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Abstract

We obtain a number of lower bounds on the running time of algorithms solving problems on
graphs of bounded treewidth. We prove the results under the Strong Exponential Time Hypothesis
of Impagliazzo and Paturi. In particular, assuming that SATcannot be solved in(2−ǫ)nmO(1) time,
we show that for anyǫ > 0;

• INDEPENDENTSET cannot be solved in(2− ǫ)tw(G)|V (G)|O(1) time,

• DOMINATING SET cannot be solved in(3 − ǫ)tw(G)|V (G)|O(1) time,

• MAX CUT cannot be solved in(2− ǫ)tw(G)|V (G)|O(1) time,

• ODD CYCLE TRANSVERSAL cannot be solved in(3− ǫ)tw(G)|V (G)|O(1) time,

• For anyq ≥ 3, q-COLORING cannot be solved in(q − ǫ)tw(G)|V (G)|O(1) time,

• PARTITION INTO TRIANGLES cannot be solved in(2− ǫ)tw(G)|V (G)|O(1) time.

Our lower bounds match the running times for the best known algorithms for the problems, up to the
ǫ in the base.

1 Introduction

It is well-known that many NP-hard graph problems can be solved efficiently if thetreewidth(tw(G)) of
the input graphG is bounded. For an example, an expository algorithm to solveVERTEX COVER and
INDEPENDENT SET running in timeO∗(4tw(G)) is described in the algorithms textbook by Kleinberg
and Tardos [15] (theO∗ notation suppresses factors polynomial in the input size),while the book of
Niedermeier [20] on fixed-parameter algorithms presents analgorithm with running timeO∗(2tw(G)).
Similar algorithms, with running times on the formO∗(ctw(G)) for a constantc, are known for many other
graph problems such as DOMINATING SET, q-COLORING and ODD CYCLE TRANSVERSAL [1, 9, 10,
27]. Algorithms for graph problems on bounded treewidth graphs have found many uses as subroutines
in approximation algorithms [7, 8], parameterized algorithms [6, 19, 26], and exact algorithms [12, 23,
28].

In this paper, we show that any improvement over the currently best known algorithms for a number
of well-studied problems on graphs of bounded treewidth would yield a faster algorithm for SAT. In
particular, we show if there exists anǫ > 0 such that

• INDEPENDENTSET can be solved inO∗((2− ǫ)tw(G)) time, or

• DOMINATING SET can be solved inO∗((3− ǫ)tw(G)) time, or

• MAX CUT can be solved inO∗((2 − ǫ)tw(G)) time, or

∗Department of Informatics, University of Bergen, Norway.daniello@ii.uib.no
†School of Computer Science, Tel Aviv University, Tel Aviv, Israel.dmarx@cs.bme.hu
‡The Institute of Mathematical Sciences, India.saket@imsc.res.in

1

http://arxiv.org/abs/1007.5450v1


• ODD CYCLE TRANSVERSAL can be solved inO∗((3 − ǫ)tw(G)) time, or

• there is aq ≥ 3 such thatq-COLORING can be solved inO∗((q − ǫ)tw(G)) time, or

• PARTITION INTO TRIANGLES can be solved inO∗((2− ǫ)tw(G)) time,

then SAT can be solved inO∗((2 − δ)n) time for someδ > 0. Heren is the number of variables in
the input formula to SAT. Such an algorithm would violate theStrong Exponential Time Hypothesis
(SETH) of Impagliazzo and Paturi [13]. Thus, assuming SETH,the known algorithms for the mentioned
problems on graphs of bounded treewidth are essentially thebest possible.

To show our results we give polynomial time many-one reductions that transformn-variable boolean
formulasφ to instances of the problems in question. Such reductions are well-known, but for our results
we need to carefully control the treewidth of the graphs thatour reductions output. A typical reduction
createsn gadgets corresponding to then variables; each gadget has a small constant number of vertices.
In most cases, this implies that the treewidth can be boundedby O(n). However, to prove the a lower
bound of the formO∗((2− ǫ)tw(G)), we need that the treewidth of the constructed graph is(1+ o(1))n.
Thus we can afford to increase the treewidth by at most one pervariable. For lower bounds above
O∗((2 − ǫ)tw(G)), we need even more economical constructions. To understandthe difficulty, consider
the DOMINATING SET problem, here we want to say that if DOMINATING SET admits an algorithm
with running timeO∗((3 − ǫ)tw(G)) = O∗(2log(3−ǫ)tw(G)) for someǫ > 0, then we can solve SAT on
input formulas withn-variables in timeO∗((2 − δ)n) for someδ > 0. Therefore by naı̈vely equating
the exponent in the previous sentence we get that we need to construct an instance for DOMINATING

SET whose treewidth is essentiallynlog 3 . In other words, each variable should increase treewidth byless
than one.The main challenge in our reductions is to squeeze out as manycombinatorial possibilities
per increase of treewidth as possible. In order to control the treewidth of the graphs we construct, we
upper bound thepathwidth(pw(G)) of the constructed instances and use the fact that for any graphG,
tw(G) ≤ pw(G). Thus all of our lower bounds also hold for problems on graphsof bounded pathwidth.

Complexity Assumption: TheExponential Time Hypothesis(ETH) and its strong variant (SETH) are
conjectures about the exponential time complexity ofk-SAT. Thek-SAT problem is a restriction of
SAT, where every clause in input boolean formulaφ has at mostk literals. Letsk = inf{δ : k-SAT
can be solved in2δn time}. The Exponential Time Hypothesis conjectured by Impagliazzo, Paturi and
Zane [14] is thats3 > 0. In [14] it is shown that ETH is robust, that iss3 > 0 if and only if there is a
k ≥ 3 such thatsk > 0. In the same year it was shown that assuming ETH the sequence{sk} increases
infinitely often [13]. Since SAT has aO∗(2n) time algorithm,{sk} is bounded by above by one, and
Impagliazzo and Paturi [13] conjecture that1 is indeed the limit of this sequence. In a subsequent
paper [3], this conjecture is coined as SETH.

While ETH is now a widely believed assumption, and has been used as a starting point to prove
running time lower bounds for numerous problems [5, 4, 11, 18, 17], SETH remains largely untouched
(with one exception [21]). The reason for this is two-fold. First, the assumption thatlimk→∞ sk = ∞
is a very strong one. Second, when proving lower bounds underETH we can utilize theSparsification
Lemma[14] which allows us to reduce from instances of 3-SAT where the number of clauses is linear in
the number of variables. Such a tool does not exist for SETH, and this seems to be a major obstruction for
showing running time lower bounds for interesting problemsunder SETH. We overcome this obstruction
by circumventing it – in order to show running time lower bounds for algorithms on bounded treewidth
graphs sparsification is simply not required. We would like to stress that our results make sense, even if
one does not believe in SETH. In particular, our results showthat one should probably wait with trying
to improve the known algorithms for graphs of bounded treewidth until a faster algorithm for SAT is
around.

Related Work. Despite of the importance of fast algorithms on graphs of bounded treewidth or path-
width, there isno known natural graph problem for which we know an algorithm outperforming the
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naı̈ve approach on bounded pathwidth graphs. For treewidth, the situation is slightly better: Alber et
al. [1] gave aO∗(4tw(G)) time algorithm for DOMINATING SET, improving over the naturalO∗(9tw(G))
algorithm of Telle and Proskurowski [25]. Recently, van Rooij et al. [27] observed that one could use
fast subset convolution [2] to improve the running time of algorithms on graphs of bounded treewidth.
Their results include aO∗(3tw(G)) algorithm for DOMINATING SET and aO∗(2tw(G)) time algorithm
for PARTITION INTO TRIANGLES. Interestingly, the effect of applying subset convolutionwas that the
running time for several graph problems on bounded treewidth graphs became the same as the running
time for the problems on graphs of bounded pathwidth.

In [27], van Rooij et al. believe that their algorithms are probably optimal, since the running times
of their algorithms match the size of the dynamic programming table, and that improving the size of
the table without losing time should be very difficult. Our results prove them right: improving their
algorithm is at least as hard as giving an improved algorithmfor SAT.

2 Preliminaries

In this section we give various definitions which we make use of in the paper. LetG be a graph with
vertex setV (G) and edge setE(G). A graphG′ is asubgraphof G if V (G′) ⊆ V (G) andE(G′) ⊆
E(G). For subsetV ′ ⊆ V (G), the subgraphG′ = G[V ′] of G is called asubgraph induced byV ′

if E(G′) = {uv ∈ E(G) | u, v ∈ V ′}. By N(u) we denote (open) neighborhood ofu in graphG that
is the set of all vertices adjacent tou and byN [u] = N(u) ∪ {u}. Similarly, for a subsetD ⊆ V , we
defineN [D] = ∪v∈DN [v].

A tree decompositionof a graphG is a pair(X , T ) whereT is a tree andX = {Xi | i ∈ V (T )} is a
collection of subsets ofV such that:1.

⋃
i∈V (T )Xi = V (G), 2. for each edgexy ∈ E(G), {x, y} ⊆ Xi

for somei ∈ V (T ); 3. for eachx ∈ V (G) the set{i | x ∈ Xi} induces a connected subtree ofT . The
width of the tree decomposition ismaxi∈V (T ){|Xi| − 1}. The treewidthof a graphG is the minimum
width over all tree decompositions ofG. We denote bytw(G) the treewidth of graphG. If in the
definition of treewidth we restrict the treeT to be a path then we get the notion of pathwidth and denote
it by pw(G). For our purpose we need an equivalent definition of pathwidth via mixed searchgames.

In a mixed search game, a graphG is considered as a system of tunnels. Initially, all edges are
contaminated by a gas. An edge isclearedby placing searchers at both its end-points simultaneously
or by sliding a searcher along the edge. A cleared edge is re-contaminated if there is a path from
an uncleared edge to the cleared edge without any searchers on its vertices or edges. A search is a
sequence of operations that can be of the following types: (a) placement of a new searcher on a vertex;
(b) removal of a searcher from a vertex; (c) sliding a searcher on a vertex along an incident edge and
placing the searcher on the other end. A search strategy is winning if after its termination all edges are
cleared. The mixed search number of a graph G, denoted byms(G), is the minimum number of searchers
required for a winning strategy of mixed searching onG. Takahashi, Ueno and Kajitani [24] obtained
the following relationship betweenpw(G) andms(G), which we use for bounding the pathwidth of the
graphs obtained in reduction.

