 6 p(n) and < x, 1n >∈ L iff f(< x, 1n >) ∈ A. L is
compressible if there is some A for which L is compressible within A. L is self-compressible if L is
compressible within L.

Harnik and Naor also consider variants where the compressed size need not be polynomially
bounded in n and log(m) but is constrained to be at most some larger non-trivial function in n
and log(m). Our negative results on compressibility scale smoothly in terms of the strength of the
assumption required as the constraint on the compressed size becomes weaker.

We will also be interested in probabilistic compression.

Definition 2.3 Let L be a parametric problem and A ⊆ {0, 1}∗. L is said to be probabilistically
compressible with error ε(n) within A if there is a probabilistic polynomial-time computable function
f such that for each x ∈ {0, 1}∗ and n ∈ N, with probability at least 1− ε(|x|) we have:

1. |f(< x, 1n >)| 6 poly(n)

2. f(< x, 1n >) ∈ A iff x ∈ L

L is probabilistically compressible if there is an A such that L is probabilistically compressible
within A with error 1/3. L is errorless compressible if there is an A such that L is probabilistically
compressible within A with error 0.

We say that a probabilistic compression function f has randomness complexity R if it uses at
most R random bits.

Note that errorless compression is a distinct notion from deterministic compression.
We also define, informally but unambiguously, non-uniform and average-case versions of com-

pression.

Definition 2.4 A parametric problem L is said to be compressible with advice s(·, ·) if the compres-
sion function is computable in deterministic polynomial time when given access to an advice string
of size s(|x|, n) which depends only on |x| and n but not on x. L is non-uniformly compressible if
s is polynomially bounded in m and n.

Definition 2.5 A parametric problem L is a(·, ·)-compressible on average if the compression func-
tion works correctly for at least a fraction a(m,n) of instances < x, 1n > where |x| = m.

5

Compression on average with advice is defined by combining the two notions in the obvious way;
similarly probabilistic compression with advice is defined by combining the notion of probabilistic
compression with the notion of non-uniform compression. Note that deterministic compression is
1-compression on average using 0 bits of advice.

We will mainly be discussing compressibility of parametric problems in NP. We next define
some of the problems we will be studying.

Definition 2.6 SAT = {< φ, 1n > |φ is a satisfiable formula, and n is at least the number of variables in φ}.

Definition 2.7 VC = {< G, 1k log(m) > |G has a vertex cover of size at most k, where m = |G|}.

Definition 2.8 Clique = {< G, 1k log(m) > |G has a clique of size at least k, where m = |G|}.

Note that our representation of the inputs to VC and Clique is slightly non-standard in that we
specify k log(m) rather than just the size k of the object for which we’re searching. This is because
we would like the parameter to accurately reflect the witness size.

Definition 2.9 OR-SAT = {< {φi}, 1n > |At least one φi is satisfiable, and each φi has size at most n}.

Similarly we define the parametric problems DominatingSet and IntegerProgramming in the
natural way.

One imagines it would be useful to have a structure theory relating compressibility of these
various problems, analogous to the theory of NP-completeness for decidability. Harnik and Naor
initiated just such a theory in their paper, by using the notion of “W-reduction” [HN06b] to define a
hierarchy V C0 ⊆ V COR ⊆ V C1 ⊆ V C2 . . . of problems in NP, closely related to similar hierarchies
in the theory of parameterized complexity. Their notion is not rigorous as defined, but becomes
rigorous when each class V Ci is defined as a class of parametric problems. In this paper, we are
not concerned with the hierarchy itself as much as with the basic notion of a W-reduction, which
allows us to translate infeasibility of compression results from one parametric problem to another.

Definition 2.10 Given parametric problems L1 and L2, L1 W-reduces to L2 (denoted L1 6W L2)
if there is a polynomial-time computable function f and polynomials p1 and p2 such that:

1. f(< x, 1n1 >) is of the form < y, 1n2 > where |y| 6 p1(n1 + |x|) and n2 6 p2(n1).

2. f(< x, 1n1 >) ∈ L2 iff < x, 1n1 >∈ L1.

The semantics of a W-reduction is that if L1 W-reduces to L2, it’s as hard to compress L2 as
it is to compress L1.

Proposition 2.11 If L1 6W L2 and L2 is compressible, then L1 is compressible.

Armed with this notion, we can investigate the relative compressibility of the parametric prob-
lems we defined earlier.

First, we ask: are there any natural parametric versions of NP-complete problems which can be
shown to be compressible? The answer is yes, for problems for which the parameter is polynomially
related to the input length. For instance, in the problem 3-SAT, the size of the formula is polynomi-
ally related to the number of variables (after deleting repeated clauses), hence any non-redundant
version of the formula is itself a compressed instance, by our definition.

6

There still remains the question of whether there are less trivial compression algorithms for
natural parametric problems. Using a close relationship between compressibility and the technique
of kernelization in parameterized complexity, Harnik and Naor show the following:

Theorem 2.12 [DF99, HN06b] VC is self-compressible.

As for the remaining problems, all that was previously known were reductions between them.

Proposition 2.13 [HN06b] OR−SAT 6W Clique 6W SAT 6W DominatingSet. Also SAT 6W
IntegerProgramming.

2.3 Chernoff bounds

In some of our proofs, we will need the following Chernoff bounds.

Proposition 2.14 Let X1, X2 . . . Xn be independent {0,1} random variables such that E(ΣXi) =
µ. Then, for any t > 0, Pr(|ΣXi − µ| > t) < 2e−2t2/n.

This formulation follows immediately from known bounds (e.g. [AS08, Theorem A.1.16]).

3 Infeasibility of Deterministic Compression

In this section, we show that deterministic compression of SAT implies that the Polynomial Hi-
erarchy collapses. In fact, the conclusion holds even under the milder assumption that OR-SAT
is deterministically compressible. Theorem 3.1 below is just Theorem 1.2 re-phrased using the
terminology of compression.

Theorem 3.1 If OR-SAT is compressible, then coNP ⊆ NP/poly, and hence PH collapses.

Proof. Let φ be any formula of size at most m consisting of the disjunction of formulae each of size
at most n. By the assumption on compressibility of OR-SAT, there is a language A and a function
f computable in deterministic time poly(m) such that |f(φ, 1n)| 6 O(poly(n, log(m))), and φ is
satisfiable iff f(φ, 1n) ∈ A. Let c be a constant such that the length of compressed instances on
OR-SAT formulae of size at most m and parameter at most n is at most k = (n+ log(m))c.

Now let S be the set of unsatisfiable formulae of size at most n and T be the set of strings in Ā
of length at most k. The function f induces a map g : Sm/n → T , since a tuple of m/n formulae
of size n can be represented in size m in a natural encoding scheme, and the correctness of the
reduction implies that a disjunction of m/n unsatisfiable formulae maps to a string in Ā of length
at most k.

Our strategy will be as follows: we will attempt to find a poly(n) size set C of strings in T ,
such that any formula in S is contained in at least one tuple that maps to a string in C under
the mapping g. If such a set C exists, then we have a proof with advice of unsatisfiability of a
formula z of size n, by guessing a tuple of m/n formulae of size at most n such that z belongs
to the tuple, and then checking if the tuple maps to a string in C. The check whether the tuple
maps to a string in C can be done with polynomial advice, by enumerating the strings in C in the
advice string. Any unsatisfiable formula will have such a proof with advice, just by the definition
of C. Conversely, any tuple containing a satisfiable formula will map to a string in A and hence

7

to a string in C̄, implying that no satisfiable formula will have such a proof. If m = poly(n), then
the proof is polynomial-size, and since the advice is polynomial-size as well by assumption on C,
we get that coNP ⊆ NP/poly.

