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1. INTRODUCTION

The aim of exact algorithms is to exactly solve NP-hard problems in the smallest
possible (exponential) worst-case running time. This field dates back to the sixties
and seventies [Held and Karp 1962; Tarjan and Trojanowski 1977], and it has
started to attract a growing interest in the last two decades [Beigel and Eppstein
2005; Björklund and Husfeldt 2006; Bodlaender et al. 2006; Brueggemann and Kern
2004; Byskov 2004; Chen et al. 2001; Dantsin et al. 2002; Fürer 2006; Gramm et al.
2003; Hirsch 2000a; Iwama and Tamaki 2004; Jian 1986; Koivisto 2006; Kojevnikov
and Kulikov 2006; Kullmann 1999; Lawler 1976; Monien and Speckenmeyer 1985;
Paturi et al. 2005; Robson 1986; Schöning 1999; Williams 2005]. There are several
explanations to the increasing interest in exact algorithms:

• There are certain applications that require exact solutions of NP-hard problems,
although this might only be possible for moderate input sizes.

• Approximation algorithms are not always satisfactory. Various problems are hard
to approximate. For example, maximum independent set is hard to approximate
within O(n1−ε), for any constant ε > 0, unless P = NP [Zuckerman 2006].

• A reduction of the base of the exponential running time, say from O(2n) to
O(20.9 n), increases the size of the instances solvable within a given amount of
time by a constant multiplicative factor; running a given exponential algorithm
on a faster computer can enlarge the mentioned size only by a (small) additive
factor.

• The design and analysis of exact algorithms leads to a better understanding of
NP-hard problems and initiates interesting new combinatorial and algorithmic
challenges.

One of the major techniques in the design of exact algorithms is Branch & Reduce,
which traces back to the paper of Davis and Putnam [1960] (see also [Davis et al.
1962]). The basic idea is to apply a proper set of reduction rules, and then branch
on two or more subproblems, which are solved recursively. The solutions to the
subproblems are later used to derive a solution for the original problem. Branch
& Reduce algorithms have been used for more than 40 years to solve NP-hard
problems. Despite that, the analytical tools available are still far from producing
tight worst-case running time bounds for that kind of algorithm.

1.1 Measure & Conquer

Motivated by the limits of existing analytical tools for Branch & Reduce algorithms,
we present here a new approach, that we call Measure & Conquer. To describe our
method, and to show its potential, we apply it to the analysis of simple algorithms
to solve two classical NP-hard problems: minimum dominating set and maximum
independent set. In both cases we obtain considerably tighter time bounds with
respect to the standard analysis.

The fastest known (Branch & Reduce) exact algorithms to solve NP-hard prob-
lems are often very complicated. Typically, they consist of a long list of non-trivial
branching and reduction rules, and are designed by means of a long and tedious
case distinction. However, their analysis is usually rather simple. A (standard)
measure of the size of the subproblems is defined (e.g., number of vertices or edges
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of graphs, number of variables or clauses of CNF-formulas, etc.). This measure is
used to lower bound the progress made by the algorithm at each branching step.

The idea behind Measure & Conquer is to focus on the choice of the measure. In
fact, a more sophisticated measure may capture some phenomena which standard
measures are not able to exploit, and hence lead to a tighter analysis of a given al-
gorithm. We apply Measure & Conquer to the current best algorithm in [Grandoni
2004; 2006] for the minimum dominating set problem (MDS). The standard analysis
of this algorithm given in [Grandoni 2004; 2006] provides an O∗(20.850 n) bound on
its running time1. By using a different measure, we are able to show that the same
algorithm has in fact running time O∗(20.598 n). We also consider the maximum
independent set problem (MIS). For this problem, we present and analyze a very
simple polynomial-space algorithm. Our algorithm, according to the standard anal-
ysis, performs very poorly: its running time is O∗(20.406 n), which is much worse
than the first non-trivial O∗(20.334 n) algorithm by Tarjan and Trojanowski [1977]
for the same problem. However, thanks to a smarter measure, we manage to obtain
an impressive refinement of the time analysis: the new time bound obtained (for the
same algorithm) is O∗(20.287 n). For a comparison, the current best results, which
are obtained with far more complicated algorithms [Robson 1986], are O∗(20.296 n)
in polynomial space and O∗(20.276 n) in exponential space.

The results above show that a good choice of the measure can have a tremen-
dous impact on the time bounds achievable, comparable to the impact of improved
branching and reduction rules. Hence, finding a good measure should be at first
concern when designing Branch & Reduce algorithms.

Despite the big improvements in the running time bounds, it might be that
our refined analysis is still far from being tight. Hence, it is natural to ask for
(exponential) lower bounds. (Notice that we are concerned with lower bounds
on the complexity of a particular algorithm, and not with lower bounds on the
complexity of an algorithmic problem). A lower bound may give an idea of how far
the analysis is from being tight. We prove Ω(20.396 n) and Ω(20.142 n) lower bounds
on the worst-case time complexity of our MDS and MIS algorithms, respectively.
The large gap between the upper and lower bounds for both algorithms suggests
the possibility that their analysis can be further refined (possibly by measuring the
size of the subproblems in a further refined way).

1.2 Previous results

1.2.1 Non-standard measures. The idea of using non-standard measures is not
new, though in most cases its real potential is not fully exploited. The most re-
markable example is probably the seminal work by Eppstein et al. In a paper on
3-coloring and related problems, Beigel and Eppstein [2005] consider a reduction to
constraint satisfaction, and measure the size of the constraint satisfaction problem
with a linear combination of the number of variables with three and four values in
their domain, respectively. A more sophisticated measure is introduced by Eppstein

1Throughout this paper we use a modified big-Oh notation that suppresses all polynomially
bounded factors. For functions f and g we write f(n) = O∗(g(n)) if f(n) = O(g(n)poly(n)),
where poly(n) is a polynomial. Also while speaking about graph problems, we use n to denote
the number of vertices in a graph.
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[2003b] in the context of cubic-TSP: let F be a given set of forced edges, that is
edges that we assume belong to the optimum solution. For an input cubic graph
G = (V, E), the author measures the size of the problem in terms of |V |− |F |− |C|,
where C is the set of 4-cycles which form connected components of G−F . Eppstein
[2006] also provides a general tool to analyze systems of multi-variate recurrences
arising from the analysis of Branch & Reduce algorithms. He essentially shows
that, from an asymptotic point of view and modulo polynomial factors, every set
of multi-variate linear recurrences can be transformed into an equivalent set of
univariate recurrences in terms of a proper linear combination of the original vari-
ables. Moreover, the coefficients of the linear combination can be found by solving
a quasi-convex optimization problem. The last result is extensively used in this
paper.

1.2.2 Minimum dominating set. MDS is a well known and well studied NP-hard
graph optimization problem which fits into the broader class of domination and
covering problems on which hundreds of papers have been written; see e.g. the sur-
vey by Haynes, Hedetniemi, and Slater [1998]. The problem is hard to approximate:
Unless P = NP there is no polynomial time algorithm approximating MDS within
a factor c log n for n-vertex graphs for some constant c > 0 [Raz and Safra 1997].
The dominating set problem is also one of the basic problems in parameterized
complexity [Downey and Fellows 1999]; it is W[2]-complete and thus it is unlikely
that the problem is fixed parameter tractable. What are the best worst-case time
complexities for MDS in n-vertex graphs G = (V, E) that we can possibly hope for?
It has been observed [Fomin et al. 2004; Impagliazzo et al. 2001] that there is no
sub-exponential time (i.e. of running time co(n) for some constant c > 1) algo-
rithm solving MDS unless the complexity classes SNP and SUBEXP satisfy SNP ⊆
SUBEXP which is considered to be unlikely. There is the trivial O∗(2n) algorithm
that simply searches through all the 2n subsets of V . Hence, we can only hope for
time complexities of the form O∗(2cn), for some small constant c < 1. Although
MDS is a natural and very interesting problem concerning the design and analysis
of exponential-time algorithms, no exact algorithm for MDS faster than the trivial
one had been known until very recently. In 2004 three different sets of authors
independently published algorithms breaking the trivial “2n-barrier”. The algo-
rithm of Fomin et al. [2004] uses a deep graph-theoretic result due to Reed [1996],
providing an upper bound on the domination number of graphs of minimum degree
three. The most time consuming part of their algorithm is an enumeration of all
subsets of vertices of cardinality at most 3n/8, thus the overall running time is
O∗(20.955n). The algorithm of Randerath and Schiermeyer [2004] uses combinato-
rial ideas (including matching techniques) to restrict the search space. The most
time consuming part of their algorithm enumerates all subsets of vertices of cardi-
nality at most n/3, thus the overall running time is O∗(20.919n). Finally, the fastest
algorithm known prior to our work is due to Grandoni [2004; 2006], who described
an O∗(20.850n) algorithm for MDS. His algorithm is based on the standard reduction
to minimum set cover, which will be adopted also in this paper.

1.2.3 Maximum independent set. MIS is one of the best studied NP-hard prob-
lems. By a recent result of Zuckerman [2006] who succeeded in derandomizing the
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result of H̊astad [1999], no polynomial time approximation algorithm for MIS (unless
P = NP ) can provide an O(n1−ε) guarantee for n-vertex graphs for any constant
ε > 0. The problem is W [1]-complete [Downey and Fellows 1999], and thus it is
probably not fixed parameter tractable. For reasons analogous to the case of MDS,
it is also unlikely that MIS admits a sub-exponential time algorithm [Impagliazzo
et al. 2001]. The design of exact algorithms for MIS has a long history. The first
non-trivial exact algorithm solving MIS is due to Tarjan and Trojanowski [1977]; it
has running time O∗(20.334 n). Jian [1986] published an improved algorithm with
running time O∗(20.304 n). In the same year Robson [1986] provided an algorithm
of running time O∗(20.296 n). All these three algorithms are Branch & Reduce al-
gorithms, and use polynomial space. Robson [1986] also showed how to speed up
Branch & Reduce algorithms using a technique that is now called Memorization,
and he established an O∗(20.276 n) time algorithm that needs exponential space2. A
significant amount of research was also devoted to solve the maximum independent
set problem on sparse graphs [Beigel 1999; Chen et al. 2001; Chen et al. 2005; Fürer
2006; Razgon 2006b].