Proposition 1 ([24]). For a graphG, pw(G) ≤ ms(G) ≤ pw(G) + 1.

An instance to SAT will always consists of a boolean formulaφ = C1 ∧ · · · ∧ Cm overn variables
{v1, . . . , vn} where each clauseCi is OR of one or more literals of variables. We also denote a clauseCi

by the set{ℓ1, ℓ2, . . . , ℓc} of its literals and denote by|Ci| the number of literals inCi. An assignment
τ to the variables is an element of{0, 1}n, and it satisfies the formulaφ if for every clauseCi there
is literal that is assigned1 by τ . We say that a variablevi satisfies a clauseCj if there exists a literal
corresponding tovi in {ℓ1, ℓ2, . . . , ℓc} and it is set to1 by τ . A group of variables satisfy a clauseCj if
there is a variable that satisfies the clauseCj. All the sections in this paper follows the following pattern:
definition of the problem; statement of the lower bound; construction used in the reduction; correctness
of the reduction; and the upper bound on the pathwidth of the resultant graph.
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3 Independent Set

An independent setof a graphG is a setS ⊆ V (G) such thatG[S] contains no edges. In the INDEPEN-
DENT SET problem we are given a graphG and the objective is to find an independent set of maximum
size.

Theorem 1. If INDEPENDENTSET can be solved inO∗((2− ǫ)tw(G)) for someǫ > 0 thenSAT can be
solved inO∗((2− δ)n) time for someδ > 0.

Construction. Given an instanceφ to SAT we construct a graphG as follows. We assume that every
clause has an even number of variables, if not we can add a single variable to all odd size clauses
and force this variable to false. First we describe the construction of clause gadgets. For a clause
C = {ℓ1, ℓ2, . . . , ℓc} we make a gadget̂C as follows. We take two paths,CP = cp1, cp2 . . . , cpc and
CP ′ = cp′1, cp

′
2 . . . cp

′
c havingc vertices each, and connectcpi with cp′i for everyi. For each literalℓi

we make a vertexℓi in Ĉ and make it adjacent tocpi andcp′i. Finally we add two verticescstart and
cend, such thatcstart is adjacent tocp1 andcend is adjacent tocpc. Observe that the size of the maximum
independent set of̂C is c+ 2. Also, sincec is even, any independent set of sizec+ 2 in Ĉ must contain
at least one vertex inC = {ℓ1, ℓ2, . . . , ℓc}. Finally, notice that for anyi, there is an independent set of
sizec+ 2 in Ĉ that containsℓi and none ofℓj for j 6= i.

We first construct a graphG1. We maken pathsP1, . . . , Pn, each path of length2m. Let the vertices
of the pathPi bep1i . . . p

2m
i . The pathPi corresponds to the variablevi. For every clauseCi of φ we

make a gadget̂Ci. Now, for every variablevi, if vi occurs positively inCj , we add an edge betweenp2ji
and the literal corresponding tovi in Ĉj . If vi occurs negatively inCj, we add an edge betweenp2j−1

i

and the literal corresponding tovi in Ĉj. Now we construct the graphG as follows. We taken+1 copies
of G1, call themG1, . . . Gn+1. For everyi ≤ n we connectGi andGi+1 by connectingp2mj in Gi with
p1j in Gi+1 for everyj ≤ n. This concludes the construction ofG.

Lemma 1. If φ is satisfiable, thenG has an independent set of size(mn+
∑

i≤m |Ci|+ 2)(n + 1).

Proof. Consider a satisfying assignment toφ. We construct an independent setI in G. For every variable
vi if vi is set to true, then pick all the vertices on odd positions from all copies ofPi, that isp1i , p

3
i , p

5
i

and so on. Ifvi is false then pick all the vertices on even positions from allcopies ofPi, that isp2i , p
4
i , p

6
i

and so on. It is easy to see that this is an independent set of sizemn(n+ 1) containing vertices from all
the paths. We will now consider the gadgetĈj corresponding to a clauseCj . We will only consider the
copy of Ĉj in G1 as the other copies can be dealt identically. Let use choose atrue literalℓa in Cj and
let vi be the corresponding variable. Consider the vertexℓa in Ĉj . If vi occurs positively inCj thenvi is
true. ThenI does not containp2ji , the only neighbour ofℓa outside ofĈj . On the other hand ifvi occurs
negatively inCj thenvi is false. In this caseI does not containp2j−1

i , the only neighbour ofℓa outside
of Ĉj . There is an independent set of size|Cj | + 2 in Ĉ that containsℓa and none out ofℓb, b 6= a.
We add this independent set toI and proceed in this manner for every clause gadget. By the endof the
process(

∑
i≤m |Ci|+ 2)(n + 1) vertices from clause gadgets are added toI, yielding that the size ofI

is (mn+
∑

i≤m |Ci|+ 2)(n + 1), concluding the proof.

Lemma 2. If G has an independent set of size(2mn+
∑

i≤m |Ci|+ 2)(n + 1), thenφ is satisfiable.

Proof. Consider an independent set ofG of size(mn+
∑

i≤m |Ci|+ 2)(n + 1). The setI can contain
at mostm vertices from each copy ofPi for everyi ≤ n and at most|Cj| + 2 vertices from each copy
of the gadgetCj . SinceI must contain at least these many vertices from each path and clause gadget in
order to contain at least(mn+

∑
i≤m |Ci|+2)(n+ 1) vertices, it follows thatI has exactlym vertices

in each copy of each pathPi and exactly|Cj|+ 2 vertices in each copy of each clause gadgetĈj. For a
fixed j, consider then + 1 copies of the pathPj . SincePj in Gi is attached toPj in Gi+1 thesen + 1
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Ĉj

cend

cstart

p2jnp2j−1
n

p2j−1
1 p2j1

ℓc

ℓ1

cp′1

cpc

cp1

Pn

P1

Figure 1: Reduction to INDEPENDENT SET: clause gadget̂Cj attached to then paths representing the
variables.

copies ofPi together form a pathP having2m(n + 1) vertices. Since|I ∩ P | = m(n + 1) it follows
thatI ∩P must contain every second vertex ofP , except possibly in one position whereI ∩P skips two
vertices ofP . There are onlyn paths andn+1 copies ofG1, hence the pigeon-hole principle yields that
in some copyGy of G1, I contains every second vertex on every pathPi. From now onwards we only
consider such a copyGy.

In Gy, for everyi ≤ n, I contains every second vertex ofPi. We make an assignment to the variables
of φ as follows. If I contains all the odd numbered vertices ofPi then vi is set to true, otherwise
I contains all the even numbered vertices ofPi andvi is set to false. We argue that this assignment
satisfiesφ. Indeed, consider any clauseCj, and look at the gadget̂Cj . We know thatI contains|Cj |+2

vertices fromĈj and henceI must contain a vertexℓa in corresponding to a literal ofCj . Supposeℓa
is a literal ofvi. SinceI containsℓa, if ℓa occurs positively inCj, thenI can not containp2ji and hence
vi is true. Similarly, ifℓa occurs negatively inCj thenI can not containp2j−1

i and hencevi is false. In
both casesvi satisfiesCj and hence all clauses ofφ are satisfied by the assignment.

Lemma 3. pw(G) ≤ n+ 4.

Proof. We give a mixed search strategy to cleanG usingn+3 searchers. For everyi we place a searcher
on the first vertex ofPi in G1. Then searchers slide along the pathsP1, . . . Pn in m rounds. In round
j each searcheri starts onp2j−1

i . Then, for every variablevi that occurs positively inCj , the searcheri
slide forward top2ji . Observe that at this point there is a searcher on every neighbour of the gadget̂Cj.
This gadget can now be cleaned with3 additional searchers. After̂Cj is clean, the additional3 searchers
are removed, and each of then searchers on the pathsP1, . . . Pn slide forward along these paths, such
that searcheri stands onp2(j+1)

i . At that point, the next round commences. When the searchershave
cleanedG1 they slide onto the first vertex ofP1 . . . Pn in G2. Then they proceed to cleanG2, . . . , Gn+1

in the same way thatG1 was cleaned. Now applying Proposition 1 we get thatpw(G) ≤ n+ 4.
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g′1
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p31

p11

x
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Pp

P1
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Figure 2: Reduction to DOMINATING SET: group gadget̂B. The setS is shown by the circled vertices.

The construction, together with Lemmata 1, 2 and 3 proves Theorem 1.

4 Dominating Set

A dominating setof a graphG is a setS ⊆ V (G) such thatV (G) = N [S]. In the DOMINATING SET

problem we are given a graphG and the objective is to find a dominating set of minimum size.

Theorem 2. If DOMINATING SET can be solved inO∗((3− ǫ)pw(G)) time for someǫ > 0 thenSAT can
be solved inO∗((2 − δ)n) time for someδ > 0.

Construction. Given ǫ < 1 and an instanceφ to SAT we construct a graphG as follows. We first
chose an integerp depending only onǫ. Exactly howp is chosen will be discussed in the proof of
Theorem 2. We group the variables ofφ into groupsF1, F2, . . . , Ft, each of size at mostβ = ⌊log 3p⌋.
Hencet = ⌈n/β⌉. We now proceed to describe a “group gadget”B̂, which is central in our construction.

To build the group gadget̂B we makep pathsP1, . . . , Pp, where the pathPi contains the verticesp1i ,
p2i andp3i . To each pathPi we attach twoguardsgi andg′i, both of which are neighbours top1i , p

2
i and

p3i . When the gadgets are attached to each other, the guards willnot have any neighbours outside of their
own gadgetB̂, and will ensure that at least one vertex out ofp1i , p2i andp3i are chosen in any minimum
size dominating set ofG. LetP be a vertex set containing all the vertices on the pathsP1, . . . , Pp. For
every subsetS of P that picksexactly onevertex from each pathPi we make two verticesxS andx′S ,
wherexS is adjacent to all vertices ofP \ S (all those vertices that are on paths and not inS) andx′S is
only adjacent toxS . We conclude the construction of̂B by making all the verticesx′S (for every setS)
adjacent to each other, that is making them into a clique, andadding a guardx adjacent tox′S for every
setS. Essentiallyx′S ’s together withx forms a clique and all the neighbors ofx reside in this clique.