Thus the proof reduces to showing the existence of a set C with the desired properties. The
proof is via a purely combinatorial argument. We employ a greedy strategy, trying to “cover” as
many strings in S as possible with each string we pick in C. We prove that such a greedy strategy
terminates after picking polynomially many strings.

We pick the set C in stages, with one string picked in each stage. Let Ci be the set of strings
picked at or before stage i, |Ci| = i. Let Si denote the set of strings y in S, such that y is not part
of a tuple that maps to a string in Ci under g. Let X = Sm/n, and Xi ⊆ X be the set of tuples
that do not belong to the pre-image set of Ci (under the mapping g). Note that Xi = S

m/n
i , since

a tuple belongs to Xi iff every element of the tuple belongs to Si.
At stage 0, Ci is the empty set, Si = S and Xi = X. We proceed iteratively as follows. If Si

is empty, we stop. Otherwise, at stage i, we pick the string y in T with the maximum number of
pre-images in Xi−1, and set Ci = Ci−1 ∪ {y}.

We show that if m is picked appropriately as a function of n, then this process concludes within
poly(n) stages. It is enough to show that the size of Si decreases by at least a constant factor in
each stage. Since |S| 6 2n+1, this implies that the process concludes after O(n) stages.

Now we analyze the decrease in the size of Si. Recall that at stage i, we add to Ci the string
y in T with the maximum number of pre-images in Xi−1. Let Y denote the set of pre-images of
y under the mapping g within Xi−1. Since |T | 6 2k+1, by the pigeonhole principle, |Y | is at least
|Xi−1|/2k+1, i.e., |Y | > |Si−1|m/n/2k+1.

Now, every element of a tuple in Y is in Si−1 because Y ⊆ Xi−1. On the other hand, Si is
formed from Si−1 by removing every member of Si−1 which is in a tuple in Y . Thus, Y is contained
in the set of all m/n-tuples with elements in Si−1−Si, and so |Y | 6 |Si−1−Si|n/m. Combining this
with the inequality at the end of the previous para, we have that |Si−1 − Si| > |Si−1|/2(k+1)n/m.
Since k 6 (log(m) + n)c for some constant c, we can pick a constant c′ > c large enough so
that (k + 1)n < m when m = nc

′
and n is large enough. For this choice of m, we have that

|Si−1 − Si| > |Si−1|/2 for large enough n, and therefore that |Si| 6 |Si−1|/2.
Thus, for this choice of m, we have that the set C has size O(n) and that m is polynomially

bounded in n. By the argument given earlier, this gives polynomial-sized proofs with polynomial
advice for unsatisfiable formulae, and implies that coNP ⊆ NP/poly. From a result of Yap [Yap83],
it follows that PH collapses to the third level. �

Since OR-SAT W-reduces to SAT by Proposition 2.13, our infeasibility result also applied to
compression of general satisfiable formulae with small witnesses. From Proposition 2.13, we also
get consequences for other natural parametric problems.

Corollary 3.2 If SAT is compressible, then coNP ⊆ NP/poly, and PH collapses. The same con-
clusion holds if Clique, DominatingSet or IntegerProgramming are compressible.

We next extend our infeasibility result to errorless compression and compression with very
small error. This extension uses “Adleman’s trick” [Adl78] to embed a “good” random string in
the advice, and then applies the argument for deterministic compression.

Theorem 3.3 If OR-SAT is compressible with error < 2−m, where m is the instance size, then
NP ⊆ coNP/poly and PH collapses.

8

Proof. The key observation is that compression with error < 2−m implies non-uniform compres-
sion. This is because, by a union bound, there must be some choice of randomness that yields a
correct compressed instance for each instance of length m. Let z be such a random string. z is
of size at most poly(m), since the compression algorithm runs in probabilistic polynomial time.
Now we just use the same argument as in the proof of Theorem 3.1 except that we also include z
in the advice string when defining the proof system with advice for unsatisfiable formulae. In the
earlier argument, the mapping from a tuple to a string could be performed deterministically; in
the present case, we just perform it using z as the random string for the probabilistic compression
function. �

Our infeasibility result also extends to non-uniform compression, using the same proof as for
Theorem 3.1.

Corollary 3.4 if OR-SAT is non-uniformly compressible, then NP ⊆ coNP/poly and PH collapses.

4 Applications

In this section, we discuss the implications of our infeasibility result in various other research
areas. First, we show a connection to succinct PCPs, which have attracted interest recently in the
context of the study of short zero-knowledge proofs/arguments for NP. Second, we show that our
result connects the theory of parameterized complexity to classical complexity theory, specifically
with regard to the “kernelization” technique in parameterized complexity. Third, we discuss some
implications for the classical cryptographic question of basing public-key cryptography for one-way
functions. Here our results are mainly negative, showing the inviability of certain approaches to
this problem which motivated Harnik and Naor to define the notion of instance compression.

4.1 Succinct PCPs

The PCP theorem [AS98, ALM+98] is one of the landmark achievements in complexity theory. It
states that any NP-complete language has polynomial-size proofs that can be verified probabilisti-
cally by reading only a constant number of bits of the proof.

Here “polynomial-size” means that the proof size is polynomial in the size of the input. It’s
natural to ask whether the proof size can be made polynomial in the size of the witness instead,
giving more efficient proofs. The witness constitutes a proof which can be verified by reading all
the bits of the proof - perhaps the number of bits read can be reduced to a constant by just blowing
up the size of the proof polynomially? The known proofs of the PCP theorem [AS98, Din07] do
not achieve this, since the size of the proof obtained is polynomial in the input size and not just in
the witness size. But a priori, a more efficient argument is conceivable.

Kalai and Raz [KR07] raise this question in their paper on “interactive PCPs”, and state that
either a positive answer or a negative answer would be interesting. Here we give strong evidence
for a negative answer by showing a strong connection between succinct PCPs and compressibility,
and then invoking the results in the previous section.

We begin by defining “succinct PCPs”, which are intuitively PCPs where the proof size depends
polynomially on the witness length rather than the input length. In our framework of parametric
problems, this corresponds to the proof size depending polynomially on the parameter rather than
the input length.

9

Definition 4.1 Let L be a parametric problem. L is said to have succinct PCPs with completeness
c, soundness s, proof size S and query complexity q if there is a probabilistic polynomial-time oracle
machine V such that the following holds for any instance < x, 1n >:

1. If < x, 1n >∈ L, then there is a proof y of size S(n) such that on input < x, 1n > and with
oracle access to y, V makes at most q queries to y on any computation path, and accepts with
probability at least c.

2. If < x, 1n >6∈ L, then there for any string y of size S(n), on input < x, 1n > and with
oracle access to y, V makes at most q queries to y on any computation path, and accepts with
probability at most s.

L is said to have succinct PCPs if it has succinct PCPs with completeness 1, soundness 1/2,
proof size poly(n) and query complexity O(1).

For standard NP-complete problems such as SAT, CLIQUE and VERTEX-COVER, we abuse
notation and say the problem has succinct PCPs if the natural parametric version of it does.

We show a close connection - a near-equivalence - between compressibility and the existence of
succinct PCPs. In one direction, the existence of succinct PCPs implies compressibility with small
error.

Theorem 4.2 If SAT has succinct PCPs, then SAT is self-compressible with error less than 2−m.