1.2.4 Lower bounds. There are several results known on lower exponential bounds
for different branching algorithms for SAT (see e.g. [Alekhnovich et al. 2005; Pudlak
and Impagliazzo 2000]) but we are not aware of (non-trivial) lower bounds for ex-
isting exponential-time graph algorithms. One of the reasons to this could be that
for most graph problems the construction of good lower bounds is often difficult
even for very simple algorithms.

1.3 Related Work

The first papers with (non-trivial) exact algorithms appeared in the sixties and sev-
enties. Classical examples are the O∗(2n) time algorithm for the travelling salesman
problem with n cities by Held and Karp [1962] (see also the work of Kohn et al.
[1977]), the O∗(20.334 n) time algorithm for the maximum independent set problem
by Tarjan and Trojanowski [1977], Lawler’s algorithm [1976] computing an opti-
mal coloring of n-vertex graphs in time O∗(2.4422n), and Horowitz-Sahni algorithm
[1974] for the knapsack problem.

In the eighties the topic of exact algorithms was not in the mainstream of algo-
rithmic research. However, the work of Monien and Speckenmeyer [1985] on k-SAT,
of Jian and Robson on the maximum independent set [1986; 1986], and of Schroep-
pel and Shamir on XSAT [1981], prepared the ground for a rapid growing of the
area which started in the late nineties.

It is impossible even to mention here all the results and problems studied for the
last 10 years, so we give only a very short overview of the most important (from our
point of view) recent results and techniques. A variety of results on k-SAT, and on
3-SAT in particular, improving on deterministic and probabilistic exact algorithms
for the problem can be found in the literature. Among various techniques developed
for k-SAT, let us mention the involved branching and reduction rules developed
by Kullman [1999], the randomized techniques of Paturi et al. [2005], Schöning’s

2In a technical report Robson [2001] claims even better running times, both in polynomial and in
exponential space. The description of his new algorithm, which is partially computer generated,
takes almost 18 pages.
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approach [1999] based on random walks in the Boolean cube, and the deterministic
local search algorithm used by Dantsin et al. [2002]. See also [Brueggemann and
Kern 2004; Hirsch 2000a; 2000b; Iwama and Tamaki 2004] for some other results
in the area.

Many graph problems were studied from the viewpoint of exact algorithms. We
already mentioned the work on maximum independent set and minimum dominat-
ing set together with the memorization technique. Another well studied problem
is graph coloring [Beigel and Eppstein 2005; Byskov 2004; Eppstein 2003a], for
which Bjorklund-Husfeldt and Koivisto recently obtained O∗(2n)-time algorithms
based on the inclusion-exclusion principle [2006; 2006]. There was also work done on
treewidth [Bodlaender et al. 2006; Fomin et al. 2008; Villanger 2006], maximum cut
[Gramm et al. 2003; Kojevnikov and Kulikov 2006; Williams 2005], minimum feed-
back vertex set [Fomin et al. 2008; Razgon 2006a] among many others. For more
information, we refer to the surveys [Fomin et al. 2005b; Iwama 2004; Schöning
2005; Woeginger 2003].

Organization. The rest of this paper is organized as follows. In Section 2 we
introduce some preliminary notions. In Section 3 and Section 4 we present our
results on MDS and MIS, respectively. Conclusions are given in Section 5.

2. PRELIMINARIES

Let G = (V, E) be an n-vertex undirected, simple graph without loops. (For stan-
dard graph terminology, see e.g. [West 1996]). Sometimes, we also use V (G)
for V and E(G) for E. The (open) neighborhood of a vertex v is denoted by
N(v) = {u ∈ V : uv ∈ E}, and its closed neighborhood by N [v] = N(v) ∪ {v}.
We let d(v) = |N(v)| be the degree of v. By Nd(v) we denote the set of vertices
at distance d from v. In particular, N1(v) = N(v). Given a subset V ′ of vertices,
G[V ′] is the graph induced by V ′, and G− V ′ = G[V \ V ′]. Sometimes we will use
E(V ′) for E(G[V ′]).

A set D ⊆ V is called a dominating set for G if every vertex of G is either in
D, or adjacent to some vertex in D. The domination number γ(G) of a graph G
is the minimum cardinality of a dominating set of G. The minimum dominating
set problem (MDS) asks to determine γ(G). A problem closely related to MDS is the
minimum set cover problem (MSC). In MSC, we are given a universe U of elements and
a collection S of (non-empty) subsets of U . The aim is to determine the minimum
cardinality of a subset S′ ⊆ S which covers U , that is such that ∪R∈S′R = U . The
frequency of u ∈ U is the number of subsets R ∈ S in which u is contained. We use
|u| to denote the frequency of u. For the sake of simplicity, we always assume in
this paper that S covers U , that is U = U(S) := ∪R∈SR. With this assumption, an
instance of MSC is univocally specified by S. MDS can be naturally reduced to MSC

by imposing U = V and S = {N [v]| v ∈ V }. Note that N [v] is the set of vertices
dominated by v, thus D is a dominating set of G if and only if {N [v]| v ∈ D} is a
set cover of {N [v]| v ∈ V }. In particular, every minimum set cover of {N [v]| v ∈ V }
corresponds to a minimum dominating set of G.

A set I ⊆ V is called an independent set for G if the vertices of I are pairwise non
adjacent. The independence number α(G) of a graph G is the maximum cardinality
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of an independent set of G. The maximum independent set problem (MIS) asks to
determine α(G).

A set A ⊆ E of edges of G = (V, E) is an edge cover, if every vertex of G is
incident to an edge of A; the edge set A is a matching if no vertex of G is incident
to two edges of A.

2.1 Branch & Reduce algorithms

A typical Branch & Reduce algorithm for a given problem P works as follows. If
P is a base instance, the problems is solved directly in polynomial time. Other-
wise the algorithm transforms the problem by applying a set of polynomial-time
reduction rules. Then it branches, in polynomial-time, on two or more subproblems
P1, . . . ,Pp, according to a set of branching rules. Such subproblems are solved re-
cursively, and the partial solutions obtained are eventually combined, in polynomial
time, to get a solution for P .

Branch & Reduce algorithms are usually analyzed in the following way. (For a
more detailed description, see e.g. [Kullmann 1999] and references therein). Sup-
pose we wish to find a time bound in terms of a given measure k of the input
size. Assume that the depth of the search tree is polynomially bounded (which is
trivially true in most cases). It is sufficient to bound the maximum number P (k)
of base instances generated by the algorithm: the running time will be O∗(P (k)).
If P is a base instance, trivially P (k) = 1. Otherwise, let ki = k − ∆ ki < k be the
size of subproblem Pi for a given branching. It follows that

P (k) ≤

p∑

i=1

P (ki),

for every feasible combination of subproblems P1, . . . ,Pp. It turns out that P (k) ≤
λk, where λ ≥ 1 is the largest root of the set of equations of the kind

1 =

p∑

i=1

x−∆ ki ,

obtained by considering every feasible branching vector ∆ = (∆ k1, . . . , ∆ kp). The
root r(∆) associated to a given branching vector ∆ is sometimes called branching
factor. For a given ∆, r(∆) can be easily found numerically. We say that a branch-
ing vector ∆ dominates a branching vector ∆′ if ∆ ≤ ∆′, i.e. ∆ is component-wise
not larger than ∆′. It is not hard to see that, when ∆ ≤ ∆′, r(∆) ≥ r(∆′). Hence,
with respect to the running time analysis, it is sufficient to consider a dominating
set of branching vectors. For a similar reason, each time we replace the branching
vector of a feasible branching with a branching vector dominating it, we obtain a
pessimistic estimate of the running time. These properties will be extensively used
in this paper.

In the standard analysis, k is both the measure used in the analysis and the
quantity in terms of which the final time bound is expressed. However, one is
free to use any, possibly sophisticated, measure k′ in the analysis, provided that
k′ ≤ f(k) for some known function f . This way, one achieves a time bound of
the kind O∗(λk′

) = O∗(λf(k)), which is in the desired form. As we will see, a
proper choice of k′ can lead to a better balanced set of recurrences, and hence to an
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improved running time bound.

3. THE MINIMUM DOMINATING SET PROBLEM

Grandoni [2004; 2006] describes an O∗(20.930 n) algorithm mds for MDS based on the
following approach. He first reduces the input problem G = (V, E) to an equivalent
instance (S,U) = ({N [v] : v ∈ V }, V ) of MSC. Then he solves (S,U) via a simple
MSC algorithm msc. Algorithm msc is described in Section 3.13. It is shown that
msc runs in time O∗(20.465(|S|+|U|)). As a consequence, the running time of mds is
O∗(20.465(n+n)) = O∗(20.930 n). In Section 3.2 we show, thanks to a refined measure,
that in fact msc runs in time O∗(20.305(|S|+|U|)), and hence mds in time O∗(20.610 n).
This result is complemented by a Ω(20.396 n) lower bound on the running time of
mds (see Section 3.3). Algorithm mds runs in polynomial space. Grandoni shows
how to reduce the running time of mds to O∗(20.850 n) using exponential space.
According to our refined measure, the exponential-space running time bound can
be refined to O∗(20.598 n) (see Section 3.4).

3.1 The Algorithm

Before describing msc, we need some further preliminary notions. Recall that,
without loss of generality, we assume U = U(S) := ∪R∈SR. Hence, a set cover
instance can be specified by providing S only. We observe that:

Lemma 3.1. For a given MSC instance S:

(1 ) If there are two distinct sets S and R in S, S ⊆ R, then there is a minimum
set cover which does not contain S.

(2 ) If there is an element u ∈ U(S) which belongs to a unique S ∈ S, then S
belongs to every set cover.

Note that each subset of cardinality one satisfies exactly one of the properties of
Lemma 3.1.