We construct the graphG as follows. For every groupFi of variables we makem(2pt + 1) copies
of the gadget̂B, call themB̂j

i for 1 ≤ j ≤ m(2pt + 1). For every fixedi ≤ t we connect the gadgets

B̂1
i , B̂

2
i . . . , B̂

m(2pt+1)
i in a path-like manner. In particular, for everyj < m(2pt + 1) and everyℓ ≤ p

we make an edge betweenp3ℓ in the gadgetB̂j
i with p1ℓ in the gadgetB̂j+1

i . Now we make two new
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h′

h

B̂x
t

B̂x
1

ĉℓj

Figure 3: Reduction to DOMINATING SET: arranging the group gadgets. Note thatx = mℓ+ j, thusĉℓj
is attached to vertices in̂Bx

1 , . . . , B̂x
t .

verticesh andh′, with h adjacent toh′, p1j in B̂1
i for everyi ≤ t, j ≤ p and top3j in B̂

m(2pt+1)
i for every

i ≤ t, j ≤ p. That is, for all1 ≤ i ≤ t, h is adjacent to first and last vertices of “long paths” obtained
after connecting the gadgetŝB1

i , B̂
2
i . . . , B̂

m(2pt+1)
i in a path-like manner.

For every1 ≤ i ≤ t, and to every assignment of the variables in the groupFi, we designate a subset
S of P in the gadgetB̂ that picks exactly one vertex from each pathPj . Since there are at most2β

different assignments to the variables inFi, and there are3p ≥ 2β such setsS, we can assign aunique
set to each assignment. Of course, the same setS can correspond to one assignment of the groupF1 and
some another assignment of the groupF2. Recall that the clauses ofφ areC1, . . . , Cm. For every clause
Cj we make2pt+ 1 verticesĉℓj , one for each0 ≤ ℓ < 2pt+ 1. The vertex̂cℓj will be connected to the

gadgetsB̂mℓ+j
i for every1 ≤ i ≤ t. In particular, for every assignment of the variables in thegroupFi

that satisfy the clauseCj , we consider the subsetS of P that corresponds to the assignment. For every
0 ≤ ℓ < 2n+1, we makex′S in B̂mℓ+j

i adjacent tôcℓj . The best way to view this is that every clauseCj

has2pt+ 1 private gadgets,̂Bj
i , B̂

m+j
i , . . . , B̂m2pt+j

i , in every group of gadgets corresponding toFi’s.
Now we have2pt+1 vertices corresponding to the clauseCj , one each foronegadget from each group
gadgets corresponding toFi’s. This concludes the construction ofG.

Lemma 4. If φ has a satisfying assignment, thenG has a dominating set of size(p+1)tm(2pt+1)+1.

Proof. Given a satisfying assignment toφ we construct a dominating setD of G that contains the vertex
h andexactlyp + 1 vertices in each gadget̂Bj

i . For each groupFi of variables we consider the setS
which corresponds to the restriction of the assignment to the variables inFi. From each gadget̂Bj

i we
add the setS to D and also the vertexx′S to D. It remains to argue thatD is indeed a dominating set.
Clearly the size is bounded by(p+ 1)tm(2pt+ 1) + 1, as the number of gadgets istm(2pt+ 1).

For a fixedi ≤ t and j consider the vertices on the pathPj in the gadgetsB̂ℓ
i for every ℓ ≤

m(2pt + 1). Together these vertices form a path of length3m(2pt + 1) and every third vertex of this
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path is inS. Thus, all vertices on this path are dominated by other vertices on the path, except for the
first and last one. Both these vertices, however, are dominated byh.

Now, fix somei ≤ t andl ≤ m(2pt+1) and consider the gadget̂Bℓ
i . SinceD contains some vertex

on the pathPj , we have that for everyj bothgj andg′j are dominated. Furthermore, for every setS∗ not
equal toS that picks exactly one vertex from eachPj , vertexxS∗ is dominated by some vertex on some
Pj—namely by all vertices inS \ S∗ 6= ∅. The last assertion follows sincexS∗ is connected to all the
vertices on paths exceptS∗. On the other hand,xS is dominated byx′S , andx′S also dominates all the
other verticesx′S∗ for S∗ 6= S and the guardx.

The only vertices not yet accounted for are the verticesĉℓj for everyj ≤ m andℓ < 2pt+ 1. Fix aj
and aℓ and consider the clauseCj. This clause contains a literal set to true, and this literalcorresponds
to a variable in the groupFi for somei ≤ t. Of course, the assignment toFi satisfiesCj. Let S be the
set corresponding to this assignment ofFi. By the construction ofD, the dominating set containsx′S in
B̂mℓ+j

i andx′S is adjacent tôcℓj . This concludes the proof.

Lemma 5. If G has a dominating set of size(p+1)tm(2pt+1)+1, thenφ has a satisfying assignment.

Proof. LetD be a dominating set ofG of size at most(p+1)tm(2pt+1) + 1. SinceD must dominate
h′, hence without loss of generality we can assume thatD containsh. Furthermore, inside every gadget
B̂ℓ

i , D must dominate all the guards, namelygj andg′j for everyj ≤ p, and alsox. ThusD contains at

leastp + 1 vertices from each gadget̂Bℓ
i which in turn implies thatD contains exactlyp + 1 vertices

from each gadget̂Bℓ
i . The only wayD can dominategj andg′j for everyj and in addition dominatex

with only p+ 1 verticesis ifD has one vertex from eachPj , j ≤ p and in addition contains some vertex
in N [x]. Let S beD ∩ P in B̂ℓ

i . Observe thatxS is not dominated byD ∩ S. The only vertex inN [x]
that dominatesxS is x′S and henceD containsx′S .

Now we want to show that for every1 ≤ i ≤ t there existsone0 ≤ ℓ ≤ 2tp such that for fixedi,
D ∩ P is same in all the gadgetŝBmℓ+r

i , 1 ≤ r ≤ m. Consider a gadget̂Bℓ
i and its follower,B̂ℓ+1

i . Let
S beD ∩ P in B̂ℓ

i andS′ beD ∩ P in B̂ℓ+1
i . Observe that ifS containspaj in B̂ℓ

i andpbj in B̂ℓ+1
i then

we must haveb ≤ a. We call a consecutive pairbad if for somej ≤ p, D containspaj in B̂ℓ
i andpbj in

B̂ℓ+1
i andb < a. Hence for a fixedi, we can at most have2p consecutive bad pairs. Now we mark all

the bad pairs that occur among the gadgets corresponding to someFi. This way we can mark only2tp
bad pairs. Thus, by the pigeon hole principle, there exists an ℓ ∈ {0, . . . , 2tp} such that there are no bad
pairs inB̂mℓ+r

i for all 1 ≤ i ≤ t and1 ≤ r ≤ m.
We make an assignmentφ by reading offD ∩ P in each gadget̂Bmℓ+1

i . In particular, for every
groupFi, we considerS = D ∩P in the gadget̂Bmℓ+1

i . This setS corresponds to an assignment ofFi,
and this is the assignment ofFi that we use. It remains to argue that every clauseCr is satisfied by this
assignment.

Consider the vertex̂crℓ . We know that it is dominated by somex′S in a gadgetB̂mℓ+r
i . The setS

corresponds to an assignment ofFi that satisfies the clauseCr. BecauseD ∩ P remains unchanged
in all gadgets fromB̂mℓ+1

i to B̂mℓ+r
i , this is exactly the assignmentφ restricted to the groupFi. This

concludes the proof.

Lemma 6. pw(G) ≤ tp+O(3p)

Proof. We give a mixed search strategy to clean the graph withtp + O(3p) searchers. For a gadget̂B
we call the verticesp1j andp3j , 1 ≤ j ≤ p, asentry verticesandexit verticesrespectively. We search the
graph inm(2tp + 1) rounds. In the beginning of roundℓ there are searchers on the entry vertices of the
gadgetsB̂ℓ

i for everyi ≤ t. Let 1 ≤ a ≤ m and0 ≤ b < 2tp+ 1 be integers such thatℓ = a+mb. We
place a searcher on̂cba. Then, for eachi between1 andp in turn we first put searchers on all vertices of
B̂ℓ

i and then remove all the searchers from̂Bℓ
i except for the ones standing on the exit vertices. After all

gadgetsB̂ℓ
1 . . . B̂

ℓ
t have been cleaned in this manner, we can remove the searcher from ĉba. To commence
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the next round, the searchers slide from the exit positions of B̂ℓ
i to the entry positions of̂Bℓ+1

i for every
i. In total, at mosttp+ |V (B̂)|+1 ≤ tp+O(3p) searchers are used simultaneously. This together with
Proposition 1 give the desired upperbound on the pathwidth.

Proof (of Theorem 2).Suppose DOMINATING SET can be solved inO∗((3 − ǫ)pw(G))= O∗(3λpw(G))
time, whereλ = log3(3−ǫ) < 1. We choosep large enough such thatλ· p

⌊p log 3⌋ = δ′

log 3 for someδ′ < 1.
Given an instance of SAT we construct an instance of DOMINATING SET using the above construction
and the chosen value ofp. Then we solve the DOMINATING SET instance using theO∗(3λpw(G)) time
algorithm. Correctness is ensured by Lemmata 4 and 5. Lemma 6yields that the total time taken is upper

bounded byO∗(3λpw(G)) ≤ O∗(3λ(tp+f(λ))) ≤ O∗(3
λ np

⌊p log 3⌋ ) ≤ O∗(3
δ′ n

log 3 ) ≤ O∗(2δ
′′n) =O∗((2 −

δ)n), for someδ′′, δ < 1. This concludes the proof.

5 Max Cut

A cut in a graphG is a partition ofV (G) into V0 andV1. Thecut-setof the cut is the set of edges whose
one end point is inV0 and the other inV1. We say that an edge iscrossingthis cut if it has one endpoint in
V0 and one inV1, that is, the edge is in the cut-set. Thesizeof the cut is the number of edges inG which
are crossing this cut. If the edges ofG have positive integer weights then theweightof the cut is the
sum of the weights of edges which are crossing the cut. In the MAX CUT problem we are given a graph
G together with an integert and asked whether there is a cut ofG of size at leastt. In the WEIGHTED

MAX CUT problem every edge has a positive integer weight and the objective is to find a cut of weight
at leastt.

Theorem 3. If MAX CUT can be solved inO∗((2− ǫ)pw(G)) for someǫ > 0 thenSAT can be solved in
O∗((2 − δ)n) time for someδ > 0.