We informally describe the basic plan of the proof, and then give the details.
Let us first assume, for the sake of simplicity, that the verifier only uses a logarithmic amount

of randomness, say r log(n) for some constant r. Suppose that the verifier makes at most q queries
on any computation path, for q a constant. Note that the size of the proof is effectively at most
qnr, since at most this many proof bits can be read by the verifier.

Given an input formula of size m with n variables, we use the hypothesis that succinct PCPs
exist to find an equivalent formula of size O(nr). The variables of the formula correspond to proof
bits, and there is a clause in the formula corresponding to each computation path of the verifier.
The clause corresponding to a computation path encodes whether the proof bits read on that path
cause the verifier to accept on that path. Note that once the input formula is fixed, this is just a
function of the proof bits read on that path, and hence can be expressed as a CNF formula of size
at most O(q2q) on the variables corresponding to the proof bits read on that path. The equivalent
formula we construct is just the conjunction of the formulae corresponding to each computation
path. Note that the size of this formula is at most O(q2q)nr, which is polynomial in n.

To argue correctness, we use the hypothesis that the verifier corresponds to a PCP. If the input
formula is satisfiable, there is some setting of the proof bits such that the verifier accepts on each
computation path, and hence some setting of the variables in the compressed formula such that
the formula is satisfiable. If the input formula is unsatisfiable, for any setting of the proof bits, at
least one computation path rejects (in fact, at least a 1/2 fraction of them reject) and hence the
compressed formula is unsatisfiable.

The above argument works when the randomness complexity of the verifier is low. In general,
this may not be the case, and we do not have enough time to compute a formula for each compu-
tation path. However, in this case, we can use the fact that the proof size and query complexity
are small together with a sampling argument to prove that there is probabilistic compression with
very low error. We give details below.

10

Proof of Theorem 4.2. Assume that SAT has succinct PCPs with proof size nC for some constant
C, query size q (where q is a constant) and randomness complexity R. Since the verifier runs in
probabilistic polynomial time, we have that R = O(poly(m)).

Our self-compression algorithm works as follows. It samples independently m2 random strings
r1, r2 . . . rm2 each of length R. For each ri, running the verifier for the succinct PCP with random
string ri corresponds to a function fri on q bits of the proof such that the verifier accepts if and
only if the function evaluates to 1 on those bits. Moreover, given the verifier, a canonical CNF
formula of size O(q2q) for this function can be computed explicitly in time poly(m). Note that since
the proof has size at most nC , there are at most nCq22q such functions. Here, the input formula is
fixed,and hence the size of the input formula does not factor into the bound. The self-compression
algorithm computes a canonical CNF formula of size at O(q2q) for each fri , i = 1 . . .m2,and outputs
the conjunction of these formulae, omitting duplicate formulae. This is a SAT formula, and we
need to show that the formula has size at most poly(n), and that with error < 2−m, the compressed
formula is satisfiable if and only if the input formula is satisfiable.

The size bound follows from the upper bound on the total number of functions on q bits of
the proof, together with the fact that we remove duplicates. For the error bound, it follows from
the definition of PCPs that if the input formula is satisfiable, then the compressed formula is also
satisfiable, since the verifier accepts with probability 1 on a correct proof. If the input formula is
not satisfiable, then for any proof, the verifier accepts with probability at most 1/2. In this case, the
compressed formula we output may not be the conjunction of all possible formula corresponding to
runs of the verifier, but we will argue that with very high probability, the fraction of strings r such
that fr is omitted is less than 1/2, and hence that the compressed formula is still unsatisfiable even
with the formulae corresponding to these fr omitted from the conjunction. Indeed, if the fraction
of such r were greater than or equal to 1/2, the probability that no such r is sampled as some ri is
at most 1/2m

2
, since the sampling is done at random. Hence, with probability at least 1− 1/2m

2
,

the compressed formula is unsatisfiable if the original formula is unsatisfiable. Thus the error is at
most 1/2m

2
. �

Using a more refined approach, we can show the infeasibility of PCPs with non-negligible gap
between soundness and completeness, not just of PCPs with completeness 1. We provide a sketch
of the proof indicating in what respects the proof differs from the proof of Theorem 4.2, since a
formal description would be very technical.

Theorem 4.3 If SAT has succinct PCPs with completeness c, soundness s, proof size poly(n) and
query complexity O(1), where c+ s is computable in time poly(m) and c− s > 1/poly(n), then SAT
is self-compressible.

Proof Sketch. We follow the basic framework of the proof of Theorem 4.2. We compute different
functions corresponding to independent runs of the verifier, and then take the conjunction of con-
straints derived from these functions in order to produce a compressed instance. The compressed
instance will not directly be a SAT instance, however it will be an instance of an NP language,
hence we can reduce it to a SAT instance of polynomial size.

The fact that the verifier does not have completeness 1 does complicate the argument. Let us
call a function on O(1) bits of the proof corresponding to some run of the verifier a “test function”.
Now we also need a notion of the “weight” of a test function, which is essentially the measure of
random strings on which the verifier run corresponds to the function. Our compressed formula will
consist of the conjunction of constraints derived from test functions. Each constraint is on O(1)

11

variables, and we pick an arbitrary representation for these constraints (say, a list consisting of the
names of variables involved, together with the truth table of the test function). The constraints
will be present with multiplicity, where the multiplicity of a constraint is approximately the weight
of its test function. This is designed to ensure that in the case of satisfiable input formulae,
approximately a fraction c of constraints are satisfiable, and in the case of unsatisfiable ones,
approximately a fraction s of them are satisfiable. We sample enough test functions and choose
multiplicities with enough granularity (while still keeping the multiplicity of any one constraint
polynomial in n) so that with probability more than 1 − 2−m, at least (c + s)/2 constraints are
satisfiable if the input formula is satisfiable, and fewer than (c + s)/2 are satisfiable if the input
formula is not satisfiable. This is argued with Chernoff bounds, using the facts that there is a non-
negligible separation between c and s and that we sample enough. When we sample test functions,
we also update estimates of their weights, sampling enough to ensure that the estimates are very
accurate. The estimates are normalized and truncated to their O(log(n)) high-order bits to ensure
that multiplicities are at most polynomial. The compressed instance produced in this way is still of
size polynomial in n, and is an instance of a general constraint satisfaction problem in NP, where
we are given a set of constraints explicitly together with a parameter k and asked whether at least k
of those constraints are satisfiable. Here the parameter k = (c+s)/2, which by our assumption can
be computed explicitly in time poly(m). This already establishes compressibility of SAT with error
< 2−m from the assumption on succinct PCPs; in order to get self-compressibility, we reduce the
constraint satisfaction instance to a SAT instance using the Cook-Levin reduction [Coo71], which
preserves the instance size up to a polynomial factor.

Note that it is actually sufficient to obtain a good approximation (i.e., an approximation to
within an arbitrary 1/poly(n) additive term) of c + s or even of just one of c and s, in order to
obtain our result. But we do not see how to carry the compression through without access to any
information about c or s apart from the fact that they are non-negligibly separated. �

Using Corollary 3.2, we get the following.

Corollary 4.4 SAT does not have succinct PCPs unless NP ⊆ coNP/poly and PH collapses.

In the other direction, self-compressibility implies the existence of succinct PCPs.

Theorem 4.5 If SAT is self-compressible, then SAT has succinct PCPs.

Proof. Assume SAT is self-compressible via a compression function f . Given a formula φ of size
m on n variables, f(φ) is a formula of size poly(n) such that f(φ) is satisfiable if and only if φ
is satisfiable. The PCP theorem states that there are PCPs for SAT with polynomial proof size,
completeness 1, soundness 1/2 and O(1) queries.