We also recall that MSC is solvable in polynomial time and space when all the
subsets of S are of cardinality two, by applying the following standard reduction to
maximum matching. Consider the graph G̃ which has a vertex u for each u ∈ U ,
and an edge uv for each subset S = {u, v} in S. Note that a minimum set cover

for S corresponds to a minimum edge cover4 of G̃. To compute a minimum edge
cover of G̃, it is sufficient to compute a maximum matching M in G̃. Then, for each
unmatched vertex u, we add to M an arbitrary edge incident to u (if no such edge

exists, there is no set cover at all). The final set M is the desired edge cover of G̃
(and set cover of G). In the following, we will call 2-msc the algorithm described
above.

Algorithm msc is described in Figure 1. If |S| = 0 (line 1), msc(S) = 0. Otherwise,
the algorithm tries to reduce the size of the problem without branching, by applying

3In fact, for ease of presentation, we consider here a slightly modified version of msc, which has
the same running time from the point of view of the standard analysis.
4An edge cover of a graph G = (V, E) is a subset E′ ⊆ E of edges such that each vertex v ∈ V is
the endpoint of at least one edge e ∈ E′.

Journal of the ACM, Vol. , No. , 20.



Measure & Conquer · 9

int msc(S) {
1 if(|S| = 0) return 0; /* base case */
2 if(∃S, R ∈ S : S ⊆ R) return msc(S\{S});
3 if(∃u ∈ U(S)∃ a unique S ∈ S : u ∈ S) return 1+msc(del(S, S));
4 take S ∈ S of maximum cardinality;
5 if(|S| = 2) return 2-msc(S)
6 return min{msc(S\{S}), 1+msc(del(S, S))};

}

Fig. 1. Algorithm msc for the minimum set cover problem.

one of the Properties 1 and 2 of Lemma 3.1. Specifically, if there are two sets S
and R, S ⊆ R, the algorithm returns (line 2)

msc(S) = msc(S \ {S}).

If there is an element u which is contained in a unique set S, the algorithm returns
(line 3)

msc(S) = 1 + msc(del(S,S)),

where

del(S,S) = {Z|Z = R \ S 6= ∅, R ∈ S}

is the instance of MSC which is obtained from S by removing the elements of S from
the subsets in S, and by eventually removing the empty sets obtained.

If neither of the two properties above applies, the algorithm takes a set S ∈ S of
maximum cardinality (line 4). If |S| = 2, the algorithm directly solves the problem
(in polynomial time and space) via 2-msc (line 5). Otherwise (line 6), it branches
on the two subproblems SIN = del(S,S) (the case where S belongs to the minimum
set cover) and SOUT = S \{S} (corresponding to the case S is not in the minimum
set cover), and returns

msc(S) = min{msc(S \ {S}), 1 + msc(del(S,S))}.

Notice that with simple modifications, the algorithm can also provide one minimum
set cover (besides its cardinality). In fact, at each recursive call of msc some set S
is either implicitly included in (lines 3 and 6) or implicitly excluded from (lines 2
and 6) the minimum set cover under construction. In the first case, we say that S
is selected, and otherwise it is discarded.

3.1.1 The standard analysis. To emphasize the importance of the choice of the
measure, we sketch the analysis of the algorithm with a simple measure (taken from
[Grandoni 2006]). Let us choose the following measure k = k(S) of the size of a
MSC instance S,

k = |S| + |U(S)|.

Let P (k) be the maximum number of base instances generated by the algorithm
to solve a problem of size k. If one of the conditions of lines 1 and 5 holds, the
algorithm directly solves the problem, and hence P (k) = 1. If one of the conditions
of lines 2 and 3 is satisfied, P (k) ≤ P (k − 1) since at least one set is removed from
the problem. Otherwise, let S be the set taken in line 4 (|S| ≥ 3). The algorithm
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branches on the two subproblems SOUT = S \ {S} and SIN = del(S,S). The size
of SOUT is k − 1 (one set removed from S). The size of SIN is at most k − 4 (one
set removed from S and at least three elements removed from U). This brings us to
P (k) ≤ P (k − 1) + P (k − 4). We conclude that P (k) ≤ λk, where λ = 1.3802 . . . <
1.3803 is the (unique) positive root of the polynomial x4 −x3 −1. It turns out that
the total number of subproblems solved is within a polynomial factor from P (k).
Moreover, solving each subproblem takes polynomial time. Thus the complexity of
the algorithm is O∗(P (k)) = O∗(λk) = O∗(1.3803|S|+|U|) = O∗(20.465(|S|+|U|)).

In the next section we will show how to refine the running time analysis of msc to
O∗(20.305(|S|+|U|)) via a more careful choice of the measure k(S) (without modifying
the algorithm!). This will immediately imply a refined running time bound for MDS.

3.2 The Analysis

In this section we present a refined analysis of msc, based on a more sophisticated
measure of the size of the subproblems.

Our refined measure is based on the following observation. Removing a large set
has a different impact on the “progress” of the algorithm than removing a small one.
In fact, when we remove a large set, we decrease the frequency of many elements.
Decreasing elements frequency pays off in the long term, since the elements of
frequency one can be filtered out (without branching). A dual argument holds
for the elements. Removing an element of high frequency is somehow preferable
to removing an element of small frequency. In fact, when we remove an element
occurring in many sets, we decrease the cardinality of all such sets by one. This
is good in the long term, since sets of cardinality one can be filtered out. Both
phenomena are not taken into account in the measure used in [Grandoni 2006].
With that measure, by removing one set (element), we decrease the size of the
problem by one, no matter what is the cardinality of the set (frequency of the
element) considered.

This suggests the idea of giving a different “weight” to sets of different cardinality
and to elements of different frequency. In particular, let ni denote the number of
subsets S ∈ S of cardinality i. Let moreover mj denote the number of elements
u ∈ U of frequency |u| = j. We will use the following measure k = k(S) of the size
of S:

k(S) =
∑

i≥1

αi ni +
∑

j≥1

βj mj ,

where the weights αi, βj ∈ (0, 1] will be fixed in the following. Note that our choice
of the weights ensures that k ≤ |S|+ |U|. Thanks to this constraint, we will be able
at the end of the analysis to provide a bound in the desired form O∗(λ|S|+|U|).

In order to simplify the running time analysis, we will make the following extra
assumptions:

(a) 0 < αi ≤ αi+1 and 0 < βi ≤ βi+1 for i ≥ 2;

(b) α1 = β1 = 0;

(c) αi = βi = 1 for i ≥ 6.

The first assumption reflects our intuition that instances with larger sets and with
elements of larger frequency are harder to solve, and hence should have a larger
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size according to our measure. In view of that, the second assumption is clear: sets
of cardinality one and elements of frequency one can be removed very “cheaply”,
i.e. without branching, and thus should not contribute to the size of the problem.
The last assumption is simply due to the fact that we are not able to deal with an
unbounded number of weights. We experimentally observed that further increasing
the number of distinct weights does not improve the analysis significantly.

The quantities

∆ αi = αi − αi−1, i ≥ 2 and ∆βi = βi − βi−1, i ≥ 2,

turn out to be useful in the analysis. Intuitively, ∆αi (∆ βi) is the reduction of the
size of the problem corresponding to the reduction of the cardinality of a set (of the
frequency of an element) from i to i−1. We make one last simplifying assumption:

(d) ∆αi ≥ ∆αi+1, for i ≥ 2,

that is the αi’s are increasing at decreasing speed. This last assumption helps to
simplify the analysis, and turns out to be non-restrictive.

Theorem 3.2. Algorithm msc solves MSC in O∗(20.305(|U|+|S|)) time and polyno-
mial space.

Proof. The correctness of the algorithm is straightforward. Moreover, its space
complexity is trivially polynomial.

Recall that P (k) denotes the maximum number of base instances generated by
the algorithm to solve a problem of size k. Clearly, P (0) = 1, since in this case the
algorithm never branches. Consider the case k > 0 (which implies S 6= ∅). If one
of the conditions of lines 2 and 3 holds, one set S is removed from S. Thus we get
P (k) ≤ P (k − α|S|), where α|S| ≥ 0 by Assumptions (a) and (b).

Otherwise, let S be the subset selected in line 4. If |S| = 2, no subproblem
is generated (P (k) = 1). Otherwise (|S| ≥ 3), msc generates two subproblems
SIN = del(S,S) and SOUT = S \ {S}.

We wish to lower bound the difference between the size of S and the size of
the two subproblems SIN and SOUT . Consider the subproblem SOUT . The size
of SOUT decreases by α|S| because of the removal of S. Let ri be the number of
elements of S of frequency i. Note that there cannot be elements of frequency one.
Hence

∑

i≥1

ri =
∑

i≥2

ri = |S|.

Consider an element u ∈ S of frequency i ≥ 2. When we remove S, the frequency
of u decreases by one. As a consequence, the size of SOUT decreases by ∆ βi. Thus
the overall reduction of the size of SOUT due to the reduction of the frequencies is
at least

∑

i≥2

ri ∆ βi =
6∑

i=2

ri ∆ βi,

where we used the fact that ∆ βi = 0 for i ≥ 7 (Assumption (c)).
Suppose that r2 > 0, and let R1, R2, . . . , Rh, 1 ≤ h ≤ r2, be the sets of S

distinct from S, which share at least one element of frequency two with S. When
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we discard S, we must select all the sets Ri before the next branching (on two
subproblems). Suppose Ri, 1 ≤ i ≤ h, shares r2,i elements of frequency two with
S. Then |Ri| ≥ r2,i + 1, since otherwise we would have R ⊆ S, which is excluded
by line 2. Thus, by Assumption (a), the reduction of the size of the problem due
to the removal of Ri is α|Ri| ≥ αr2,i+1. Note that r2,i ≤ |Ri| − 1 < |S|, being S of
maximum cardinality by assumption: this is used in the case analysis below. We
also observe that, by selecting the Ri’s, we remove at least one element u /∈ S, thus
gaining an extra β|u| ≥ β2 (here we use Assumption (a) again). By a simple case
analysis, which we present here in a slightly weakened form, the total reduction of
the size of the problem due to the removal of the Ri’s is at least

∆ k′
|S|,r2

=





0 if r2 = 0;

β2 + α2 if r2 = 1;

β2 + min{2α2, α3} = β2 + α3 if r2 = 2;

β2 + min{3α2, α2 + α3} = β2 + α2 + α3 if r2 = 3, |S| = 3;

β2 + min{3α2, α2 + α3, α4} = β2 + α4 if r2 ≥ 3, |S| ≥ 4.