Construction. Given an instanceφ of SAT we first construct an instanceGw of WEIGHTED MAX

CUT as follows. We later explain how to obtain an instance of unweighted MAX CUT from here.
We start with making a vertexx0. Without loss of generality, we will assume thatx0 ∈ V0 in every

solution. We make a vertex̂vi for each variablevi. For every clauseCj we make a gadget as follows.
We make a patĥPj having4|Cj | vertices. All the edges on̂Pj have weight3n. Now, we make the
first and last vertex of̂Pj adjacent tox0 with an edge of weight3n. Thus the patĥPj plus the edges
from the first and last vertex of̂Pj to x0 form an odd cycleĈj . We will say that the first, third, fifth,
etc, vertices are onodd positionson P̂j while the remaining vertices are oneven positions. For every
variablevi that appears positively inCj we select a vertexp at an even position (but not the last vertex)
on P̂j and makêv adjacent top andp’s successor on̂Pj with edges of weight1. For every variablevi
that appears negatively inCj we select a vertexp at an odd position on̂Pj and makêv adjacent top
andp’s successor on̂Pj with edges of weight1. We make sure that each vertex onP̂j receives an edge
at most once in this process. There are more than enough vertices onP̂j to accommodate all the edges
incident to vertices corresponding to variables in the clauseCj . We create such a gadget for each clause
and sett = 1 + (12n + 1)

∑m
j=1 |Cj |. This concludes the construction.

Lemma 7. If φ is satisfiable, thenGw has a cut of weight at leastt.

Proof. Supposeφ is satisfiable. We putx0 in V0 and for every variablevi we putv̂i in V1 if vi is true and
v̂i in V0 if vi is false. For every clauseCj we proceed as follows. Let us choose a true literal ofCj and
suppose that this literal corresponds to a vertexpj on P̂j . We put the first vertex on̂Pj in V1, the second
in V0 and then we proceed alonĝPj putting every second vertex intoV1 andV0 until we reachpj. The
successorp′j of pj on P̂j is put into the same set aspj. Then we continue alonĝPj putting every second
vertex inV1 andV0. Notice that even thoughCj may contain more than one literal that is set to true, we
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only select one vertexpj from the pathP̂j and putpj and its successor on the same side of the partition.
It remains to argue that this cut has weight at leastt.

For every clauseCj all edges on the patĥPj except forpjp′j are crossing, and the two edges tox0

from the first and last vertex of̂Pj are crossing as well. These edges contribute12n|Cj | to the weight
of the cut. We know thatpj corresponds to a literal that is set to true, and this literalcorresponds to a
variablevi. If vi occurs positively inCj thenvi ∈ V1 andpj is on an even position of̂Pj . Thus bothpj
and his successorp′j are inV0 and hence bothvipj andvip′j are crossing, contributing2 to the weight of

the cut. For each of the remaining variablesvi′ appearing inCj , one of the two neighbours of̂vi′ on P̂j

appear inV0 and one inV1, so exactly one edge fromvi′ to P̂j is crossing. Thus the total weight of the
cut ist =

∑m
j=1 12n|Cj |+ |Cj|+ 1 = m+ (12n + 1)

∑m
j=1 |Cj |. This completes the proof.

Lemma 8. If Gw has a cut of weight at leastt, thenφ is satisfiable.

Proof. Let (V0, V1) be a cut ofG of maximum weight, hence the weight of this cut is at leastt. Without
loss of generality, letx0 ∈ V0. For every clauseCj at least one edge of the odd cyclêCj is not crossing.
If more than one edge of this cycle is not crossing, then the total weight of the cut edges incident to the
pathP̂j is at most3n(4|Cj |−1)+2n < 12|Cj |. In this case we could change the partition(V0, V1) such
that all edges of̂Pj are crossing and the first vertex ofP̂j is in V1. Using the new partition the weight of
the crossing edges in the cyclêCj is at least12|Cj | and the edges not incident tôPj are unaffected by
the changes. This contradicts that(V0, V1) was a maximum weight cut. Thus it follows that exactly one
edge ofĈj is not crossing.

Given the cut(V0, V1) we set each variablevi to true if v̂i ∈ V1 andvi to false otherwise. Consider a
clauseCj and a variablevi that appears inCj . Letuv be the edge of̂C ′

j that is not crossing. If there is a
variablev̂i adjacent to bothu andv, then it is possible that botĥviu andv̂iv are crossing. For every other
variablevi′ in Cj, at most one of the edges from̂vi′ to P̂j is crossing. Thus, the weight of the edges that
are crossing in the gadget̂Cj is at most(12n+1)|Cj |+1. Hence, to find a cut-set of weight at leastt in
G, we need to have crossing edges inĈj with sum of their weights exactly equal to12n|Cj |+ |Cj|+ 1.
It follows that there is a vertex̂vi adjacent to bothu andv such that botĥviu andv̂iv are crossing.

If vi occurs inCj positively thenu is on an even position and hence,u ∈ V0. Sincev̂iu is crossing
it follows thatvi is true andCj is satisfied. On the other hand, ifvi occurs inCj negated thenu is on an
odd position and hence,u ∈ V1. Sincev̂iu is crossing it follows thatvi is false andCj is satisfied. As
this holds for each clause individually, this concludes theproof.

For every edgee ∈ E(Gw), let we be the weight ofe in Gw. We construct an unweighted graphG
from Gw by replacing every edgee = uv by we paths fromu to v on three edges. LetW be the sum of
the edge weights of all edges inGw.

Lemma 9. G has a cut of size2W + t if and only ifGw has a cut of weight at leastt.

Proof. Given a partition ofV (Gw) we partitionV (G) as follows. The vertices ofG that also are vertices
of V (G) are partitioned in the same way as inV (Gw). On each path of length3, if the endpoints of the
path are in different sets we can partition the middle vertices of the path such that all edges are cut. If
the endpoints are in the same set we can only partition the middle vertices such that2 out of the3 edges
are cut. The reverse direction is similar.

Lemma 10. pw(G) ≤ n+ 5.

Proof. We give a search strategy to cleanG with n+5 searchers. We place one searcher on each vertex
v̂i and one searcher onx0. Then one can search the gadgetsĤj one by one. InGw it is sufficient to use2
searchers for eacĥHj, whereas inG after the edges have been replaced by multiple paths on threeedges,
we need4 searchers. This combined with Proposition 1 gives the desired upper bound on the pathwidth
of the graph.
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The construction, together with Lemmata 7, 8, 9 and 10 provesTheorem 3.

6 Graph Coloring

A q-coloring of G is a functionµ : V (G) → [q]. A q-coloring µ of G is proper if for every edge
uv ∈ E(G) we haveµ(u) 6= µ(v). In the q-COLORING problem we are given as input a graphG
and the objective is to decide whetherG has a properq-coloring. In the LIST COLORING problem,
every vertexv is given a listL(v) ⊆ [q] of admissible colors. Aproper list coloringof G is a function
µ : V (G) → [q] such thatµ is a proper coloring ofG that satisfiesµ(v) ∈ L(v) for everyv ∈ V (G). In
theq-L IST COLORING problem we are given a graphG together with a listL(v) ⊆ [q] for every vertex
v. The task is to determine whether there exists a proper list coloring ofG.

A feedback vertex setof a graphG is a setS ⊆ V (G) such thatG \ S is a forest; we denote by
fvs(G) the size of the smallest such set. It is well-known thattw(G) ≤ fvs(G) + 1. Unlike in the other
sections, where we give lower bounds for algorithms parameterized bypw(G), the following theorem
gives also a lower bound for algorithms parameterized byfvs(G). Such a lower bound follows very
naturally from the construction we are doing here, but not from the constructions in the other sections.
It would be interesting to explore whether it is possible to prove tight bounds parameterized byfvs(G)
for the problems considered in the other sections.

Theorem 4. If q-COLORING can be solved inO∗((q − ǫ)fvs(G)) or O∗((3 − ǫ)pw(G)) time for some
ǫ > 0, thenSAT can be solved inO∗((2− δ)n) time for someδ > 0.

Construction. We will show the result for LIST COLORING first, and then give a simple reduction that
demonstrates thatq-COLORING can be solved inO∗((q−ǫ)fvs(G)) time if and only ifq-L IST COLORING

can.
Depending onǫ andq we choose a parameterp. Now, given an instanceφ to SAT we will construct

a graphG with a listL(v) for everyv, such thatG has a proper list-coloring if and only ifφ is satisfiable.
Throughout the construction we will call color1-red, color2-whiteand color3-black.

We start by grouping the variables ofφ into t groupsF1, . . . , Ft of size⌊log qp⌋. Thust = ⌈ n
⌊log qp⌋⌉.

We will call an assignment of truth values to the variables ina groupFi a group assignment. We will
say that a group assignment satisfies a clauseCj of φ if Cj contains at least one literal which is set to
true by the group assignment. Notice thatCj can be satisfied by a group assignment of a groupFi, even
thoughCj also contains variables that are not inFi.

For each groupFi, we make a setVi of p verticesv1i , . . . , v
p
i . The vertices inVi get full lists,

that is, they can be colored by any color in[q]. The coloring of the vertices inVi will encode the group
assignment ofFi. There areqp ≥ 2|Fi| possible colorings ofVi. Thus, to each possible group assignment
of Fi we attach a unique coloring ofVi. Notice that some colorings ofVi may not correspond to any
group assignments ofFi.

For each clauseCj of φ, we make a gadget̂Cj . The main part ofĈj is a long pathP̂j that has
one vertex for each group assignment that satisfiesĈj. Notice that there are at mosttqp possible group
assignments, and thatq andp are constants independent of the inputφ. The list of every vertex on̂Pj

is {red,white,black}. We attach two verticespstartj andpendj to the start and end of̂Pj respectively,

and the two vertices are not counted as vertices of the pathP̂j itself. The list ofpstartj is {white}. If

|V (P̂j)| is even, then the list ofpendj is {white}, whereas if|V (P̂j)| is odd then the list ofpendj is{black}.

The intention is that to properly color̂Pj one needs to use the color red at least once, and that once is
sufficient. The position of the red colored vertex on the pathP̂j encodes how the clauseCj is satisfied.

For every vertexv on P̂j we proceed as follows. The vertexv corresponds to a group assignment to
Fi that satisfies the clauseCj . This assignment in turn corresponds to a coloring of the vertices ofVi.
Let this coloring beµi. We build aconnectorwhose role is to enforce thatv can be red only if coloring
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Figure 4: Reduction toq-COLORING: the way the connector connects a vertexvli with v for a particular
“bad color”x ∈ [q] \ {µi(v

l
i)}. The left side shows the casex = red= 1, the right sidex = 2 (q = 4).