We modify the verifier V in the PCP theorem to a verifier V ′ that does the following: It first
applies the compression function f to the input formula φ and obtains a formula f(φ) which is
satisfiable if and only if φ is satisfiable. Then it treats the proof as a proof that f(φ) is satisfiable
and runs V with input f(φ) and oracle access to the proof. The correctness of V ′ follows from the
self-compressibility property, and V ′ inherits its parameters from V . The proof size is polynomial
in the size of f(φ), i.e., of size poly(n). Thus the PCP with verifier V ′ is a succinct PCP. �

It’s straightforward to prove a more general version of Theorem 4.5. First, the analogue of
Theorem 4.5 holds for any parametric problem in NP, with basically the same proof and using
the NP-completeness of SAT. Second, we don’t even need the problem to be self-compressible - it
suffices if the problem is compressible to a problem in NP.

12

Theorem 4.6 Let L be any parametric problem in NP. If L is compressible within NP, then L has
succinct PCPs.

Using Theorem 2.12, we derive the following corollary.

Corollary 4.7 VC has succinct PCPs.

To sum up, a refined understanding of which parametric NP problems are compressible and
which are not would also lead to a better understanding of which problems have efficient proofs.

4.2 Kernelization

The notion of compression is very closely related to the notion of kernelization in parameterized
complexity. Indeed, a parametric problem has a polynomial-size kernel if and only if it is self-
compressible. Thus, Theorem 2.12 is just a reflection of the well-known fact that VertexCover
has a polynomial-size kernel, in fact a linear-size kernel. This raises the question of whether the
parameterized versions of other NP-complete problems such as SAT and Clique are polynomially
kernelizable. The question of whether the parametric problems SAT has a polynomial kernelization
is explicitly posed as an open problem by Flum and Grohe [FG06]. In their survey on kernelization,
Guo and Niedermeier [GN07] state, “In terms of computational complexity theory, the derivation
of lower bounds is of the utmost importance.”

Bodlaender et al. [BDFH08] develop a framework for studying polynomial kernelizability of
natural parametric problems. The central question in their framework is Question 1.1, and they
show that a negative answer to this question implies that various natural parametric problems are
not polynomially kernelizable. Proposition 2.13 also gives that a negative answer to Question 1.1
implies that SAT is not polynomially kernelizable. Thus, from Theorem 3.1, we immediately get:

Corollary 4.8 SAT is not polynomially kernelizable unless PH collapses.

Proposition 2.13 also implies that various other parametric problems are unlikely to be polyno-
mially kernelizable.

Corollary 4.9 The following parametric problems are not polynomially kernelizable unless PH
collapses: Clique, DominatingSet, IntegerProgramming.

Note that as per our definitions, all the problems considered above are in fact fixed-parameter
tractable, since they can be solved in time O(2n)poly(m). However, except for Corollary 4.8, this
is true for a parameterization of the problem that is different from the standard parameteriza-
tion. Corollary 4.9 is of philosophical interest, showing a novel link between a classical complexity
assumption and a parameterized complexity assumption. Bodlaender et al. [BDFH08] show sepa-
rations between fixed-parameter tractability and polynomial kernelizability for various parametric
problems more widely considered in practice.

4.3 Cryptographic Reductions

The main motivation of Harnik and Naor [HN06b] for studying instance compressibility was the
wealth of cryptographic applications. They showed that compressibility of OR-SAT would imply

13

constructions of collision-resistant hash functions (CRHs) from one-way functions (OWFs), which
would solve a long-standing open problem in cryptography. They also showed that the compress-
ibility assumption would have interesting implications for the active research area of “everlasting
security” in the bounded storage model - any hybrid scheme could be broken. Harnik and Naor
also discuss a stronger compressibility assumption, witness-retrievable compressibility, which im-
plies construction of oblivious transfer protocols (OT) based on OWFs, but they also give evidence
against their assumption, so we do not discuss it here.

Independently, Dubrov and Ishai used strong incompressibility assumptions to construct “non-
Boolean” pseudo-random generators (PRGs), namely pseudo-random generators that fool non-
Boolean tests. They show how to use such assumptions to reduce the randomness complexity of
sampling algorithms, so that the randomness used is only marginally larger than the output length
of the sampler.

We now discuss what implications our results have for the feasibility of the above constructions.
Our discussion is mostly informal, and we do not define the underlying cryptographic notions
formally here. Consult the respective papers [HN06b, DI06] for definitions.

Construction of CRHs from OWFs: Constructing CRHs from OWFs is a classic problem
in theoretical cryptography, and it is known this cannot be done using black-box reductions [Sim98].
Harnik and Naor suggest a non-black-box way to approach this problem, using the compressibility
assumption for SAT. They show that probabilistic compression of OR-SAT with error < 2−m

implies that CRHs can be constructed from OWFs. But as stated in Theorem 3.3, this compression
assumption does not hold unless PH collapses, and hence this approach to constructing CRHs is
unlikely to yield dividends. It is possible, though, that CRHs can be constructed from even weaker
assumptions on compressibility that might be more plausible - it’s an interesting open problem to
come up with such assumptions.

Everlasting Security of the Hybrid Bounded Storage model: The bounded storage
model, defined by Maurer [Mau92], constrains the space used by adversaries rather than their
running time. In this model, all honest and dishonest parties are given access to a shared random
string. It has been shown that two parties that have previously shared a secret key can securely
communicate using a small amount of local storage, even if the adversary has a much higher storage
capability [AR99, DR02, Vad04]. These schemes have the property of everlasting security, meaning
that the protocol remains secure if the private key is revealed to the adversary after the completion
of the protocol. In the setting where the two honest parties do not exchange a secret key in advance,
only quite weak results are possible (in terms of the local storage required to communicate securely).
In an attempt to derive stronger results in a setting that is still quite realistic, a hybrid version
of the Bounded Storage Model has been defined [HN06a]. Harnik and Naor [HN06b] show that
if SAT is compressible, then no hybrid scheme can have the property of everlasting security. By
giving evidence that SAT is not compressible, Theorem 3.1 holds out hope for achieving everlasting
security using some protocol in the Hybrid Bounded Storage model.

Construction of non-Boolean PRGs: This is an application of incompressibility rather than
compressibility, and since Theorem 3.1 provides a natural complexity-theoretic condition that im-
plies incompressibility of NP, namely that NP 6⊆ coNP/poly, one might imagine that our techniques
would be more directly relevant here. Dubrov and Ishai construct different kinds (cryptographic
and complexity-theoretic) of non-Boolean PRGs based on the assumptions, respectively, that there
is a one-way permutation with an incompressible (on average) hard-core bit, and that for each

14

fixed k, there is a language in P not compressible (on average) to nk bits 3. These assumptions are
both implied by the assumption that there are exponentially strong one-way permutations, but it
would be interesting to derive the corresponding conclusions from a natural complexity-theoretic
assumption, such as the assumption that NP does not have sub-exponential size co-nondeterministic
circuits. Our results do not apply directly here for two reasons: (1) The incompressibility assump-
tions refer to incompressibility on the average, rather than in the worst-case. We consider such
average-case assumptions in the next section, since they are related to probabilistic compression,
but we do not know how to apply our techniques to say something of interest about them. (2)
The incompressibility assumptions refer to incompressibility of problems computable in polynomial
time rather than NP problems. Nevertheless, Theorem 3.1 can be considered as progress towards
the goal of deriving non-Boolean PRGs from standard complexity-theoretic assumptions.