Above we used the fact that, by Assumptions (b) and (d),

min{2α2, α3} = min{∆α2 + α2, ∆α3 + α2} = ∆α3 + α2 = α3,

and

min{α2 + α3, α4} = min{∆α2 + α3, ∆α4 + α3} = ∆α4 + α3 = α4.

Consider now the subproblem SIN . The size of SIN decreases by α|S| because of
the removal of S. Let r≥i =

∑
j≥i rj be the number of elements of S of frequency at

least i. Consider an element u ∈ S of frequency i (i ≥ 2). The size of SIN further
decreases by βi because of the removal of u. Thus the overall reduction due to the
removal of the elements u of S is

∑

i≥2

ri βi =
6∑

i=2

ri βi + r≥7,

where we used the fact that βi = 1 for i ≥ 7 (Assumption (c)). Let R be a set
sharing an element u with S. Note that |R| ≤ |S|. By removing u, the cardinality of
R is reduced by one. This implies a reduction of the size of SIN by ∆α|R| ≥ ∆ α|S|

(Assumption (d)). Thus the overall reduction of SIN due to the reduction of the
cardinalities of the sets R is at least:

∆ α|S|

∑

i≥2

(i − 1) ri ≥ ∆ α|S|

(
6∑

i=2

(i − 1) ri + 6 · r≥7

)
.

Note that this quantity is 0 for |S| ≥ 7.
Putting all together, for any tuple t = (|S|, r2, . . . , r6, r≥7) with |S| ≥ 3 and∑6
i=2 ri + r≥7 = |S|, we obtain the following recurrence

P (k) ≤ P (k − ∆ kOUT (t)) + P (k − ∆ kIN (t)),

where

• ∆ kOUT (t) := α|S| +
∑6

i=2 ri ∆ βi + ∆ k′
|S|,r2

,
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• ∆ kIN (t) := α|S| +
∑6

i=2 ri βi + r≥7 + ∆ α|S|

(∑6
i=2(i − 1) ri + 6 · r≥7

)
.

For every fixed 8-tuple (α2, α3, α4, α5, β2, β3, β4, β5) the quantity P (k) is upper
bounded by λk, where λ is the largest root of the set of equations

1 = x−∆ kOUT (t) + x−∆ kIN (t)

corresponding to different combinations of values of |S| and of the ri’s. Thus
the estimation of P (k) boils down to choosing the weights minimizing λ. This
optimization problem is interesting in its own, and we refer to Eppstein’s work
[2006] on quasi-convex programming for a general treatment of this kind of problem.

We crucially observe that the bound on λ given by the recurrences with |S| ≥ 8
is not larger than the bound on λ given by the recurrences with |S| = 7 (the latter re-
currences dominate the first ones). In fact, consider any tuple t = (|S|, r2, . . . , r6, r≥7)

with |S| ≥ 8 and
∑6

i=2 ri + r≥7 = |S|. Let t′ = (|S′|, r′2, . . . , r
′
6, r

′
≥7), with |S′| = 7,

0 ≤ r′i ≤ ri, 0 ≤ r′≥7 ≤ r≥7, and
∑6

i=2 r′i + r′≥7 = 7. Observe that t′ is a feasible
tuple for sets of cardinality 7. Moreover, α|S| = α|S′| = 1, ∆α|S| = ∆ α|S′| = 0, and
∆ k′

|S|,r2
≥ ∆ k′

|S′|,r′

2

. Hence ∆ kOUT (t) ≥ ∆ kOUT (t′) and ∆ kIN (t) ≥ ∆ kIN (t′),

i.e. the branching vector (∆ kOUT (t′), ∆ kIN (t′)) dominates the branching vec-
tor (∆ kOUT (t), ∆ kIN (t)). Therefore we can restrict our attention to the case
3 ≤ |S| ≤ 7. This way, we have to consider a large but finite number of recurrences
only. (The actual number of recurrences is 1688).

To find the (nearly) optimal weights we used a computer program, which is based
on the following randomized local search strategy. We start from a feasible choice
of the weights W , and we compute the corresponding value λ = λ(W ). Then
we randomly perturb the weights: if the new weights W ′ obtained are feasible,
and λ(W ′) < λ(W ), we set W equal to W ′. The perturbation of the weights is
performed in the following way. For a proper value δ > 0 and for each weight w′

independently, we add to w′ a random quantity sampled uniformly at random in the
interval [−δ, δ]. The value of δ is reduced if no improvement of λ(W ) is obtained for
a long number of steps. The process halts when the value of δ drops below a fixed
(small) threshold. Our algorithm turns out to be very fast and sufficiently accurate
in practice even for a large number of weights and recurrences. The outcome of the
program in the case considered was:

αi =





0.377443 if i = 2,

0.754886 if i = 3,

0.909444 if i = 4,

0.976388 if i = 5,

and βi =





0.399418 if i = 2,

0.767579 if i = 3,

0.929850 if i = 4,

0.985614 if i = 5,

which yields λ ≤ 1.2352 . . . < 20.305. In Figure 2 the values of |S| and of the ri’s of
the worst-case recurrences are listed.

Now we observe that at each branching step we remove at least one set. Moreover,
the time spent for each branching is upper bounded by a polynomial in |S| + |U|.
Therefore, the overall running time of the algorithm is

O∗(P (k)) = O∗(λk) = O∗(20.305(|U|+|S|)).
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|S| (r2, r3, r4, r5, r6, r≥7)

6 (0, 0, 0, 0, 0, 6)
5 (0, 0, 0, 0, 5, 0)
4 (0, 0, 0, 4, 0, 0)
3 (0, 0, 3, 0, 0, 0)
3 (0, 3, 0, 0, 0, 0)
3 (3, 0, 0, 0, 0, 0)

Fig. 2. The worst-case recurrences for msc.

We remark that, for any feasible choice of the weights, the corresponding value of
λ gives a feasible upper bound on the running time of the algorithm (though possibly
not the best possible). Moreover, in order to check that a given λ is feasible for
given weights, it is sufficient to check that λk ≥ λk−∆ kOUT (t) + λk−∆ kIN (t) (i.e.,
1 ≥ λ−∆ kOUT (t) + λ−∆ kIN (t)) for all the feasible tuples t. In the Appendix (Figure
12) we provide the pseudo-code of a program which can be used to check the
condition above (and hence the correctness of the claim).

Recall that mds is the MDS algorithm based on the standard reduction to MSC and
on msc.

Corollary 3.3. Algorithm mds solves MDS in time O∗(20.305(2n)) = O∗(20.610n)
and polynomial space.

Proof. The claim follows trivially from Theorem 3.2, observing that the size of
the MSC instance (S,U) obtained satisfies |S| = |U| = n.

Remark 3.4. The analysis of msc can be slightly improved by imposing βi =
0.98232 for i ≥ 6 (instead of βi = 1). This way, it is possible to show that MSC is
solvable in time O∗(1.23728|S|+0.98232|U|). As a consequence, MDS can be solved in
time O∗(1.237281.98232n) = O∗(20.609 n). Since the improvement obtained is small,
we do not give the details of the refined analysis here.

3.3 An Exponential Lower Bound

By carefully measuring the size of the subproblems, we obtained a much tighter
running time bound for mds. However, the bound achieved might still be only a
pessimistic estimation of the worst-case running time of the algorithm. Therefore
it is natural to ask for an (exponential) lower bound on the running time of the
algorithm, which may give an idea of how far is our analysis from being tight.

Theorem 3.5. The worst-case running time of mds is Ω(3n/4) = Ω(20.396 n).

Proof. Consider a graph Gℓ = (V, E) consisting of ℓ ≥ 1 disconnected copies
of a cycle of length 4. Let Pℓ = (S,U) = ({N [v] : v ∈ V }, V ) be the MSC instance
associated to Gℓ. We will show that msc can branch two times consecutively on
sets related to a given cycle, generating 3 instances of Pℓ−1. This implies by an
easy induction that the overall number of subproblems generated, and hence the
running time of the algorithm, is lower bounded by 3ℓ = 3n/4.

Consider any given cycle a, b, c, d. We will denote by Sv the set associated to
vertex v (initially, Sv = N [v]). Note that set Sa = {a, b, d} has the largest car-
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dinality in the problem, i.e. 3. Moreover, the conditions of lines 2 and 3 do not
apply. Hence msc can branch at line 6 on set Sa. Consider the subproblem where
Sa is selected: sets Sb = {c}, Sc = {c} and Sd = {c} are either discarded at line 2
or selected at line 3 (without branching); the resulting subproblem is of type Pℓ−1.
Consider now the subproblem where Sa is discarded. In this case the conditions of
lines 2 and 3 do not apply, and Sb = {a, b, c} is a set of maximum cardinality 3:
therefore msc can branch on Sb at line 6. By the same argument as before, in the
subproblem where Sb is selected (and Sa discarded) the application of lines 2 and
3 gives a subproblem of type Pℓ−1. On the other hand, in the subproblem where
Sb is discarded (together with Sa), sets Sc = {b, c, d} and Sd = {a, c, d} are both
selected at line 3 (they are the unique sets covering b and a, respectively): also in
this case we obtain a subproblem of type Pℓ−1. The claim follows.

3.4 An Exponential Space Algorithm

The time complexity of msc, and hence of mds, can be reduced at the cost of an
exponential space complexity via the memorization technique by Robson [1986].
The general idea is the following: The algorithm keeps the solutions of all the
subproblems solved. If the same subproblem turns up more than once, the algorithm
is not to run a second time, but the already computed result is looked up. Note
that the corresponding data structure can be implemented in such a way that the
query time is logarithmic in the number of solutions stored [Robson 1986]. Every
subproblem can be encoded via a subset of (S,U). Hence the number of distinct
subproblems is upper bounded by 2|S|+|U|, which implies that the query time is
polynomial in |S| + |U|.

Here we consider a simple variant of the technique above, where we do not store
all the solutions computed, but only the ones corresponding to subproblems where
line 6 applies (that is, the subproblems which branch on two further subproblems).
This is not crucial, but it helps to simplify the analysis.