µi appears onVi. To build the connector, for each vertexvli ∈ Vi and colorx ∈ [q] \ {µi(v
l
i)} we do the

following.

• If x is red, then we add one vertexwy for every colory except for red. We makewy adjacent tovli
and the list ofwy is {red, y}. Then we add a vertexw which is adjacent to all verticeswy andv,
and whose list is all of[q].

• If x is not red, we add two verticeswy andw′
y for each colory except for red. We makewy

adjacent tovli andw′
y adjacent towy. The list ofwy is {x, red} while the list ofw′

y is {y, red}.
Finally we add a vertexw adjacent tow′

y for all y and tov. The list ofw is all of [q].

Notice that in the above construction we have reused the namesw, wy andw′
y for many different vertices:

in each connector, there is a separate vertexw for each vertexvli ∈ Vi and colorx ∈ [q]\{µi(v
l
i)}. Build-

ing a connector for each vertexv on P̂j concludes the construction of the clause gadgetĈj, and creating
one such gadget for each clause concludes the construction of G. The following lemma summarizes the
most important properties of the connector:

Lemma 11. Consider the connector corresponding a vertexv on P̂j and coloringµi of Vi.

1. Any coloring onVi and any colorc ∈ {white,black} on v can be extended to the rest of the
connector.

2. Coloringµi on Vi and any colorc ∈ {red,white,black} on v can be extended to the rest of the
connector.

3. In any coloring of the connector, ifv is red, thenµi appears onVi.

Proof. 1. For each vertexvli ∈ Vi and colorx ∈ [q] \ {µi(v
l
i)} we do the following.

• If x is red then in the construction of̂Cj we added a vertexwy with list {y, red} for every color
y 6= red adjacent tovli, and a vertexw with list [q] adjacent towy for everyy 6= red. If vli is
colored red, then we color each vertexwy with y andw with red. Notice thatw is adjacent tov,
but v is colored either white or black, so it is safe to colorw red. If, on the other hand,vli is not
colored red, we can colorwy red for everyy. Then all the neighbours ofw have been colored with
red, except forv which has been colored white or black. Thus it is safe to colorw with the color
out of black and white which was not used to colorv.
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• If x is not red, then in the construction of̂Cj we added two verticeswy andw′
y for each colory

except for red, and also added a vertexw. The verticeswy are adjacent tovli and for everyy 6= red
the vertexw′

y is adjacent towy. Finally w is adjacent to al the verticesw′
y and tov. For everyy

the list ofwy is {x, red} while the list ofw′
y is {y, red}. The list ofw is [q]. If vli is colored with

x, then we letwy take color red andw′
y take colory for everyy 6= red. We colorw with red. In

the case thatvli is colored with a color different fromx, we letwy be colored withx andw′
y be

colored red for everyy 6= red. Finally, all the neighours ofw except forv have been colored red,
while v is colored with either black or white. According to the colorof v we can either colorw
black or white.

2. We can assume thatv is red, otherwise we are done by the previous statement. For each vertex
vli ∈ Vi and colorx ∈ [q] \ {µi(v

l
i)} we do the following.

• If x is red then in the construction of̂Cj we added a vertexwy with list {y, red} for every color
y 6= red adjacent tovli, and a vertexw with list [q] adjacent towy for everyy 6= red. Sincevli′ is
not colored red byµi, we can colorwy red for everyy. Then all the neighbours ofw includingv
have been colored with red and it is safe to colorw with white.

• If x is not red, then in the construction of̂Cj we added two verticeswy andw′
y for each colory

except for red, and also added a vertexw. The verticeswy are adjacent tovli and for everyy 6= red
the vertexw′

y is adjacent towy. Finally w is adjacent to all the verticesw′
y and tov. For everyy

the list ofwy is {x, red} while the list ofw′
y is {y, red}. The list ofw is [q]. Sinceµi colorsvli

with a color different fromx we letwy be colored withx andw′
y be colored red for everyy 6= red.

Finally, all the neighours ofw includingv have been colored red so it is safe to colorw white.

3. Suppose for contradiction thatv is red, but some vertexvli ∈ Vi has been colored with a color
x 6= µi(v

l
i). There are two cases. Ifx is red, then in the construction we added verticeswy adjacent to

vli for every colory 6= red. Also we added a vertexw adjacent tov and towy for eachy 6= red. The
list of wy is {red, y} and hencewy must have been coloredy for everyy 6= red. But thenw is adjacent
to v which is colored red, and towy which is coloredy for everyy 6= red. Thus vertexw has all colors
in its neighborhood, a contradiction. In the case whenx is not red, then in the construction we added
two verticeswy andw′

y for eachy 6= red. Eachwy was adjacent tovli and had{x, red} as its list. Since
vli is coloredx, all thewy vertices must be colored red. For everyy 6= red, we have thatw′

y is adjacent
to wy and has{red, y} as its list. Hence for everyy 6= red the vertexw′

y is colored withy. But, in the
construction we also added a vertexw adjacent tov and tow′

y for eachy 6= red. Thus again, vertexw
has all colors in its neighbourhood, a contradiction.

Lemma 12. If φ is satisfiable, thenG has a proper list-coloring.

Proof. Starting from a satisfying assignment ofφ we construct a coloringγ of G. The assignment toφ
corresponds to a group assignment to each groupFi. Each group assignment corresponds to a coloring of
Vi. For everyi, we letγ color the vertices ofVi using the coloring corresponding to the group assignment
of Fi.

Now we show how to complete this coloring to a proper coloringof G. Since the gadgetŝCj are
pairwise disjoint, and there are no edges going between them, it is sufficient to show that we can complete
the coloring for every gadget̂Cj . Consider the clauseCj. The clause contains a literal that is set to true,
and this literal belongs to a variable in the groupFi. The group assignment ofFi satisfies the clause
Cj. Thus, there is a vertexv on P̂j that corresponds to this assignment. We setγ(v) as red (that is,γ
colorsv red),pstartj is colored white andpendj is colored with its only admissible color, namely black

if |V (P̂j)| is even and white if|V (P̂j)| is odd. The remaining vertices of̂Pj are colored alternatingly
white or black. By Lemma 11(2), the coloring can be extended to every vertex of the connector between
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Figure 5: Reduction toq-COLORING. The t groups of verticesV1, . . . , Vt represent thet groups of
variablesF1, . . . , Ft (each of size⌈log qp⌉). Each vertex of the clause patĥPj is connected to one group
Vi via a connector.

Vi andv: the coloring appearing onVi is the coloringµi corresponding to the group assignmentFi. For
every other vertexu on P̂j , the color ofu is black or white, thus Lemma 11(1) ensures that the coloring
can be extended to any connector onu.

As this procedure can be repeated to color the gadgetĈj for every clauseCj, we can completeγ to
a proper list-coloring ofG.

Lemma 13. If G has a proper list-coloringγ, thenφ is satisfiable.

Proof. Given γ we construct an assignment to the variables ofφ as follows. For every groupFi of
variables, ifγ colorsVi with a coloring that corresponds to a group assignment ofFi then we set this
assignment for the variables inFi. Otherwise we set all the variables inFi to false. We need to argue
that this assignment satisfies all the clauses ofφ.

Consider a clauseCj and the corresponding gadgetĈj . By a simple parity argument,̂Pj can not be
colored using only the colors black and white. Thus, some vertex v on P̂j is colored red. The vertexv
corresponds to a group assignment of some groupFi that satisfieŝCj . Asv is red, Lemma 11(3) implies
thatVi is colored with the coloringµi that corresponds to this assignment. The construction thenimplies
that our chosen assignment satisfiesCj. As this is true for every clause, this concludes the proof.

Observation 1. The vertices
⋃

i≤t Vi form a feedback vertex set ofG. Furthermore,pw(G) ≤ pt+ 4

Proof. Observe that after removing
⋃

i≤t Vi, all that is left are the gadgetŝCj which do not have any
edges between each other. Each such gadget is a tree and hence

⋃
i≤t Vi form a feedback vertex set of

G. If we place a searcher on each vertex of
⋃

i≤t Vi it is easy to see that each gadgetĈj can be searched
with 4 searchers. The pathwidth bound onG follows using Proposition 1.

Lemma 14. If q-L IST COLORING can be solved inO∗((q − ǫ)fvs(G)) time for someǫ < 1, thenSAT
can be solved inO∗((2 − δ)n) time for someδ < 1.

Proof. LetO∗((q − ǫ)fvs(G))= O∗(qλfvs(G)) time, whereλ = logq(q− ǫ) < 1. We choose a sufficiently
large p such thatδ′ = λ p

p−1 < 1. Given an instanceφ of SAT we construct a graphG using the
construction above, and run the assumedq-L IST COLORING. Correctness follows from Lemmata 12
and 13. By Observation 1 the graphG has a feedback vertex set of sizep⌈ n

⌊p log q⌋⌉. The choice ofp
implies that

λp⌈
n

⌊p log q⌋
⌉ ≤ λp

n

(p− 1) log q
+ p ≤ δ′

n

log q
+ p ≤ δ′′n,
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for someδ′′ < 1. Hence SAT can be solved in timeO∗(2δ
′′n) =O∗((2 − δ)n), for someδ > 0.

Finally, observe that we can reduceq-L IST-COLORING to q-COLORING by adding a cliqueQ =
{q1, . . . , qc} on q vertices toG and makingqi adjacent tov wheni /∈ L(v). Any coloring ofQ must
useq different colors, and without loss of generalityqi is colored with colori. Then one can complete
the coloring if and only if one can properly colorG using a color fromL(v) for eachv. We can add the
cliqueQ to the feedback vertex set—this increases the size of the minimum feedback vertex set byq.
Sinceq is a constant independent of the input, this yields Theorem 4.

7 Odd Cycle Transversal

An equivalent formulation of MAX CUT is to delete the minimum number of edges to make the graph
bipartite. We can also consider the vertex deletion versionof the problem. Anodd cycle transversalof a
graphG is a subsetS ⊆ V (G) such thatG\S is bipartite. In the ODD CYCLE TRANSVERSAL problem
we are given a graphG together with an integerk and asked whetherG has an odd cycle transversal of
sizek.

Theorem 5. If ODD CYCLE TRANSVERSAL can be solved inO∗((3 − ǫ)pw(G)) time for ǫ > 0, then
SAT can be solved inO∗((2 − δ)n) time for someδ > 0.