5 Probabilistic Compression and Parametric Hardness of Approx-
imation

In this section, we study probabilistic compression. We are unable to show that probabilistic com-
pression of NP-complete problems is unlikely under a standard complexity-theoretic assumption,
but we do have results in settings where the number of random bits used is restricted. We also have
negative results for the implicit case where the compression algorithm operates in time poly(n) when
given random access to its input, but these negative results are under a somewhat non-traditional
strong derandomization assumption. In the next section, we discuss the derandomization assump-
tion we use in more detail. The implicit case is relevant to the question of parametric hardness of
approximation, where we ask if the classical machinery for hardness-of-approximation results can
be extended to the parameterized setting.

5.1 Probabilistic Compression

We consider probabilistic compression of parametric problems. Theorem 3.3 applies to the case
where the error is less than 2−m, so here we will be concerned with the case where the error is
larger. The techniques of Theorem 3.1 and 3.3 do not seem to apply here. But we do obtain various
reductions between different versions of the problem, as well as results for restricted settings.

First, we note that the correctness probability can be amplified to 1− 2−poly(n) using standard
techniques.

Proposition 5.1 If L is probabilistically compressible with error 1/3, then L is probabilistically
compressible with error 2−poly(n).

Proof. Let A be a language such that L is probabilistically compressible within A. Let f be the
compression function compressing inputs with length m and parameter n with high probability to
length at most t(n) which is polynomial in n. We fix a polynomial p(·) and define a new language
A′ and compression function f ′ such that L is probabilistically compressible within A′ via f ′. An
input < x1, x2 . . . xk > is in A′ iff the majority of xi’s are in A. All inputs not of this form are
excluded from A′. The probabilistic compression function f ′, given input x of length m, simulates

3Here we are referring to compressibility of languages, not parametric problems, and the strength of the compres-
sion is expressed in terms of input length

15

f independently p(n) times on x to obtain x1 . . . xp(n). It discards all strings of length > t(n),
re-indexes the strings to obtain x1, x2 . . . xk and then outputs < x1, x2 . . . xk >. Using Chernoff
bounds, one gets that if f has error at most 1/3, then f ′ has error at most 2−Ω(p(n)). �

Note that the new error is not sufficiently small to use Adleman’s trick as in the proof of
Theorem 3.3, since the instance size is m.

Next, we show some results where the randomness complexity of the compression function is
restricted.

Lemma 5.2 If L is probabilistically compressible with randomness complexity O(log(n)), then L
is deterministically compressible.

Proof. The proof is similar to the proof of Proposition 5.1. Let L be probabilistically compressible
within A via a compression function f with randomness complexity O(log(n)). Let c be a constant
such that for any x, f compresses < x, 1n > to a string of length at most nc, with high probability.
We define a new compression function f ′ computable in deterministic polynomial time, and a set A′,
such that L is compressible within A′ via f ′. Given input x, f ′ simulates f on x with every possible
random string of length O(log(n)) to obtain x1, x2 . . . xt, where t = poly(n). It discards all strings
with length > nc and then re-indexes the strings to obtain x1 . . . xk. It outputs < x1, x2 . . . xk >.
The set A′ is just the set of inputs of the form < x1, x2 . . . xk > such that the majority of xi’s are
in A. �

As a corollary, we can extend the negative result in Theorem 3.1 to the case of probabilistic
compression with small randomness complexity.

Corollary 5.3 If OR-SAT is probabilistically compressible with randomness complexity O(log(n)),
then PH collapses.

We next show that if we could extend the negative result slightly to probabilistic compression
with randomness complexity O(log(m)) (using advice), then it would also rule out probabilistic
compression in the general case.

Theorem 5.4 If L is probabilistically compressible, then L is probabilistically compressible with
randomness complexity O(log(m)) and poly(m) advice.

Proof Sketch. The idea is to try to derandomize the probabilistic reduction f for L by using
a discrepancy set of size poly(m). The probabilistic reduction can be viewed as a deterministic
function taking x and the random string as input and yielding a string of size poly(n) which is
in L iff x ∈ L, with high probability over the choice of random string. We can get by using only
polynomially many pseudo-random strings rather than all possible random strings if the “test”
that the output string is in L iff x ∈ L is satisfied with approximately the same probability (say,
with absolute difference at most 1/12 between the probabilities) over pseudo-random strings as
over random strings. The test can be encoded by a polynomial-size Boolean circuit with oracle
access to L, hence a set of poly(m) strings chosen at random will “fool” all such circuits with high
probability. Thus there must exist such a set S of strings - we specify S explicitly in the advice
string using poly(m) bits. The new compression function f ′ for L with randomness complexity
O(log(m)) just uses its random string as an index into the discrepancy set encoded by the advice
string, and simulates f using the corresponding element of the discrepancy set as its “random

16

choice” rather than using a purely random string. The defining property of the discrepancy set
ensured that this is still a valid probabilistic compression algorithm for L. �

Probabilistic compression also reduces to non-uniform average case compression, by a simple
averaging argument.

Proposition 5.5 if L is probabilistically compressible, then L is non-uniformly (1 − 2−poly(n))-
compressible on average.

Proof. By Proposition 5.1, we can assume that the compression algorithm has error at most
2−poly(n). Now consider the random string used by the compression algorithm. By averaging,
there is some choice r of the random string such the compression algorithm is correct on at least
a 1 − 2−poly(n) fraction of inputs when run with r as the random string. We encode r into the
advice, yielding a non-uniform compression algorithm for L which works on a 1−2−poly(n)) fraction
of inputs. �

5.2 Parametric Hardness of Approximation and Implicit Compression

Here we study the question of whether parametric problems are as hard to approximate as they
are to decide. The notion of implicit probabilistic compression, where the compression function is
required to be computable in time polynomial in the size of the parameter, turns out to be useful
in this regard.

A problem is hard to approximate if its “gap” version is hard to decide. In the classical
unparameterized world, reducing SAT to its gap version is equivalent to the existence of PCPs.
However, in the unparameterized setting, reduction of the parameterized problem SAT to its gap
version is not equivalent to the existence of succinct PCPs - we know that succinct PCPs imply
a reduction to the gap version, but not the converse. For the one-sided gap version, in a follow-
up work, Chen, Flum and Müller [CFM09] rule out such a reduction under the assumption that
PH does not collapse by applying the technique of Theorem 3.1 to probabilistic compression with
one-sided error. Here we are concerned with the two-sided version.

Gap versions of parametric NP problems are modelled naturally as parametric promise prob-
lems - parametric problems where the “yes” and “no” instances are mutually exclusive but not
exhaustive.

Definition 5.6 A parametric promise problem is a pair (Y,N) where Y,N ⊆ {< x, 1n > |x ∈
{0, 1}∗, n ∈ N}, and Y ∩N = ∅.

The various definitions of compression extend naturally to parametric promise problems - we
require the compression to work correctly only for instances in Y ∪ N and allow it to behave
arbitrarily on other instances. Similarly the definition of “W-reduction’ also extends naturally
to reductions between parametric promise problems and reductions from a parametric promise
problem to a parametric problem or vice versa.

We define the natural parametric promise version of SAT.

Definition 5.7 c, s-GapSAT is the parametric promise problem (Y,N) where < x, 1n >∈ Y if n
is the number of variables in the formula x and at least c fraction of clauses in x are satisfiable,
and < x, 1n >∈ N if n is the number of variables in x and at most s fraction of clauses in x are
satisfiable.