Theorem 3.6. Algorithm msc, modified as above, solves MSC in O∗(20.299(|S|+|U|))
time and exponential space.

Proof. Consider the set P of those subproblems generated during the execution
of the algorithm on which the algorithm branches at line 6. In particular, none of
these subproblems contains a set of cardinality one nor an element of frequency one.
Let Ph(k) be the maximum number of such subproblems of size h, 0 ≤ h ≤ k. By
basically the same analysis as in Theorem 3.2, Ph(k) ≤ 1.2353k−h ≤ 1.2353k′−h,
where k′ := |S| + |U|.

Consider one such subproblem of size h. Observe that it can be encoded via a
pair (S′,U ′), where S′ ⊆ S and U ′ ⊆ U . Since the problem considered does not
contain any set of cardinality one nor any element of frequency one, we have that

|S′| + |U ′| ≤ ⌊h/ min{α2, β2}⌋ = ⌊h/0.377443⌋ =: h′.

As a consequence, since no subproblem is solved more than once, Ph(k) is also
upper bounded by

Ph(k) ≤
∑

i≤h′

(
k′

i

)
.
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Observe that, the number of different weights being a constant, the number of
possible distinct feasible values of h is a polynomial in k. Putting things together,

|P| ≤
∑

h

min




1.2353k′−h,
∑

i≤h′

(
k′

i

)



= O∗(
∑

h′>k′/2

1.2353k′−h′ min{α2,β2} +
∑

h′≤k′/2

min

{
1.2353k′−h′ min{α2,β2},

(
k′

h′

)}
)

= O∗(20.248 k′

+ max
h′≤k′/2

min

{
1.2353k′−h′ min{α2,β2},

(
k′

h′

)}
).

Applying Stirling’s formula,

max
h′≤k′/2

min

{
1.2353k′−h′ min{α2,β2},

(
k′

h′

)}
= O∗(1.2353k′−0.01996k′

) = O∗(20.299 k′

).

Hence, |P| = O∗(20.299 k′

). At each branching step the algorithm removes at least
one set. Thus the total number of subproblems is O∗(|P|). Moreover, the cost of
each query to the database is polynomial in k. It follows that the running time of
the algorithm is O∗(20.299 k′

) = O∗(20.299(|S|+|U|)).

Corollary 3.7. There is an algorithm which solves MDS in O∗(20.299(2n)) =
O∗(20.598n) time and exponential space.

4. THE MAXIMUM INDEPENDENT SET PROBLEM

In this section we present our maximum independent set algorithm mis. Our al-
gorithm branches by imposing that some vertices belong or do not belong to the
maximum independent set to be computed: we call the vertices of the first kind
selected, and the other ones discarded.

4.1 Folding and Mirroring

Before presenting mis, we describe some simple properties of maximum independent
sets. Recall that α(G) denotes the size of a maximum independent set of a graph
G. First of all, we observe that:

Lemma 4.1. Let G be a graph.

• (connected components) For every connected component C of G,

α(G) = α(C) + α(G − C).

• (dominance) If there are two vertices v and w such that N [w] ⊆ N [v] (w
dominates v), then

α(G) = α(G − {v}).

We will use the following folding operation, which is a special case of the struction
operation defined in [Ebenegger et al. 1984], and which was introduced in the
context of exact algorithm for MIS in [Beigel 1999; Chen et al. 2001]. A vertex v
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is foldable if N(v) = {u1, u2, . . . , ud(v)} contains no anti-triangle5. Folding a given

foldable vertex v of G is the process of transforming G into a new graph G̃(v) by:

(1) adding a new vertex uij for each anti-edge uiuj in N(v);

(2) adding edges between each uij and the vertices in N(ui) ∪ N(uj);

(3) adding one edge between each pair of new vertices;

(4) removing N [v].

Note that vertices of degree at most two are always foldable. Examples of folding
are given in Figure 3. The following simple property holds.

v

1 2

3 4 5

⇒
12

3 4 5

v

1 2 3

4 5 6 7

⇒
13 23

4 5 6 7

Fig. 3. Folding of a vertex v.

Lemma 4.2. (folding) Consider a graph G, and let G̃(v) be the graph obtained
by folding a foldable vertex v. Then

α(G) = 1 + α(G̃(v)).

Proof. Let S be a maximum independent set of G. If v ∈ S, then S \ {v} is an

independent set of G̃(v). Otherwise, S contains at least one vertex of N(v) (since it
is of maximum cardinality). If N(v) ∩ S = {u}, then S \ {u} is an independent set

of G̃(v). Otherwise, it must be N(v)∩S = {ui, uj}, for two non-adjacent vertices ui

and uj (since N(v) does not contain any anti-triangle by assumption). In this case

S∪{uij}\{ui, uj} is an independent set of G̃(v). It follows that α(G) ≤ 1+α(G̃(v)).

A similar argument shows that α(G) ≥ 1 + α(G̃(v)).

We eventually introduce the following useful notion of mirror. Given a vertex v,
a mirror of v is a vertex u ∈ N2(v) such that N(v) \ N(u) is a (possibly empty)
clique. We denote by M(v) the set of mirrors of v. Examples of mirrors are given in
Figure 4. Intuitively, when we discard a vertex v, we can discard its mirrors as well

v

u

v

u

v

u

v

u

Fig. 4. Example of mirrors: u is a mirror of v.

5An anti-triangle is a triple of vertices which are pairwise not adjacent. Similarly, an anti-edge is
a pair of non-adjacent vertices.
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int mis(G) {
1 if(|V (G)| ≤ 1) return |V (G)|;
2 if(∃ component C ⊂ G) return mis(C)+mis(G − C);
3 if(∃ vertices v and w: N [w] ⊆ N [v]) return mis(G − {v});

4 if(∃ a vertex v, with d(v) = 2) return 1+mis( eG(v));
5 select a vertex v of maximum degree, which minimizes |E(N(v))|;
6 return max{mis(G − {v} − M(v)), 1+mis(G − N [v])};

}

Fig. 5. Algorithm mis for the maximum independent set problem.

without modifying the maximum independent set size. This intuition is formalized
in the following lemma.

Lemma 4.3. (mirroring) For any graph G and for any vertex v of G,

α(G) = max{α(G − {v} − M(v)), 1 + α(G − N [v])}.

Proof. Vertex v can either belong to a maximum independent set or not, from
which we obtain the trivial equation

α(G) = max{α(G − {v}), 1 + α(G − N [v])}.

Thus it is sufficient to show that, if v is not contained in any maximum independent
set, the same holds for its mirrors M(v). Following the proof of Lemma 4.1, if no
maximum independent set contains v, every maximum independent set contains at
least two vertices in N(v). Consider a mirror u ∈ M(v). Since every independent
set contains at most one vertex in N(v) \ N(u) (which is a clique by assumption),
it must contain at least one vertex in N(v)∩N(u) ⊆ N(u). It follows that u is not
contained in any maximum independent set.

4.2 The Algorithm

Our algorithm mis is described in Figure 5. In the base case |V (G)| ≤ 1, the
algorithm returns the optimum solution mis(G) = |V (G)| (line 1). Otherwise, mis
tries to reduce the size of the problem by applying Lemma 4.1 and Lemma 4.2.
Specifically, if G contains a proper connected component C (line 2), the algorithm
recursively solves the subproblems induced by C and G − C separately, and sums
the solutions obtained

mis(G) = mis(C) + mis(G − C).

Else, if there are two (adjacent) vertices v and w, with N [w] ⊆ N [v] (line 3), mis
discards v:

mis(G) = mis(G − {v}).

If none of the conditions above holds, and there is a (foldable) vertex v of degree
two, the algorithm folds it (line 4):

mis(G) = 1 + mis(G̃(v)).

As a last choice, the algorithm selects a vertex v of maximum degree which min-
imizes the number |E(N(v))| of edges in its neighborhood, and branches on it
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according to Lemma 4.3 (lines 5-6):

mis(G) = max{mis(G − {v} − M(v)), 1 + mis(G − N [v])}.

Choosing a vertex of maximum degree for branching (line 5) is a natural “greedy”
choice. The reason for choosing a vertex with few edges in its neighborhood will
be clearer from the analysis. Notice that, with simple modifications, mis can also
provide one maximum independent set (besides its cardinality).

4.2.1 Standard analysis. Also in this case, to underline the importance of a good
choice of the measure, we sketch the analysis of mis according to the standard
measure k = k(G) = n. Let P (k) be the maximum number of base instances
generated by the algorithm to solve a problem of size k. Of course, P (k) = 1 for
k ≤ 1. If the condition of line 2 is satisfied, P (k) ≤ P (k1) + P (k − k1), where k1

is the number of vertices of C. If one of the conditions of lines 3 and 4 is satisfied,
P (k) ≤ P (k − 1) since we decrease the number of vertices in the graph at least
by one. Otherwise, consider the vertex v on which we branch. Note that all the
vertices in the graph must have degree at least three. Moreover v is a vertex of
maximum degree. If d(v) = 3 (and hence the graph is 3-regular), when we discard
v, we either discard a mirror of v or we fold a neighbor w of v in the following
step (since d(w) = 2 after removing v). In both cases, we decrease the number of
vertices by at least two. When we select v, we discard N [v], where |N [v]| = 4. This
leads to P (k) ≤ P (k − 2) + P (k − 4). Assume now that d(v) ≥ 4. In the worst
case, v has no mirrors (M(v) = ∅). When we discard or select v, we remove at
least one or five vertices, respectively. Thus P (k) ≤ P (k − 1) + P (k − 5). We can
conclude that P (k) = O∗(λk), where λ = 1.3247 . . . < 20.406 is the largest root of
the polynomials x5 − x4 − 1 and x4 − x2 − 1. Since in each step the size of the
graphs generated decreases by at least one, it follows that the depth of the search
tree is at most n. Moreover, solving each subproblem, not considering the possible
recursive calls, takes polynomial time. Thus the time complexity of the algorithm
is O∗(λn) = O∗(20.406 n).