Construction. Givenǫ > 0 and an instanceφ of SAT we construct a graphG as follows. We chose an
integerp based just onǫ. Exactly howp is chosen will be discussed at the end of this section. We start
by grouping the variables ofφ into t groupsF1, . . . , Ft of size at most⌊log 3p⌋. Thust = ⌈ n

⌊log 3p⌋⌉. We
will call an assignment of truth values to the variables in a groupFi a group assignment. We will say
that a group assignment satisfies a clauseCj of φ if Cj contains at least one literal which is set to true by
the group assignment. Notice thatCj can be satisfied by a group assignment of a groupFi, even though
Cj also contains variables that are not inFi.

Now we describe an auxiliary gadget which will be very usefulin our construction. For two vertices
u andv by adding an arrowfrom u to v we will mean adding a pathua1a2a3v on four edges starting
in u and ending inv. Furthermore, we add four verticesb1, b2, b3 andb4 and edgesub1, b1a1, a1b2,
b2a2, a2b3, b3a3, a3b4, b4v, andb4v. Denote the resulting graphA(u, v). None of the vertices inA(u, v)
except foru andv will receive any further neighbours throughout the construction of G. The graph
A(u, v) has the following properties, which are useful for our construction.

• The unique smallest odd cycle transversal ofA(u, v) is {a1, a3}. We call this thepassiveodd
cycle transversal of the arrow.

• In A(u, v) \ {a1, a3}, u andv are in different connected components.

• The set{a2, v} is a smallest odd cycle transversal ofA(u, v) \ {u}. We call this theactiveodd
cycle transversal of the arrow.

The intuition behind an arrow fromu to v is that if u is put into the odd cycle transversal, thenv can
be put into the odd cycle transversal “for free.” When the active odd cycle transversal of the arrow is
picked, we say the arrow is active, otherwise we say the arrowis passive.

To constructG we maket · p paths,{Pi,j} for 1 ≤ i ≤ t, 1 ≤ j ≤ p. Each path has3m(tp + 1)
vertices, and the vertices ofPi,j are denoted bypℓi,j for 1 ≤ ℓ ≤ 3m(tp + 1). For a fixedi, the paths
{Pi,j : 1 ≤ j ≤ p} correspond to the setFi of variables. For every1 ≤ i ≤ t, 1 ≤ j ≤ p and
1 ≤ ℓ < 3m(tp + 1) we add three verticesaℓi,j , b

ℓ
i,j andqℓi,j adjacent to each other. We also add the

edgesaℓi,jp
ℓ
i,j andbℓi,jp

ℓ+1
i,j .

One can think of the vertices of the paths{Pi,j} layed out as rows in a matrix, where for every fixed
1 ≤ ℓ ≤ 3m(tp+1) there is a column{pℓi,j : 1 ≤ i ≤ t, 1 ≤ j ≤ p}. We group the colums three by three.
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In particular, For everyi ≤ t and0 ≤ ℓ < m(tp + 1) we define the setsP ℓ
i = {p3ℓ+1

i,j , p3ℓ+2
i,j , p3ℓ+3

i,j :

1 ≤ j ≤ p}, Aℓ
i = {a3ℓ+1

i,j , a3ℓ+2
i,j , a3ℓ+3

i,j : 1 ≤ j ≤ p}, Bℓ
i = {b3ℓ+1

i,j , b3ℓ+2
i,j , b3ℓ+3

i,j : 1 ≤ j ≤ p} and

Qℓ
i = {q3ℓ+1

i,j , q3ℓ+2
i,j , q3ℓ+3

i,j : 1 ≤ j ≤ p}.

For everyi ≤ t and0 ≤ ℓ < m(tp + 1) we make two new setsLℓ
i andRℓ

i of new vertices. Both
Lℓ
i andRℓ

i are independent sets of size5p, and we add all the edges possible betweenLℓ
i andRℓ

i . From
Lℓ
i we pick a special vertex̂lℓi and fromRℓ

i we pick r̂ℓi . We make all the vertices inAℓ
i adjacent to all

vertices ofLℓ
i , and we make all vertices inBℓ

i adjacent to all vertices ofRℓ
i . We makelℓi adjacent to

rℓ+1
i , except forℓ = m(tp+ 1)− 1.

We will say that a subsetS of P ℓ
i which picks exactly one vertex fromPi,j for every1 ≤ j ≤ p is

good. The idea is that there are3p ≥ 2h good subsets ofP ℓ
i , so we can make group assignments ofFi

correspond to good subsets ofP ℓ
i . For every good subsetS of P ℓ

i we add a cycleXℓ
i,S . The cycleXℓ

i,S

has length2p + 1. We select a vertex onXℓ
i,S and call itxℓi,S . For every vertexu ∈ P ℓ

i \ S we add an

arrow fromu to a vertex ofXℓ
i,S . We add arrows in such a way that every vertex ofXℓ

i,S is the endpoint
of exactly one arrow.

For everyi ≤ t and0 ≤ ℓ < m(tp + 1) we make a cycleY ℓ
i of length3p, notice that the length of

the cycle is odd. Every vertex ofY ℓ
i corresponds to a good subsetS of P ℓ

i . For each good subsetS of
P ℓ
i we add an arrow fromxℓi,S of the cycleXℓ

i,S to the vertex inY ℓ
i which corresponds toS.

We say that a good subset ofP ℓ
i is equal with a good subsetS′ of P ℓ′

i if for every 1 ≤ j ≤ t,
the distance alongPi,j between the vertex ofS on Pi,j and the vertex ofS′ on Pi,j is divisible by3.
Informally, S andS′ are equal if they look identical when we superimposeP ℓ

i ontoP ℓ′
i . To every group

assignment of variablesFi we designate a good subset ofP ℓ
i for everyℓ. We designate good subsets in

such a way that good subsets corresponding to the same group assignment are equal.
Finally, for every clauseCh, 1 ≤ h ≤ m, we will addtp + 1 cycles. That is, for every0 ≤ r ≤ tp

we add a cycleĈr
j . The cycle contains one vertex for everyi ≤ t and group assignment toFi, and

potentially one dummy vertex to make it have odd length. Going around the cycle counterclockwise
we first encounter all the vertices corresponding to group assignments ofF1, then all the vertices cor-
responding to group assignments ofF2, and so on. Fori ≤ t and every good subsetS of P rm+j

i that
corresponds to a group assignment ofFi that satisfiesCj we add an arrow fromxrm+j

i,S to the vertex on

Ĉr
j that corresponds to the same group assignment ofFi asS does. This concludes the construction of

G.
The intention behind the construction is that ifφ is satisfiable, then a minimum odd cycle transversal

of G can pick:

• One vertex from each triangle{aℓi,j, b
ℓ
i,j , q

ℓ
i,j} for each1 ≤ i ≤ t, 1 ≤ j ≤ p, 1 ≤ ℓ < 3m(tp+1).

There aretp(3m(tp+ 1)− 1) such triangles in total.

• One vertex from{p3ℓ+1
i,j , p3ℓ+2

i,j , p3ℓ+3
i,j } for each1 ≤ i ≤ t, 1 ≤ j ≤ p, 0 ≤ ℓ < m(tp+ 1). There

aretpm(tp+ 1) such triples.

• Two vertices from every arrow added,withoutcounting the starting point of the arrow. For each
i ≤ t and0 ≤ ℓ < m(tp + 1) there are2p3p arrows ending in some cycleXℓ

i,S . Hence there are
2p3ptm(tp+1) such arrows. For everyi ≤ t and0 ≤ ℓ < m(tp+1) there are3p arrows ending in
the cycleY ℓ

i . Hence there are3ptm(tp+ 1) such arrows. For every clauseCj there arem arrows
added for every group assignment that satisfies that clause.Let µ be the sum over all clauses of
the number of group assignments that satisfy that clause. The total number of arrows added is then
mµ+(2p+1)3ptm(tp+1). Thus the odd cycle transversal can pick2mµ+2(2p+1)3ptm(tp+1)
vertices from arrows.

• One vertexxℓi,S for everyi ≤ t and0 ≤ ℓ < m(tp+1). There aretm(tp+1) choices fori andℓ.

We let theα be the value of the total budget, that is the sum of the items above.

Lemma 15. If φ is satisfiable, thenG has an odd cycle transversal of sizeα.
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Proof. Given a satisfying assignmentγ to φ we construct an odd cycle transversalZ of G of sizeα
together with a partition ofV (G) \Z intoL andR such that every edge ofG \Z goes between a vertex
in L and a vertex inR. The assignment toφ corresponds to a group assignment of eachFi for 1 ≤ i ≤ t.
For every1 ≤ i ≤ t and0 ≤ ℓ < m(tp+1) we add toZ the good subsetS of P ℓ

i that corresponds to the
group assignment ofFi. Notice that for each fixedi, the sets picked fromP ℓ

i andP ℓ′
i are equal for any

ℓ, ℓ′. At this point we have picked one vertex from{p3ℓ+1
i,j , p3ℓ+2

i,j , p3ℓ+3
i,j } for each1 ≤ i ≤ t, 1 ≤ j ≤ p,

0 ≤ ℓ < m(tp+ 1).
For every fixed1 ≤ i ≤ t, 1 ≤ j ≤ p there are three cases. Ifp1i,j ∈ Z we putp2i,j into L andp3i,j

into R. If p2i,j ∈ Z we putp1i,j into R andp3i,j into L. If p3i,j ∈ Z we putp1i,j into L andp2i,j into R.
Now, for every4 ≤ ℓ ≤ 3m(tp + 1) such thatpℓi,j /∈ Z we putpℓi,j into the same set out of{L,R} as

pℓ
′

i,j where1 ≤ ℓ′ ≤ 3 andℓ ≡ ℓ′ mod 3.
For every1 ≤ i ≤ t, 0 ≤ ℓ ≤ m(tp+ 1) we putLℓ

i into L andRℓ
i into R. For every triple ofa, b, q

of pairwise adjacent vertices such thata ∈ Aℓ
i , b ∈ Bℓ

i , andq ∈ Qℓ
i , we proceed as follows. The vertex

a has a neighboura′ in P ℓ
i andb has a neighbourb′ in P ℓ

i . There is aj such thatb′ is the successor ofa′

onPi,j. Thus, there are three cases;

• a′ ∈ Z andb′ ∈ L, we puta in R, q in L andb in Z.

• a′ ∈ R andb′ ∈ Z, we puta in Z, q in R andb in L.

• a′ ∈ L andb′ ∈ R, we puta in R, q in Z andb in L.