17

The natural question here is whether SAT W-reduces to c, s-GapSAT, where c − s = Ω(1). If
so, then the parametric problem SAT is as hard to approximate within a factor s/c as it is to solve,
in analogy with hardness of approximation results in the unparameterized case that follow from
the PCP theorem.

An interesting property of the parameterized version of GapSAT is that it is implicitly proba-
bilistically compressible. We now define this notion.

Definition 5.8 A parametric promise problem S is implicitly probabilistically compressible if it is
probabilistically compressible via a compression function f that, given an input < x, 1n >, can be
computed in time poly(n) with oracle access to the input.

Dieter van Melkebeek and Matt Anderson [vM09] observed that decision problems such as
OR-SAT and SAT are trivially not implicitly compressible, because an implicit compression is not
sensitive to small changes in its input, such as changing one of the formulas in a NO input to
OR-SAT from unsatisfiable to satisfiable. However, the notion is non-trivial for promise problems.
Based on a sampling technique of Harnik and Naor [HN06b] (presented informally in Section 2.9 of
their paper), we can derive an implicit probabilistic compression algorithm for c, s-GapSAT, even
when c− s = Ω(1/poly(n)).

Lemma 5.9 Let c(n) and s(n) be functions computable in time poly(n), such that c−s = Ω(1/poly(n)).
Then c, s-GapSAT is implicitly probabilistically compressible within SAT.

Proof Sketch. Given a formula < x, 1n >, our implicit compression algorithm samples poly(n)
clauses from x and produces a formula corresponding to the question of whether at least (c+ s)/2
fraction of these clauses are simultaneously satisfiable. Using Chernoff bounds, we can argue that
if we sample enough (but still polynomially many) clauses, then if at least a c fraction clauses were
satisfiable in x, close to c fraction of clauses will be satisfiable in the compressed formula, with
probability very close to 1. The argument is a little more delicate for the soundness case. Here,
if we fix an assignment, then the random sampling ensures (again using Chernoff bounds) that
with probability 1− 2−poly(n), not much more than c fraction of clauses in the compressed formula
will be satisfied by that assignment. Now, if we take a union bound over all 2n assignments, the
probability that not much more than c fraction of clauses are simultaneously satisfiable remains
close to 1.

Since we randomly sample poly(n) clauses from x and then spend poly(n) time processing these
samples, the algorithm can be implemented in probabilistic time poly(n) with random access to x.

�

We show that under a certain strong derandomization hypothesis, implicit probabilistic com-
pression can be derandomized. As a corollary, assuming in addition that PH does not collapse,
there cannot be a W-reduction from parameterized SAT to its gap version.

We do not have a strong belief about the truth of our derandomization assumption, but we do
believe it is hard to refute, thus our result provides evidence that implicit probabilistic compression
may be hard to obtain using known techniques.

The assumption we use states that given a string x, we can compute from x in polynomial
time the truth table of a function f on < blog(x)c bits such that f requires exponential-size
non-deterministic circuits even when the circuits have oracle access to x. The assumption can be
interpreted as a strong diagonalization assumption - given an oracle in explicit form, the assumption

18

states that it’s possible to compute efficiently a function that diagonalizes against small circuits
accessing that oracle.

Hypothesis 5.10 (Oracle Derandomization Hypothesis) Let m be polynomially bounded as a func-
tion of n, such that m(n) is both computable and invertible in polynomial time. There is a family
of functions G = Gn, Gn : {0, 1}m → {0, 1}n computable in time poly(m) and a constant ε > 0
independent of m such that for any x, G(x), when interpreted as the truth table of a function on
blog(x)c bits, requires non-deterministic circuits of size nε even when the circuits are given oracle
access to x.

We say that the Oracle Derandomization Hypothesis holds on A ⊆ {0, 1}∗ if the above condition
holds for all x ∈ A.

We use Hypothesis 5.10 by combining it with a pseudo-random generator of Shaltiel and Umans
[SU01] to derandomize certain kinds of sampling algorithms using a smaller seed size than we would
require if we carried out the derandomization naively. The obvious point of reference is Theorem
5.4, where we reduced the randomness to O(log(m)) bits by embedding an appropriate discrepancy
set in the advice string. We could not completely derandomize Theorem 5.4, i.e., convert it to a
deterministic compression algorithm, because running over all possible random strings of length
O(log(m)) and defining the deterministic compressed string to correspond to the majority value of
the probabilistic compressed strings would blow the size of the compressed string up to poly(m),
which makes the resulting deterministic compression trivial. Thus it is essential for us that the
randomness is reduced to size O(log(n)). If the probabilistic compression is implicit, we can use
Hypothesis 5.10 to achieve this. We first describe what properties we require of the Shaltiel-Umans
generator.

Theorem 5.11 (Shaltiel-Umans) Fix any constant d > 0. There is a constant e(d) > 0 depend-
ing on d, and a family of functions F = Fn, where Fn : {0, 1}n × {0, 1}O(log(n)) → {0, 1}ne is com-
putable in polynomial time, such that for any oracle A and oracle non-deterministic circuit C of size
ne with oracle access to A, if y ∈ {0, 1}n has non-deterministic circuit complexity at least nd with re-
spect to circuits that have oracle access to A, then | Pr

z∈{0,1}ne
(C(z) = 1)− Pr

z∈{0,1}O(log(n))
(C(Fn(y, z) =

1))| < 1/ne.

Next we describe what kind of derandomization results from using Theorem 5.11 along with
Hypothesis 5.10.

Lemma 5.12 Let m and n be parameters such that m is polynomially bounded in n. Assume the
Oracle Derandomization Hypothesis holds. Let A be a string of length m represented as an oracle
function on dlog(m)e bits, and let C be a non-deterministic circuit of size at most ne with oracle
access to A, where e(ε) > 0 is the constant in the statement of Theorem 5.11 corresponding to the
constant ε in the statement of Hypothesis 5.10. Then there is a function h : {0, 1}O(log(n) → {0, 1}n
computable in poly(n) time such that | Pr

z∈{0,1}ne
(C(z) = 1)− Pr

z∈{0,1}O(log(n))
(C(h(z)) = 1)| < 1/ne.

Proof. We define h(·) = Fn(G(A), ·). By Hypothesis 5.10, G(A) ∈ {0, 1}n has circuit complexity
at least nε with respect to circuits that have oracle access to A. Hence by theorem 5.11, h(·) =
Fn(G(A), ·) is a pseudo-random generator that “fools” any circuit of size at most ne with oracle

19

access to A, in the sense that the acceptance probability of the circuit changes by at most an
additive term of 1/ne when it is run with outputs of h rather than with purely random circuits. �

We now apply Lemma 5.12 to the case of implicit probabilistic compression, motivated by the
question of whether there is a W-reduction from SAT to GapSAT.

Theorem 5.13 If there is a W-reduction from the parametric problem SAT to c, s-GapSAT, where
c− s = Ω(1/poly(n)) and c and s are computable in time poly(n), then either PH collapses or the
Oracle Derandomization Hypothesis fails.

Proof. We use Lemma 5.12 to derandomize the implicit probabilistic compression of Lemma 5.9
under the Oracle Derandomization Hypothesis, and then Theorem 3.1 to obtain a collapse of PH
if the assumed W-reduction exists.

Assume that Hypothesis 5.10 holds. For the purpose of this lemma, we use “k” to denote the
parameter size and reserve “n” for the application of Lemma 5.12.