In the next section we will show how to refine the running time analysis of mis by
means of a more sophisticated measure k(G) (without modifying the algorithm!).

4.3 The Analysis

When we measure the size of a maximum independent set instance with the number
of vertices, we do not take into account the fact that decreasing the degree of a
vertex v has a positive impact on the progress of the algorithm (even if we do not
immediately remove v from the graph). In fact, decreasing the degree of a vertex
pays off in the long term, since the vertices of degree at most two can be filtered
out without branching.

This suggests the idea of giving different weights to vertices of different degree.
In particular, let ni (n≥i) denote the number of vertices of degree i (at least i) in
the graph considered. We will use the following measure k = k(G) of the size of G:

k(G) =
∑

i≥0

αi ni,

where the weights αi ∈ [0, 1] will be fixed in the following. Note that k = k(G) ≤ n.
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In order to simplify the running time analysis, we make the following assumptions:

• First of all, α0 = α1 = α2 = 0. The reason for this assumption is that vertices
of degree at most two are removed from the graph without branching in lines
1,3, and 4. Thus their presence contributes to the running time only with a
polynomial (multiplicative) factor.

• Second, αi = 1 for i ≥ 7. This way, we have to compute only a finite (small)
number of weights.

• When the degree of a vertex decreases from i to i − 1, its weight decreases by
∆ αi = αi − αi−1. We assume that ∆ α3 ≥ ∆ α4 ≥ ∆ α5 ≥ ∆ α6 ≥ ∆ α7 ≥ 0. In
other words, the weights decrease from α7 to α2 at increasing speed. The reason
for this assumption will be clearer from the analysis.

• Eventually, we impose

α2 + αd1
+ αd2

−αd1+d2−2 = αd1
+ αd2

−αd1+d2−2 ≥ 0, ∀ d1, d2 ∈ {2, 3, . . . , 8}.

This condition ensures that, when we fold a vertex of degree two, the size of the
problem does not increase.

We are now ready to give our refined analysis of mis.

Theorem 4.4. Algorithm mis solves the maximum independent set problem in
O∗(20.295 n) time and polynomial space.

Proof. The correctness of the algorithm immediately follows from Lemmas 4.1,
4.2, and 4.3. The algorithm is trivially polynomial-space.

Let P (k) denote the maximum number of base instances generated by mis when
solving a problem of size k. From the discussion above, the running time of the
algorithm is O∗(P (k)). When k = 0, the maximum degree in the graph is two.
In such case, it is easy to see that the algorithm solves the problem in polynomial
time. Hence P (0) = O(nO(1)) = O∗(1). Thus, let us assume k > 0. We break the
running time analysis in different parts, one for each branching and reduction rule
of the algorithm.

(1) Connected components. Let k1 be the size of the connected component C
selected by the algorithm. The size of G − C is trivially k2 = k − k1. Thus

P (k) ≤ P (k1) + P (k − k1). (1)

(2) Dominance. When we remove a vertex v by dominance, we generate a unique
subproblem of size k1 = k − αd(v) −

∑
u∈N(v) ∆ αd(u). Hence

P (k) ≤ P (k1).

Note that k1 ≤ k by the assumptions on the weights.

(3) Folding. Let v be the vertex that we fold, and N(v) = {u1, u2}. Note that, by
dominance, u1 and u2 cannot be adjacent. Thus, by folding v, we remove N [v] and
we introduce a unique vertex u12 of degree d(u12) ≤ (d(u1) − 1) + (d(u2) − 1) =
d(u1) + d(u2) − 2. It follows that

P (k) ≤ P (k1),
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where k1 = k − α2 − αd(u1) − αd(u2) + αd(u1)+d(u2)−2. Also in this case, by the
assumptions on the weights, k1 ≤ k.

(4) Branching. Let v the vertex at which the algorithm branches. We let d :=
d(v) ≥ 3 and N(v) = {u1, u2, . . . , ud}. The following properties hold:

(i) For every vertex w, 3 ≤ d(w) ≤ d. Moreover, if d(w) = d, |E(N(w))| ≥
|E(N(v))|;

(ii) The graph is formed by a unique connected component, and no vertex is dom-
inated nor dominates any other vertex.

We need some extra notation (see also Figure 6).

Fig. 6. Vertex v is on the top. In the example, d = 4, m4 = 1, m3 = 3, p2 = p3 = 1, out = 5,
in = 2, in = 4, and sum = 13.

• The number of vertices of degree i in N(v) is mi.

• The number of vertices in N2(v) that have exactly h neighbors in N(v) is ph.

• The number of edges between N(v) and N2(v) is out.

• The number of edges and anti-edges in N(v) is in and in, respectively.

• The sum of the degrees of the vertices in N(v) is sum.

We also let m≥i =
∑

j≥i mj and p≥h =
∑

j≥h pj .
For the remainder of the analysis of the branching at vertex v, we distinguish

two different subcases, depending on whether v has at least one mirror or not.

(A) At least one mirror. Trivially,
∑d

i=3 mi = d and sum = d + 2 in + out. Ob-
serve that, by dominance, each vertex in N(v) has at least one neighbor in N2(v).
Therefore, out ≥ d. In fact, by a simple parity argument, out ≥ d+(sum (mod 2)).
Moreover, by dominance, no vertex in N(v) can have more than (d − 2) neighbors
in N(v). It follows that in ≤ ⌊d(d − 2)/2⌋. Summarizing the discussion above, we
obtain the following constraint:

d∑

i=3

mi = d; sum = d+2 in+out; out ≥ d+(sum (mod 2)); in ≤ ⌊d(d−2)/2⌋.

(2)
Suppose we discard v. The size of the problem decreases by αd because of the

removal of v, and by at least
∑d

i=3 mi ∆ αi because of the reduction of the degrees
of vertices in N(v). Note that the vertices w ∈ N2(v) with |N(w) ∩ N(v)| ≥ d − 1
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are mirrors of v. The removal of those mirrors implies a decrease of the size of
the problem by pd αd + pd−1 αmax{3, d−1} (where we use the fact that the minimum
degree of any vertex is at least 3). Even when pd−1 + pd = 0, the assumption that
there is at least one mirror implies that the size of the problem decreases by at least
α3. Altogether, we obtain a further decrease of the size of the problem by

max{pd αd + pd−1 αmax{3, d−1}, α3}.

Consider now the case we select v. The size of the problem decreases by αd

because of the removal of v, and by
∑d

i=3 mi αi because of the removal of N(v).
The size of the problem further decreases because of the reduction of the degrees
in N2(v). Consider a vertex z ∈ N2(v) with h neighbors in N(v). Note that the
reduction of the size of z is αd(z)−αd(z)−h. If d(z)−h ≥ 3, the minimum reduction
of the size of z is achieved when z has the largest possible degree d(z) = d:

αd(z) − αd(z)−h = ∆ αd(z) + ∆ αd(z)−1 + . . . + ∆ αd(z)−h+1

≥ ∆ αd + ∆ αd−1 + . . . + ∆ αd−h+1

= αd − αd−h.

Otherwise, the reduction is

αd(z) − αd(z)−h = αd(z) ≥ αmax{3,h},

where we used the fact that d(z) ≥ h trivially, and d(z) ≥ 3 from the properties of
the algorithm. Thus, we can pessimistically assume that the total reduction of the
size of the vertices in N2(v) is at least

d∑

h=1

ph min{αmax{3,h}, αd − αd−h}.

Altogether, we obtain the following set of recurrences for all the mi’s and ph’s
satisfying (2):

P (k) ≤ P (k − ∆ kOUT ) + P (k − ∆ kIN ),

where

∆ kOUT = αd +

d∑

i=3

mi ∆ αi + max{pd αd + pd−1 αmax{3, d−1}, α3},

∆ kIN = αd +

d∑

i=3

mi αi +

d∑

h=1

ph min{αmax{3,h}, αd − αd−h}. (3)

(B) No mirror. If v has no mirror, we can use the same analysis as in case (A),
but removing the term max{pd αd + pd−1 αmax{3, d−1}, α3} in (3). However, in this
case we can put some extra constraints on the ph’s which are crucial for reducing
the final running time bound.

First of all, we observe that pd−1 = pd = 0 since there are no mirrors by as-
sumption. Moreover, in ≤ ⌊d(d − 2)/2⌋ − 1. In fact, assume by contradiction that
in = ⌊d(d−2)/2⌋. This implies that in = ⌈d/2⌉. For d = 3, N(v) contains one edge,
say u1u2, and hence the two neighbors of u3 in N2(v) are mirrors of v, which is a
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contradiction. Consider now the case d ≥ 4. Since there are only ⌈d/2⌉ anti-edges
in N(v), and by dominance each vertex of N(v) must be incident to at least one
such anti-edge, there must be two non-adjacent vertices of N(v), say u1 and u2,
which are adjacent to all the other vertices of N(v). In particular, N(v) \ {u1, u2}
contains at least in− 1 anti-edges. Note that d(u1) = d by dominance, from which
it follows that N(u1) contains at most in anti-edges by the choice of v. Let w be
the unique neighbor of u1 in N2(v). Since N(u1) contains the in − 1 anti-edges
in {u3, . . . , ud}, plus the anti-edge vw, w must be adjacent to all the vertices in
{u1, u3, . . . , ud}. Hence w is a mirror of v, which is a contradiction.