For every1 ≤ i ≤ t, 0 ≤ ℓ ≤ m(tp+1) there are many arrows from vertices inP ℓ
i to vertices on cycles

Xℓ
i,S for good subsetsS of P ℓ

i . For each arrow, if its endpoint inP ℓ
i is in Z we add the active odd cycle

transversal of the arrow toZ, otherwise we add the passive odd cycle transversal of the arrow toZ. In
either case the remaining vertices on the arrow form a forest, and therefore we can insert the remaining
vertices of the arrow intoL andR according to which sets out of{L,R,Z} u andv are in.

For every1 ≤ i ≤ t, 0 ≤ ℓ ≤ m(tp + 1) there is exactly one setS such that the cycleXℓ
i,S only

has passive arrows pointing into it. This is exactly the setS which corresponds to the restriction ofγ to
Fi. Each cycleXℓ

i,S′ that has at least one arrow pointing into them already contain at least one vertex in
Z—the endpoint of the active arrow pointing into the cycle. Thus we can partition the remaining vertices
of Xℓ

i,S′ into L andR such that no edge has both endpoints inL or both endpoints inR. For the cycle

Xℓ
i,S we putxℓi,S into Z and partition the remaining vertices ofXℓ

i,S into L andR such that no edge has
both endpoints inL or both endpoints inR. We add the active odd cycle transversal in the arrow from
xℓi,S to the cycleY ℓ

i intoZ. For all other good subsetsS′ we add the passive odd cycle transversal in the

arrow fromxℓi,S to the cycleY ℓ
i into Z. Thus each cycleY ℓ

i contains one vertex inZ and the remaining

vertices ofY ℓ
i can be distributed intoL andR.

For every arrow that goes from a vertexxℓi,S into a cycleĈr
h we add the active odd cycle transversal

of the arrow toZ if xℓi,S ∈ Z and add the passive odd cycle transversal toZ otherwise. Again the
remaining vertices on each arrow can easily be partitioned into L andR such that no edge has both
endpoints inL or both endpoints inR. This concludes the construction ofZ. Since we have put the
vertices intoZ in accordance to the budget described in the construction itfollows that|Z| ≤ α. All that
remains to show, is that for each1 ≤ h ≤ m and0 ≤ r < n + 1, the cycleĈr

h has at least one active
arrow pointing into it.

The cycleĈr
h corresponds to the clauseCh. The clauseCh is satisfied byγ and hence it is satisfied

by the restriction ofγ to a groupFi. This restriction is a group assignment ofFi and hence it corresponds
to a good subsetS of P rm+h

i , which happens to be exactlyZ ∩ P rm+h
i . Thusxrm+h

i,S ∈ Z and since the

restriction ofγ toFi satisfiesCh there is an arrow pointing fromxrm+h
i,S and intoĈr

h. Since this arrow is
active, this concludes the proof.

Lemma 16. If G has an odd cycle transversal of sizeα, thenφ is satisfiable.
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Proof. Let Z be an odd cycle transversal ofG of sizeα. SinceG \ Z is bipartite, the vertices ofG \ Z
can be partitioned intoL andR such that every edge ofG \ Z has one endpoint inL and the other in
R. GivenZ, L andR, we construct a satisfying assignment toφ. Every arrow inG must contain at
least two vertices inZ, not counting the startpoint of the arrow. Let~Z be a subset ofZ containing two
vertices from each arrow, but no arrow start point. Observe that no two arrows have the same endpoint,
and therefore|~Z| is exactly two times the number of arrows inG. LetZ ′ = Z \ ~Z.

We argue that for any1 ≤ i ≤ t and0 ≤ ℓ < m(tp+1)we have|Z ′∩(Lℓ
i∪R

ℓ
i∪A

ℓ
i∪B

ℓ
i∪Q

ℓ
i∪P

ℓ
i )| ≥

4p. Observe that no vertices inLℓ
i , R

ℓ
i , A

ℓ
i , B

ℓ
i , Q

ℓ
i or P ℓ

i are endpoints of arrows, and hence they do not
contain any vertices of~Z. Suppose for contradiction that|Z ′ ∩ (Lℓ

i ∪Rℓ
i ∪Aℓ

i ∪ Bℓ
i ∪Qℓ

i ∪ P ℓ
i )| < 4p.

Then there is a vertex in̂l ∈ Lℓ
i \ Z

′, and a vertex̂r ∈ Rℓ
i \ Z

′. Without loss of generality,̂l ∈ L and
r̂ ∈ R. Furthermore, there is a1 ≤ j ≤ p such that

|Z ′ ∩ {p3ℓ+1
i,j , p3ℓ+2

i,j , p3ℓ+3
i,j , a3ℓ+1

i,j , a3ℓ+2
i,j , a3ℓ+3

i,j , b3ℓ+1
i,j , b3ℓ+2

i,j , b3ℓ+3
i,j , q3ℓ+1

i,j , q3ℓ+2
i,j , q3ℓ+3

i,j }| < 4.

Since{a3ℓ+1
i,j , b3ℓ+1

i,j , c3ℓ+1
i,j }, {a3ℓ+2

i,j , b3ℓ+2
i,j , c3ℓ+2

i,j } and{a3ℓ+3
i,j , b3ℓ+3

i,j , c3ℓ+3
i,j } form triangles and must

contain a vertex fromZ ′ each, it follows that each of these triangles contain exactly one vertex fromZ ′,
and thatZ ′ ∩ {p3ℓ+1

i,j , p3ℓ+2
i,j , p3ℓ+3

i,j } = ∅. Sincel̂ ∈ L andr̂ ∈ R, l̂ is adjacent to all vertices ofAℓ
i,j and

r̂ is adjacent to all vertices ofBℓ
i,j it follows thatAℓ

i,j \ Z
′ ⊆ R andBℓ

i,j \ Z
′ ⊆ L.

Hence, there are two cases to consider either (1){p3ℓ+1
i,j , p3ℓ+3

i,j } ⊆ L and p3ℓ+2
i,j ∈ R or (2)

{p3ℓ+1
i,j , p3ℓ+3

i,j } ⊆ R andp3ℓ+2
i,j ∈ L. In the first case observe that eithera3ℓ+2

i,j ∈ R or b3ℓ+2
i,j ∈ L

and hence eithera3ℓ+2
i,j p3ℓ+2

i,j or b3ℓ+2
i,j p3ℓ+3

i,j have both endpoints in the same set out of{L,R}, a con-

tradiction. The second case is similar, eithera3ℓ+1
i,j ∈ R or b3ℓ+1

i,j ∈ L and hence eithera3ℓ+1
i,j p3ℓ+1

i,j

or b3ℓ+1
i,j p3ℓ+2

i,j have both endpoints in the same set out of{L,R}, a contradiction. We conclude that

|Z ′ ∩ (Lℓ
i ∪Rℓ

i ∪Aℓ
i ∪Bℓ

i ∪Qℓ
i ∪ P ℓ

i )| ≥ 4p.
For any1 ≤ i ≤ t and0 ≤ ℓ < m(tp + 1), Y ℓ

i is an odd cycle soY ℓ
i contains a vertex inZ.

If Y ℓ
i contains no vertices ofZ ′ it contains a vertex from~Z and there is an active arrow pointing into

Y ℓ
i . The starting point of this arrow is a vertexxℓi,S for some good subsetS of P ℓ

i . Since the arrow is

active andxℓi,S is not the endpoint of any arrow, we know thatxℓi,S ∈ Z ′. Hence for any1 ≤ i ≤ t and

0 ≤ ℓ < m(tp+1) we have that either there is a good subsetS of P ℓ
i such thatxℓi,S ∈ Z ′ or at least one

vertex ofY ℓ
i is inZ ′.

The above arguments, together with the budget constraints,imply that for every1 ≤ i ≤ t and
0 ≤ ℓ < m(tp+1), we have|Z ′∩(Lℓ

i∪R
ℓ
i∪A

ℓ
i∪B

ℓ
i∪Q

ℓ
i∪P

ℓ
i )| = 4p and that|Z ′∩

⋃
{xℓi,S}∪V (Y ℓ

i )| = 1,

where the union is taken over all good subsetsS of P ℓ
i . It follows Z ′ ∩ P ℓ

i is a good subset ofP ℓ
i . Let

S = Z ′ ∩ P ℓ
i . The cycleXℓ

i,S has odd length, and hence it must contain some vertex fromZ. On the

other hand, all the arrows pointing intoXℓ
i,S are passive, soXℓ

i,S cannot contain any vertices from~Z.

ThusXℓ
i,S contains a vertex fromZ ′, and by the budget constraints this must bexℓi,S .

Now, consider three consecutive verticespℓi,j, p
ℓ+1
i,j , pℓ+2

i,j for some1 ≤ i ≤ t, 1 ≤ j ≤ p, 1 ≤ ℓ ≤
3m(tp + 1) − 2. We prove that at least one of them has to be inZ. Suppose not. We know that neither

l̂
⌊ℓ/3⌋
i , r̂⌊ℓ/3⌋i , l̂⌊ℓ/3⌋+1

i nor r̂⌊ℓ/3⌋+1
i are inZ. Thus, without loss of generality{l̂⌊ℓ/3⌋i , l̂

⌊ℓ/3⌋+1
i } ⊆ L and

{r̂
⌊ℓ/3⌋
i , r̂

⌊ℓ/3⌋+1
i } ⊆ R. There are two cases. Eitherpℓi,j ∈ R andpℓ+1

i,j ∈ L or pℓ+1
i,j ∈ L andpℓ+3

i,j ∈ R.