Let the promise problem S be c, s-GapSAT, where c and s are as in the statement of the theorem.
By Lemma 5.9, S = (Y,N) is implicitly probabilistically compressible to SAT. Let f be the implicit
probabilistic compression function for S. Let d be a constant such that on input < x, 1k >, f is
computable in probabilistic time kd with oracle access to the input. It follows that the length of the
compressed string is at most kd, since the probabilistic algorithm needs at least one unit of time
per output bit it writes. We first show that the test whether the compressed string corresponding
to a particular probabilistic run of f is “correct” can be performed by a non-deterministic circuit
C of size poly(k).

For a fixed input < x, 1k > to the compression algorithm, this test takes as input the random
string r used by the implicit probabilistic compression algorithm. The circuit C for the test first
applies f to < x, 1k > using r as the random choices for running the algorithm for f . It thus obtains
a compressed formula y. It then checks if y ∈ SAT . Note that < x, 1k > is fixed with respect to
C. We cannot hard-code x into C since x is of length m which might be too large. Instead, we
make use of the fact that the computation of f is implicit, and hence C can be represented as
a non-deterministic circuit which has oracle access to x. The size of the circuit corresponds to
the running time of the implicit algorithm for f together with the time required to check if the
compressed formula is satisfiable, which is altogether poly(k).

There are two cases - either x is in Y , or x is in N (we do not care what the implicit compression
does on x 6∈ Y ∪ N). In the first case, C tests if its random input leads to a satisfiable formula
being output and in the second case, whether it leads to an unsatisfiable formula. Note that these
two cases are symmetric with respect to the approximation of the acceptance probability of C.

Now we set n = |C|1/e where e is the constant in the statement of Lemma 5.12. We set m
to be any large enough polynomial in n. With these parameters, the conditions of Lemma 5.12
hold and hence there is a function h : {0, 1}O(log(n) → {0, 1}n computable in time poly(n) such
that the output of h fools C. We define a new deterministic compression algorithm f ′ which runs
the algorithm for f with all possible outputs of h used as random string to obtain compressed
inputs x1 . . . xpoly(n), each xi of length k. Now, since Majority is a monotone function, the question
whether the majority of xi’s are satisfiable can be expressed as a SAT formula of size at most
poly(n).

Thus we get a deterministic compression algorithm for S. If there is a W-reduction from SAT
to S, we get a deterministic compression algorithm for SAT which works for any instance length m

20

that is polynomially bounded in the parameter. But, using the proof of Theorem 3.1, this implies
that PH collapses. �

Theorem 5.13 suggests that some of the obstacles to finding good approximation algorithms
in the classical setting are absent in the parameterized setting, and hence that we might hope for
better approximations. Approximation algorithms in the context of parameterized complexity is
an active field, with many open questions [Már06]. Hopefully Theorem 5.13 and the techniques
used here will stimulate further work in this field.

6 The Oracle Derandomization Hypothesis

In this section we discuss the Oracle Derandomization Hypothesis used in the previous section. We
comment on how this hypothesis relates to traditional derandomization hypotheses, and show that
disproving it as hard as separating P and NP.

In our opinion, quite apart from its relevance to compressibility, the Oracle Derandomization
Hypothesis is interesting in its own right because it tests our intuitions of which kinds of deran-
domization are plausible and which are not. The hypothesis that E requires linear exponential size
circuits, which was used by Impagliazzo and Wigderson [IW97] to completely derandomize BPP,
now seems widely accepted by complexity theorists, so too the assumption that E requires linear
exponential size non-deterministic circuits, used by Klivans and van Melkebeek [KvM02] to deran-
domize AM. Klivans and van Melkebeek [KvM02] use even stronger assumptions for other results
on derandomization in a relativized context, such as the result that PH ⊆ P⊕P if E does not have
sub-exponential size circuits with oracle access to ⊕P. First we make some observations about how
the Hypothesis generalizes traditional derandomization hypotheses.

Proposition 6.1 There is an ε > 0 such that E 6⊆ i.o.NSIZE(2εn) iff the Oracle Derandomization
Hypothesis holds on 0∗.

Proof. We prove the “if” direction first. If the Hypothesis holds on 0∗, then we define a function
f in E which doesn’t have non-deterministic circuits of size 2εn for some ε > 0. On an input x of
length n, we do the following to compute f(x): we simulate G2n on 0m(2n) to obtain a string Xn of
length 2n. Xn will be interpreted as the truth table of f on inputs of length n. f(x) is computed
by just reading off the appropriate value in the bit string Xn.

To prove the hardness of f , let ε be the constant in the statement of Hypothesis 5.10. Assume
contrariwise that f has non-deterministic circuits of size 2ε infinitely often. Then the same circuits
also contradict the Oracle Derandomization Hypothesis on 0∗.

For the reverse direction, let f be a function without non-deterministic circuits of size 2εn. We
define G as follows: on input 0m(n), it outputs the truth table of f on blog(n)c bits, followed by
a string of 0’s. Now suppose the Oracle Derandomization Hypothesis were false on 0∗.Then, for
infinitely many n, G(0m(n)) has non-deterministic circuits of size 2εn with oracle access to 0m(n).
Now, if we replace each oracle gate with the input “0”, these are non-deterministic circuits of size
2εn deciding f , contradicting the assumption on f . �

Basically the same proof gives that the condition on the set A on which the Hypothesis holds
can be made a little weaker.

21

Proposition 6.2 let δ > 0 be any constant, and m(n) be a polynomially bounded function as in the
statement of Hypothesis 5.10. Let Am be the set of strings in {0, 1}m(n) which, when interpreted as
the truth table of a function on blog(m)c bits, have circuits of size 2n

1−δ
. Let A be the union of Am(n)

over all n. Then there exists an ε > 0 such that E 6⊆ NSIZE(2εn) iff the Oracle Derandomization
Hypothesis holds on A.

Proposition 6.2 states that the traditional derandomization hypothesis used to derandomize AM
is equivalent to the Oracle Derandomization Hypothesis holding on all “succinct” strings, where
“succinct” means that the string can be described by a circuit of size sub-polynomial in the length
of the string.

Next, we ask the question, is there any heuristic evidence the Oracle Derandomization Hypoth-
esis is true? Often, if there is a probabilistic process which generates an object of a certain type
with high probability, then it is reasonable to conjecture that there is a deterministic process of
similar complexity producing an object of that type. For instance, a function with specified input
and output lengths which is chosen uniformly at random is usually a pseudo-random generator
with strong properties. However, in our case, a function G chosen uniformly at random does not
satisfy the required condition with high probability, but only with non-zero probability. This is not
necessarily evidence against Hypothesis 5.10. First, there might be some non-trivial probabilistic
process sampling G’s that satisfy the condition in Hypothesis 5.10 with high probability and it
might be reasonable to conjecture that this non-trivial process can be derandomized. Second, there
are natural examples of probabilistic constructions (proved to be correct using the Lovasz Local
Lemma) which are only known to work with non-zero probability, and can still be derandomized.

We turn the question on its head and ask if it might be possible to unconditionally disprove the
Oracle Derandomization Hypothesis. This seems hard, since it would imply P 6= NP.

Theorem 6.3 If the Oracle Derandomization Hypothesis is false, then P 6= NP.

Proof. Assuming P = NP, we construct a G satisfying the required condition. Fix some ε such
that 0 < ε < 1. We observe that for any x of length m, there does exist a string of length n, which
when interpreted as a function on blog(n)c bits, doesn’t have non-deterministic circuits of size nε

with oracle access to x, just by a counting argument. Indeed, we can find the lexicographically first
such string y(x) in PΣP

3 . By assumption, P = NP and hence PΣP
3 = P, thus we can carry out the

search in polynomial time and output y. �

In Section 5.2, we showed that the Oracle Derandomization Hypothesis can be used to deran-
domize implicit probabilistic compression. In follow-up work, Anderson and van Melkebeek show
[vM09] that the Hypothesis is in fact more powerful - it can be used to derandomize probabilistic
compression, even when the compression algorithm is not implicit.