In fact, we can go one step further. There must be a vertex in N(v), say u1,
incident to at most ⌊2 in/d⌋ anti-edges of N(v). Suppose ⌊2 in/d⌋ ≤ 1. Then,
by dominance, u1 is incident to exactly one anti-edge of N(v), say u1u2. Hence
u1 must be adjacent to all the vertices in {u3, . . . , ud}. Moreover, it must be
d(u1) = d, which implies that N(u1) can contain at most in anti-edges. Let w be
the neighbor of u1 in N2(v). Note that N(u1) already contains the anti-edge wv,
and at least one anti-edge in {u3, . . . , ud} (otherwise {u1, u3, . . . , ud} would be a
clique, and hence the neighbors of u2 in N2(v) would be mirrors). There can be at
most in − 2 other anti-edges in N(u1). In particular, there can be at most in − 2
anti-edges between w and the vertices in {u3, . . . , ud}. It follows that there are at
least (d−2)− (in−2)+1 = d− in+1 edges between w and {u1, u3, . . . , ud}. Then
p≥d−in+1 ≥ 1 for ⌊2 in/d⌋ ≤ 1. Summarizing the discussion above, we obtain the
following constraint:

d∑

i=3

mi = d; sum = d + 2 in + out; out ≥ d + (sum (mod 2));

in ≤ ⌊d(d − 2)/2⌋ − 1; pd−1 = pd = 0; ⌊2 in/d⌋ ≤ 1 ⇒ p≥d−in+1 ≥ 1. (4)

Altogether we get the following set of recurrences for all the mi’s and ph’s satisfying
(4):

P (k) ≤ P (k − ∆ kOUT ) + P (k − ∆ kIN ),

where

∆ kOUT = αd +

d∑

i=3

mi ∆ αi,

∆ kIN = αd +

d∑

i=3

mi αi +

d−2∑

h=1

ph min{αmax{3,h}, αd − αd−h}. (5)

Limiting the number of recurrences. Consider any branching node v with d =
d(v) ≥ 8. Let di be the degree of the i-th neighbor of v. Observe that, in all the
recurrences considered,

∆ kOUT ≥ αd +

d∑

i=3

mi ∆ αi = 1 +

d∑

i=1

∆ αmin{di,8} ≥ 1 +

8∑

i=1

∆ αmin{di,8},
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d = 7, m7 = 7, out = 14, in = 14, p1 = 14, no mirror
d = 6, m6 = 6, out = 10, in = 10, p1 = 8, p2 = 1, no mirror
d = 5, m5 = 5, out = 8, in = 6, p1 = 6, p2 = 1, no mirror
d = 4, m4 = 4, out = 6, in = 3, p1 = 4, p2 = 1, no mirror
d = 3, m3 = 3, out = 4, in = 1, p1 = 1, p3 = 1, one mirror

Fig. 7. The worst-case recurrences in the analysis of mis.

where we used the fact that, by assumption, ∆αi = 0 for i ≥ 8. Similarly,

∆ kIN ≥ αd +

d∑

i=3

mi αi = 1 +

d∑

i=1

αmin{di,8} ≥ 1 +

8∑

i=1

αmin{di,8}.

As a consequence, in the case d = d(v) ≥ 8, we can replace the Recurrences (3)
and (5) with the following dominating set of recurrences: for all d1, d2, . . . , d8 ∈
{3, 4, . . . , 8},

P (k) ≤ P (k − ∆ kOUT ) + P (k − ∆ kIN ),

where

∆ kOUT = 1 +

8∑

i=1

∆ αdi
and ∆ kIN = 1 +

8∑

i=1

αdi
. (6)

This way, we have to consider a finite (though very large) number of recurrences
only. (The actual number of recurrences is 4793253).

Computing the weights. By solving the set of recurrences above, one obtains P (k) =
O∗(λk), where λ ≥ 1 is a (quasi-convex) function of the weights. Using the same
kind of approach as in Section 3.2, we numerically found that, for

(α3, α4, α5, α6) = (0.620196, 0.853632, 0.954402, 0.993280),

λ ≤ 20.295. This gives a running time of O∗(P (k)) = O∗(20.295 n).
The tight (branching) recurrences for this choice of the weights are indicated in

Figure 7. In the Appendix (Figure 13) we provide the pseudo-code of a program
which can be used to check the claimed value of λ for the set of weights considered.

4.4 Refining the Analysis

The running time established in the previous subsection can be refined via a more
careful case analysis. In principle, one might enumerate all the feasible local con-
figurations up to some small distance h from the branching vertex v, and compute
the decrease of the size of the problem when v is selected and discarded, respec-
tively. The problem is that the number of feasible configurations is huge already
for d(v) = 7 and h = 2. Giving such kind of refined analysis is out of the scope of
this paper. However, in order to show the kind of improvements which are achiev-
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able (without modifying the algorithm and measure), we prove the following refined
time bound on mis.

Theorem 4.5. Algorithm mis solves the maximum independent set problem in
O∗(20.287 n) time and polynomial space.

Since the proof of the theorem above is technical, and does not introduce any
substantially new idea, we give it in the Appendix.

4.5 An Exponential Lower Bound

As in the case of mds, it makes sense to search for a lower bound on the worst-case
running time of mis to see how far we are from a tight analysis.

Theorem 4.6. The worst-case running time of algorithm mis is Ω(2n/7) =
Ω(20.142 n).

Proof. Consider the following connected graph Gℓ, ℓ ≥ 1, of n = 7ℓ vertices:
Gℓ consists of ℓ blocks B1, B2, . . . , Bℓ. Each block Bi, 1 ≤ i ≤ ℓ, is a 6-wheel,
i.e. it is formed by six nodes ai, bi, ci, di, ei, and fi which induce a chord-less
cycle, and by a vertex ui which is adjacent to all the vertices in the cycle. For
each i = 1, . . . , ℓ − 1, graph Gℓ also contains edges {ai, ai+1}, {bi, bi+1}, {ci, ci+1},
{di, di+1}, {ei, ei+1}, and {fi, fi+1}. (See Figure 8 for an example).

a1

b1

c1

d1

e1

f1

u1

a2

b2

c2

d2

e2

f2

u2

a3

b3

c3

d3

e3

f3

u3

u1

u2 u2

u3 u3 u3 u3

Fig. 8. On the left, graph Gℓ for ℓ = 3. On the right, the top part of a feasible search tree:
there is a vertex in the tree for each subproblem; subproblems are labelled with the corresponding
branching vertex; left and right children correspond to selection and discarding of the branching
vertex, respectively.

Let us apply Algorithm mis to graph Gℓ. Note that, there is a unique connected
component and no dominance nor folding can be applied. Hence the algorithm
branches at some vertex of maximum degree, with minimum number of edges in its
neighborhood. In particular, mis might branch at u1. In the subproblems where
u1 is selected, we remove the vertices of B1 arriving at a graph Gℓ−1. By the
same argument as above, in that subproblem mis might branch at u2. Also in
the subproblem where u1 is discarded, the algorithm cannot apply dominance nor
folding. Thus also in that case u2 is a feasible candidate for branching. Therefore,
in both subproblems the algorithm might branch at u2. By iterating this argument,
one finds that the algorithm might branch on the ordered sequence u1, u2, . . . , uℓ.
We conclude that the running time of the algorithm is Ω(2n/7) = Ω(20.142 n).
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5. CONCLUSIONS AND FUTURE WORK

In this paper we investigated the impact of non-standard measures in the analy-
sis of Branch & Reduce algorithms. Using the minimum dominating set and the
maximum independent set problems as case studies, we showed that the choice of
the measure can have a tremendous impact on the running time bounds achievable.
This suggests the possibility that finding a good measure should be at first concern
when designing Branch & Reduce algorithms.

The measures considered in this paper are still reasonably simple, though they
already involve a quite large number of variables. However, there is no limit to the
kind of measures that can be exploited. For example, the authors of this paper
applied Measure & Conquer to design the first algorithm for the connected domi-
nating set problem faster than trivial enumeration [Fomin et al. 2008]. That result
is based on a new measure, that considers, besides cardinalities and frequencies,
also the local connectivity properties of the original graph. The already mentioned
measure by Eppstein for cubic-TSP [2003b] is another good example of how non-
trivial measures can help in the analysis. In fact, we believe that the design of
new measures can have an impact comparable to (and sometimes larger than) the
design of better branching and reduction rules.

Since the appearance of the preliminary versions of this article [Fomin et al.
2005a; 2006], the Measure & Conquer technique has been turned into a common
tool used in the analysis of exact graph algorithms and it was used for a variety
of problems. For example, Gupta et al. [2006] used the technique while analyzing
exact algorithms for finding maximal induced subgraphs of fixed vertex degrees.
Razgon [2006a], using a non-standard measure, derived the first non-trivial algo-
rithm breaking the O∗(2n) barrier for the feedback vertex set problem (see also
[Fomin et al. 2008]). Kowalik [2006] used Measure & Conquer in his branching al-
gorithm for the edge coloring problem. The analysis of Gasper-Liedloff’s algorithm
[2006] for the independent dominating set problem is based on Measure & Conquer.
Another example is the paper by Kratsch and Liedloff [2007] on the minimum dom-
inating clique problem. We are also aware of a number of other (still unpublished)
papers using the same kind of approach.

Measure & Conquer can be used also as a tool to prove tighter combinatorial
bounds. For example, using this kind of approach and the same measure which is
used here for MDS, Fomin et al. [2008] proved that the number of minimal dominat-
ing sets in a graph is O∗(20.783 n). Based on this result, they also derived the first
non-trivial exact algorithms for the domatic number problem and for the minimum-
weight dominating set problem (see also [Björklund and Husfeldt 2006; Fomin and
Stepanov 2007; Koivisto 2006; Riege et al. 2007]). The bounds on the number of
minimal feedback vertex sets (or maximal induced forests) obtained in [Fomin et al.
2008] are also based on Measure & Conquer.

Of course, a non-standard measure can be used to design better algorithms in
the standard way: one considers the tight recurrences for a given algorithm (and
measure), and tries to design better branching and reduction rules for the corre-
sponding cases. A very recent work by van Rooij and Bodlaender [2008] goes in
this direction.

For the reasons above, we think Measure & Conquer might have a growing impact
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in the field of exact algorithms in the next few years.

APPENDIX

Proof of Theorem 4.5. We refine the analysis of Theorem 4.4. Consider a
branching step, and let v be the corresponding branching vertex. Recall that, when
we branch, the graph is formed by a unique connected component. We observe the
following facts:

(a) d = d(v) = 3. If the number n of vertices in the graph is small, say n ≤ 6, the
algorithm trivially solves the problem in polynomial time. Hence P (k) = O∗(1) in
that case. As a consequence, without loss of generality, we can assume that the
graph contains at least seven vertices. Observe that all the vertices of the graph
have degree three. Thus by dominance in ≤ 1. Suppose N(v) contains one edge
(that is, in = 1), say u1u2. If this is the case, let w1 and w2 be the two neighbors of
u3 in N2(v) (which are mirrors). By dominance, u1 and u2 cannot be adjacent to
the same vertex in N2(v). In particular, it must be the case that p3 = 0. Moreover,
w1 and w2 cannot be adjacent when p2 = 2 (otherwise the graph would contain
six vertices). Consider now the case in = 0. Note that, by the same argument as
above, it cannot be p3 = 2. The feasible remaining local configurations around v
are represented in Figure 9.