7 Questions

We highlight the two main technical questions that arise from this work.
The first is whether some negative results can be shown under a standard assumption for

the probabilistic or closely-related average-case version of compression. Such results would have
relevance to parametric hardness of approximation, and provide further evidence for the inviability
of certain approaches to cryptographic constructions.

22

The second is the general question of characterizing for which functions f , the compressibility
of f -SAT implies collapse of PH. Here f -SAT is the natural generalization of the OR-SAT problem
to Boolean functions other than OR. This question basically reduces to the question of whether
AND-SAT is compressible, since the compression of f -SAT for non-monotone f directly implies
NP ⊆ coNP/poly, and every monotone f that depends on all its m variables embeds either a

√
m

sized OR or AND. Thus if we can show that (assuming NP not in co-NP/poly) AND-SAT is not
compressible, then under that same assumption f -SAT is not compressible for any f that has no
useless variables.

Acknowledgements

We thank Hans Bodlaender, Rod Downey, Mike Fellows and Danny Hermelin for bringing Question
1.1 to our attention and sending us an early version of their manuscript [BDFH08]. The second
author would like to thank Valentine Kabanets for his support and for interesting discussions. We
would also like to thank Harry Buhrman for interesting discussions and for sending us an early
version of his paper with John Hitchcock [BH08].

References

[Adl78] Leonard Adleman. Two theorems on random polynomial time. In Proceedings of the
20th Annual IEEE Symposium on the Foundations of Computer Science, pages 75–83,
1978.

[ALM+98] Sanjeev Arora, Carsten Lund, Rajeev Motwani, Madhu Sudan, and Mario Szegedy.
Proof verification and the hardness of approximation problems. Journal of the ACM,
45(3):501–555, 1998.

[AR99] Yonatan Aumann and Michael Rabin. Information theoretically secure communication
in the limited storage space model. In Proceedings of CRYPTO ’99, pages 65–79, 1999.

[AS98] Sanjeev Arora and Shmuel Safra. Probabilistic checking of proofs: A new characteriza-
tion of NP. Journal of the ACM, 45(1):70–122, 1998.

[AS08] Noga Alon and Joel Spencer. The Probabilistic Method. Wiley-Interscience Series in
Discrete Mathematics and Optimization. Wiley, Third edition, 2008.

[BDFH08] Hans Bodlaender, Rod Downey, Michael Fellows, and Danny Hermelin. On problems
without polynomial kernels. In Proceedings of 35th International Colloquium on Au-
tomata, Languages and Programming, pages 563–574, 2008.

[BH08] Harry Buhrman and John Hitchcock. NP-complete sets are exponentially dense unless
NP ⊆ co-NP/poly. In Proceedings of 23rd Annual IEEE Conference on Computational
Complexity, 2008. To appear.

[CCDF97] Liming Cai, Jianer Chen, Rodney Downey, and Michael Fellows. Advice classes of
parameterized tractability. Annals of Pure and Applied logic, 84(1):119–138, 1997.

23

[CFM09] Yijia Chen, Jörg Flum, and Moritz Müller. Lower bounds for kernelizations and other
preprocessing procedures. In Proceedings of Computability in Europe 2009, Lecture
Notes in Computer Science. Springer-Verlag, 2009. To appear.

[Coo71] Stephen Cook. The complexity of theorem-proving procedures. In Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pages 151–158, 1971.

[DF99] Rodney Downey and Michael Fellows. Parameterized Complexity. Springer-Verlag,
1999.

[DI06] Bella Dubrov and Yuval Ishai. On the randomness complexity of efficient sampling.
In Proceedings of the 38th Annual ACM Symposium on Theory of Computing, pages
711–720, 2006.

[Din07] Irit Dinur. The PCP theorem by gap amplification. Journal of the ACM, 54(3), 2007.

[DR02] Yan Zong Ding and Michael Rabin. Hyper-encryption and everlasting security. In
Annual Symposium on Theoretical Aspects of Computer Science, pages 1–26, 2002.

[FG06] Jorg Flum and Martin Grohe. Parameterized Complexity Theory. Springer, 2006.

[FS08] L. Fortnow and R. Santhanam. Infeasibility of instance compression and succinct PCPs
for NP. In Proceedings of the 40th ACM Symposium on the Theory of Computing, pages
133–142. ACM, New York, 2008.

[GJ76] Michael Garey and David Johnson. Approximation Algorithms for Combinatorial Prob-
lems: An Annotated Bibliography, pages 41–52. Academic Press, New York, 1976.

[GN07] Jiong Guo and Rolf Niedermeier. Invitation to data reduction and problem kernelization.
ACM SIGACT News, 38(1):31–45, 2007.

[HN06a] Danny Harnik and Moni Naor. On everlasting security in the hybrid bounded storage
model. In Proceedings of the 33rd International Colloquium on Automata, Languages
and Programming, pages 192–203, 2006.

[HN06b] Danny Harnik and Moni Naor. On the compressibility of NP instances and crypto-
graphic applications. In Proceedings if the 47th Annual IEEE Symposium on Founda-
tions of Computer Science, pages 719–728, 2006.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits:
Derandomizing the XOR lemma. In Proceedings of the 29th Annual ACM Symposium
on the Theory of Computing, pages 220–229, 1997.

[KL82] Richard Karp and Richard Lipton. Turing machines that take advice. L’Enseignement
Mathématique, 28(2):191–209, 1982.

[KR07] Yael Tauman Kalai and Ran Raz. Interactive PCP. Electronic Colloquium on Compu-
tational Complexity, 7(31), 2007.

[KvM02] Adam Klivans and Dieter van Melkebeek. Graph nonisomorphism has subexponential
size proofs unless the polynomial hierarchy collapses. SIAM Journal of Computing,
31(5):1501–1526, 2002.

24

[Mah82] Stephen Mahaney. Sparse complete sets for NP: Solution of a conjecture of berman and
hartmanis. Journal of Computer and System Sciences, 25(2):130–143, 1982.

[Már06] Daniel Márx. Parameterized complexity and approximation algorithms, 2006. To appear
in The Computer Journal.

[Mau92] Ueli Maurer. Conditionally-perfect secrecy and a provably-secure randomized cipher.
Journal of Cryptology, 5(1):53–66, 1992.

[Nie06] Rolf Niedermeier. Invitation to Fixed-Parameter Algorithms. Oxford University Press,
2006.

[Sim98] Daniel Simon. Finding collisions on a one-way street: Can secure hash functions be
based on general assumptions? Advances in Cryptology, EUROCRYPT 1998, Lecture
Notes in Computer Science, 1403:334–345, 1998.

[SU01] Ronen Shaltiel and Christopher Umans. Simple extractors for all min-entropies and a
new pseudo-random generator. In Proceedings of the 42nd IEEE Symposium on Foun-
dations of Computer Science, 2001.

[Vad04] Salil Vadhan. Constructing locally computable extractors and cryptosystems in the
bounded storage model. Journal of Cryptology, 17(1):43–77, 2004.

[vM09] Dieter van Melkebeek. Personal communication. 2009.

[Yap83] Chee-Keng Yap. Some consequences of non-uniform conditions on uniform classes.
Theoretical Computer Science, 26:287–300, 1983.

25