Fig. 9. Feasible local configurations for d = 3. Vertex v is on the top.

Note that, when we discard v (and its mirrors), or we select it, some vertices
in N(v) ∪ N2(v) might be selected or discarded by dominance. In turn, this can
determine the removal or the decrease of the degree of some other vertices. By
considering the different cases one by one, it is not hard to obtain the following set
of recurrences:

P (k) ≤ P (k − 4 α3) + P (k − 10 α3),

P (k) ≤ P (k − 6 α3) + P (k − 8 α3), (7)

P (k) ≤ P (k − 7 α3) + P (k − 7 α3).
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Recurrences (7) can replace the less accurate Recurrences (3) and (5) for d = 3:

(b) d = d(v) = 4, in = 3, and M(v) = ∅. The edges in N(v) cannot induce a
triangle, say {u1, u2, u3}, since otherwise the neighbors of u4 in N2(v) would be
mirrors of v. Hence, N(v) must induce a path, say u1, u2, u3, u4. Observe that it
must be the case that d(u2) = d(u3) = 4 by dominance. Let w1 be the neighbor
of u2 in N2(v). Note that, by the way v is chosen, N(u2) can contain at most
three anti-edges. Since N(u2) contains the anti-edges vw1 and u1u3, we have that
w1 must be adjacent to one between u1 and u3. In fact, w1 must be adjacent to
u3 and not adjacent to u1, since otherwise w1 would be a mirror of v. Assume
by contradiction that d(u1) = 4, and hence N(u1) contains at most three anti-
edges. Let w′ and w′′ be the two neighbors of u1 in N2(v) (distinct from w1).
Then N(u1) = {v, u2, w

′, w′′} contains the anti-edges vw′, vw′′, u3w
′, and u3w

′′,
which is a contradiction. Thus d(u1) = 3. A symmetric argument shows that
d(u4) = 3. If u1 and u4 had a common neighbor w′ ∈ N2(v), w′ would be a mirror
of v, contradicting the assumption. Hence we can assume that u1 and u4 have two
distinct neighbors w2 and w3, respectively, in N2(v). (See Figure 10). Now we

v

Fig. 10. The unique feasible local configuration for d = 4, in = 3, and M(v) = ∅.

distinguish two subcases, depending on the degree of w2 and w3. If they have both
degree three, we obtain the following recurrence:

P (k) ≤ P (k − α4 − 2∆ α3 − 2∆ α4)

+P (k − α4 − 2 α3 − 2 α4 − (α4 − α2) − 2∆ α3)

= P (k − 3 α4) + P (k − 4 α4 − 4 α3). (8)

Observe that the decrease of the degree of w2 and w3 when v is selected contributes
with a term −2∆ α3. According to Recurrence (5), the corresponding term is
−2 min{α3, ∆ α4} = −2∆ α4 only. Suppose now that one among w2 and w3, say
w2, has degree four. It follows by the way v is chosen that N(w2) contains at most
three anti-edges. Let z1, z2, and z3 be the remaining neighbors of w2, besides u1.
Note that the zi’s must belong to N2(v) ∪ N3(v). By the local structure of the
graph, no zi can be adjacent to u1, that is z1u1, z2u1, and z3u1 are anti-edges.
It follows that the zi’s induce a clique. By dominance with w2, this also implies
that they have degree four. In the case v is selected, and hence u1 is discarded, by
dominance with w2 one of the zi is discarded. This gives the following recurrence

P (k) ≤ P (k − α4 − 2∆ α3 − 2∆ α4)

+P (k − α4 − 2 α3 − 2 α4 − (α4 − α2) − 2∆α4 − α4)

= P (k − 3 α4) + P (k − 7 α4). (9)
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d = 7, m7 = 7, out = 14, in = 14, p1 = 14, no mirror
d = 6, m6 = 6, out = 10, in = 10, p1 = 8, p2 = 1, no mirror
d = 5, m5 = 5, out = 8, in = 6, p1 = 6, p2 = 1, no mirror
d = 4, m3 = 4, out = 4, in = 2, p1 = 4, no mirror
d = 4, m4 = 4, out = 4, in = 4, p1 = 1, p3 = 1, one mirror

Fig. 11. The worst-case recurrences in the refined analysis of mis.

Recurrences (8) and (9) can replace the less accurate Recurrence (5) in the case
considered.

Recomputing the weights. Recomputing the weights according to the refined recur-
rences above, we get

(α3, α4, α5, α6) = (0.545340, 0.811103, 0.933335, 0.985228),

and hence a running time of O∗(20.287 n). The new tight recurrences are given in
Figure 11.

boolean checkMDS(α2, α3, α4, α5, β2, β3, β4, β5, λ){
α1=β1=0; α6=α7=β6=β7=1;
compute ∆αi and ∆βi for 2 ≤ i ≤ 7;
for(|S|=3,4,. . ., 7)

for(r2=0,1,. . ., |S|)
for(r3=0,1,. . ., |S| − r2)

for(r4=0,1,. . ., |S| − r2 − r3)
for(r5=0,1,. . ., |S| − r2 − r3 − r4)

for(r6=0,1,. . ., |S| − r2 − r3 − r4 − r5)
r≥7 = |S| − r2 − r3 − r4 − r5 − r6;
compute ∆ k′

|S|,r2
;

∆ kOUT = α|S| +
P6

i=2 ri∆ βi + ∆ k′
|S|,r2

;

∆ kIN = α|S| +
P6

i=2 ri βi + r≥7 + ∆α|S|(
P6

i=2(i − 1)ri + 6 r≥7);

if(λ−∆kOUT +λ−∆ kIN > 1) return false;
return true; //All the inequalities satisfied

}

Fig. 12. C-like pseudo-code to check a value of λ for given (feasible) values of the weights αi’s
and βj ’s for Algorithm msc: the function returns true if 1 ≥ λ−∆ kOUT (t) + λ−∆ kIN (t) for every
feasible tuple t, and false otherwise.

ACKNOWLEDGMENTS

We are grateful to Jianer Chen, Johan van Rooij, Saket Saurabh, Magnus Wahlström,
and Philipp Zumstein for discussions, comments and remarks on the preliminary
versions of this paper.

Journal of the ACM, Vol. , No. , 20.



30 · Fedor V. Fomin et al.

boolean checkMIS(α3, α4, α5, α6, λ){
α2=0; α7 = α8 = 1;
compute ∆αi for 3 ≤ i ≤ 8;
for(d=3,4,. . ., 7) //Case d≤ 7
for(i = 3, 4, . . . , 7) //zi’s used to set some variables to 0
if(i ≤ d) zi = 1; else zi = 0;

for(m7=0,1,. . ., z7 d)
for(m6=0,1,. . ., z6 (d − m7))
for(m5=0,1,. . ., z5 (d − m7 − m6))
for(m4=0,1,. . ., z4 (d − m7 − m6 − m5))
m3 = d − m7 − m6 − m5 − m4;
for(in=0,1,. . ., ⌊d(d − 2)/2⌋)

sum =
P7

i=3 mi; in = d(d − 1)/2 − in; out = sum − d − 2 in;
if(out < d + (sum (mod 2))) continue;
for(p7=0,1,. . ., z7⌊out/7⌋)
for(p6=0,1,. . ., z6⌊(out − 7 p7)/6⌋)
for(p5=0,1,. . ., z5⌊(out − 7 p7 − 6 p6)/5⌋)
for(p4=0,1,. . ., z4⌊(out − 7 p7 − 6 p6 − 5 p5)/4⌋)
for(p3=0,1,. . ., z3⌊(out − 7 p7 − 6 p6 − 5 p5 − 4 p4)/3⌋)
for(p2=0,1,. . ., ⌊(out − 7 p7 − 6 p6 − 5 p5 − 4 p4 − 3 p3)/2⌋)
p1=out − 7 p7 − 6 p6 − 5 p5 − 4 p4 − 3 p3 − 2 p2;
//Case of at least one mirror

∆ kOUT = αd +
Pd

i=3 mi ∆αi + max{pd αd + pd−1 αmax{3,d−1}, α3};

∆ kIN = αd +
Pd

i=3 mi αi +
Pd

h=1 ph min{αmax{3,h}, αd − αd−h};

if(λ−∆ kOUT +λ−∆ kIN > 1) return false;
//Case of no mirror
if(in>⌊d(d − 2)/2⌋−1 or pd 6= 0 or pd−1 6= 0

or (⌊2in/d⌋≤1 and p≥d−in+1=0)) continue;

∆ kOUT = αd +
Pd

i=3 mi ∆αi;

∆ kIN = αd +
Pd

i=3 mi αi +
Pd−2

h=1 ph min{αmax{3,h}, αd − αd−h};

if(λ−∆ kOUT +λ−∆ kIN > 1) return false;
for(d1=3,4,. . .,8) //Case d≥ 8
for(d2=3,4,. . .,8)
for(d3=3,4,. . .,8)
for(d4=3,4,. . .,8)
for(d5=3,4,. . .,8)
for(d6=3,4,. . .,8)
for(d7=3,4,. . .,8)
for(d8=3,4,. . .,8)

∆ kOUT = 1 +
P8

i=1 ∆αdi
;

∆ kIN = 1 +
P8

i=1 αdi
;

if(λ−∆ kOUT +λ−∆ kIN > 1) return false;
return true; //All the inequalities are satisfied

}

Fig. 13. C-like pseudo-code to check a value of λ for given (feasible) values of the weights αi’s for
Algorithm mis: the function returns true if 1 ≥ λ−∆ kOUT +λ−∆ kIN , where ∆ kOUT and ∆ kIN

are given by Recurrences (3), (5), and (6), and false otherwise. We recall that continue is used
to skip the remaining part of the block considered.
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