In the first case we obtain a contradiction since eitheraℓi,j ∈ R or bℓi,j ∈ L. In the second case we get

a contradiction since eitheraℓ+1
i,j ∈ R or bℓ+1

i,j ∈ L. Hence for any three consecutive vertices onPi,j , at
least one of them is inZ. Since the budget constraints ensure that there are at most|V (Pi,j)|/3 vertices
in Pi,j ∩ Z it follows from the pigeon hole principle, that there is an0 ≤ r < n + 1 such that for any
1 ≤ i ≤ t and1 ≤ h ≤ m and1 ≤ h′ ≤ m the setP rm+h

i ∩ Z equalsP rm+h′

i ∩ Z. Here equality is in
the sense of equality of good subsets ofP ℓ

i .
For every1 ≤ i ≤ t, P rm+1

i ∩ Z is a good subset ofP rm+1
i . If P rm+1

i ∩ Z corresponds to a group
assignment ofFi, then we set the variables inFi to this assignment. Otherwise we set all the variables
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in Fi to false. We need to argue that every clauseCh is satisfied by this assignment. Consider the cycle
Ĉr
h. Since it is an odd cycle, it must contain a vertex fromZ, the budget constraints and the discussion

above implies that this vertex is from~Z. Hence there must be an active arrow pointing intoĈr
h. The

starting point of this active arrow is a vertexxmr+h
i,S for somei and good subsetS of Pmr+h

i . The set

S corresponds to a group assignment ofFi that satisfiesCh. Since the arrow is activexmr+h
i,S ∈ Z ′,

and by the discussion above we have thatPmr+h
i ∩ Z ′ = S. Now,S = Pmr+h

i ∩ Z ′ andS is equal to
Pmr+1
i ∩Z ′ and hence the assignment to the variables ofFi satisfiesCh. Since this holds for all clauses,

this concludes the proof.

Lemma 17. pw(G) ≤ t(p+ 1) + 10p3p.

Proof. We show how to search the graph using at mostt(p+1)+10p3p searchers. The strategy consists
of m(tp+1) rounds numbered from round0 to roundm(tp+1)−1. Each round hast stages, numbered
from 1 to t. In the beginning of roundk there is a searcher onp3k+1

i,j and r̂ki for every1 ≤ i ≤ t,
1 ≤ j ≤ p. Let r and 1 ≤ h ≤ m be integers such thatk + 1 = rm + h.Recall, that as we go
aroundĈr

h counterclockwise we first encounter vertices corresponding to group assignments ofF1, then
to assignments ofF2 and so on. In the beginning of roundk we place a searcher on the first vertex on
Ĉr
h that corresponds to an assignment ofF1. If Ĉr

h contains a dummy vertex, we place a searcher on this
vertex as well. These two searchers will remain on their respective vertices throughout the round. In the
beginning of stages of roundk we will assume that the vertices on the cycleĈr

h corresponding to group
assignments ofFs′ , s′ < s have already been cleaned, and in the beginning of every stage s > 1, there
is a searcher standing on the first vertex corresponding to a group assignment ofFs.

In stages of roundk, we place searchers on all vertices ofP k
s , Ak

s , Bk
s , Qk

s , Lk
s , Rk

s , Y k
s and all

vertices of cyclesXk
s,S for every good subsetS of P k

s , on all vertices of arrows starting or ending in such

cycles, and on all vertices of̂Cr
h corresponding to group assignments ofFs. In total this amounts to less

than10p3p vertices.
In the last part of stages of roundk, we place searchers onp3(k+1)+1

s,j for every1 ≤ j ≤ p and on

r̂k+1
s . Then we remove all the searchers that were placed out in the first part of phases except for the

searcher on the last vertex on̂Cr
h corresponding to a group assignment ofFs. Unlesss = 1 there is

also a searcher on the last vertex onĈr
h corresponding to a group assignment ofFs−1. We remove this

searcher, and the next stage can commence. In the end of the last stage of roundk we remove all the
searchers from̂Cr

h. Then the last stage can commence. At any point in time, at most t(p + 1) + 10p3p

searchers are placed onG.

Proof (of Theorem 5).Suppose ODD CYCLE TRANSVERSAL can be solved inO∗((3 − ǫ)pw(G)) time
for ǫ < 1. Then there is anǫ′ < 1 such thatO∗((3 − ǫ)pw(G)) ≤ O∗(3ǫ

′pw(G)). We chosep large
enough such thatǫ′ · p+1

p−1 = δ′ < 1. Given an instance of SAT we construct an instance of ODD

CYCLE TRANSVERSAL using the above construction and the chosen value ofp. Then we solve the ODD

CYCLE TRANSVERSAL instance using theO∗((3− ǫ)pw(G)) time algorithm. Correctness is ensured by
Lemmata 15 and 16. Lemma 17 yields that the total time taken isupper bounded byO∗((3− ǫ)pw(G)) ≤

O∗(3ǫ
′pw(G)) ≤ O∗(3ǫ

′(t(p+1)+f(ǫ′))) ≤ O∗(3
ǫ′⌈ n

⌊p log 3⌋
⌉(p+1)

) ≤ O∗(3
ǫ′ n(p+1)

⌊p log 3⌋ ) ≤ O∗(3
ǫ′ n(p+1)

(p−1) log 3 ) ≤

O∗(3δ
′ n
log 3 ) ≤ O∗(2δ

′n) =. O∗((2 − δ)n) for δ < 1.

8 Partition Into Triangles

A triangle packingin a graphG is a collection of pairwise disjoint vertex setsS1, S2, . . . St in G such
that Si induces a triangle inG for every i. The size of the packing ist. If V (G) =

⋃
i≤t Si then

the collectionS1 . . . St is apartition ofG into triangles. In the TRIANGLE PACKING problem we are
given a graphG and an integert and asked whether there is a triangle packing inG of size at least
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t. In the PARTITION INTO TRIANGLES problem we are given a graphG and asked whetherG can
be partitioned into triangles. Notice that since PARTITION INTO TRIANGLES is the special case of
TRIANGLE PACKING when the number of triangles is the number of vertices divided by3, the bound of
Theorem 6 holds for TRIANGLE PACKING as well.

Theorem 6. If PARTITION INTO TRIANGLES can be solved inO∗((2 − ǫ)pw(G)) for ǫ > 0 thenSAT
can be solved inO∗((2 − δ)n) time for someδ > 0.

Construction. first show the lower bound for TRIANGLE PACKING and then modify our construction
to also work for the more restricted PARTITION INTO TRIANGLES problem. Given an instanceφ of
SAT we construct a graphG as follows. For every variablevi we make a pathPi on 2m(n + 1) + 1
vertices. We denote thel’th vertex ofPi by pli. For everyi we add a setTi of 2m(n + 1) vertices, and
let thel’th vertex ofTi be denotedtli. For every1 ≤ l ≤ 2m(n+ 1) we add the edgestlip

l
i andtlip

l+1
i .

For every clauseCj we addn + 1 gadgets corresponding to the clause. In particular, for every
0 ≤ r ≤ n we do the following. First we add the verticesĉrj andd̂rj and the edgêcrj d̂

r
j . For every variable

vi that occurs inCj positively we add the edgeŝcrjt
2(mr+j)
i and d̂rj t

2(mr+j)
i . For every variablevi that

occurs inCj negated we add the edgesĉrjt
2(mr+j)−1
i andd̂rjt

2(mr+j)−1
i . Doing this for everyr and every

clauseCj concludes the construction ofG.

Lemma 18. If φ satisfiable, thenG has a triangle packing of sizemn(n+ 1) +m(n+ 1).

Proof. Consider a satisfying assignment toφ. For every variablevi that is set to true and integer1 ≤ l ≤
m(n+ 1) we add{t2l−1

i , p2l−1
i , p2li } to the triangle packing. For every variablevi that is set to false and

integer1 ≤ l ≤ m(n + 1) we add{t2li , p
2l
i , p

2l+1
i } to the triangle packing. For every clauseCj there is

a literal set to true. Suppose this literal corresponds to the variablevi. Notice that ifvi occurs positively
in Cj , thenvi is set to true, and if it occurs negatively it is set to false. For each0 ≤ r ≤ n, if vi occurs

positively inCj , thent2(mr+j)
i has not yet been used in any triangle, so we can add{ĉrj , d̂

r
j , t

2(mr+j)
i } to

the triangle packing. On the other hand, ifvi occurs negated inCj thent2(mr+j)−1
i has not yet been used

in any triangle, so we can add{ĉrj , d̂
r
j , t

2(mr+j)−1
i } to the triangle packing. In totalmn(n+1)+m(n+1)

triangles are packed.

Lemma 19. If G has a triangle packing of sizemn(n+ 1) +m(n+ 1), thenφ satisfiable.

Proof. Observe that for anyj and r, every triangle that containŝcrj also containŝdrj and vice versa.

Furthermore, if we remove all the verticesĉrj andd̂rj for everyj andr from G we obtain a disconnected
graph withn connected components,G[Ti ∪ V (Pi)] for everyi. Thus, the only way to packmn(n +
1) +m(n + 1) triangles inG is to packmn(n + 1) triangles in each componentG[Ti ∪ V (Pi)] and in
addition make sure that every pair(ĉrj , d̂

r
j) is used in some triangle in the packing.

The only way to packmn(n + 1) triangles in a componentG[Ti ∪ V (Pi)] is to use every second
triangle of the form{tli, p

l
i, p

l+1
i }, except possibly at one point where two triangles on this form are

skipped. By the pigeon hole principle there is an0 ≤ r ≤ n such that for everyi, every second triangle
of the form{t2mr+l

i , p2mr+l
i , p2mr+l+1

i } for 1 ≤ l ≤ 2m is used. We make an assignment to the variables
of φ as follows. For everyi such that{t2mr+1

i , p2mr+1
i , p2mr+l+1

i } is used,vi is set to true, and otherwise
{t2mr+2

i , p2mr+2
i , p2mr+3

i } is used in the packing andvi is set to false. We prove that this assignment
satisfiesφ.

For everyj, the pair(ĉrj , d̂
r
j) is used in some triangle in the packing. This triangle eithercontains

t
2(mr+j)
i or t2(mr+j)−1

i for somei. If it containst2(mr+j)
i , thenvi occurs positively inCj. Furthermore,

since the triangle packing contains every second triangle of the form {t2mr+l
i , p2mr+l

i , p2mr+l+1
i } for

1 ≤ l ≤ 2m, it follows that the triangle packing contains{t2mr+1
i , p2mr+1

i , p2mr+l+1
i } and hencevi is

set to true. By an identical argument, if the triangle containing the pair(ĉrj , d̂
r
j) containst2(mr+j)−1

i then
vi occurs negated inCj andvi is set to false. This concludes the proof.
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We now modify the construction to work for PARTITION INTO TRIANGLES instead of TRIANGLE

PACKING. Given the graphG as constructed fromφ, we construct a graphG′ as follows. For every
1 ≤ i ≤ n and1 ≤ l ≤ m(n + 1) we make a cliqueQl

i on four vertices. The vertices ofQl
i are all

adjacent tot2li and tot2l−1
i . For everyi < n and and1 ≤ l ≤ m(n + 1) we make all vertices ofQl

i

adjacent to all vertices ofQl
i+1. Suppose that2n + 2 is p modulo 3 for somep ∈ {0, 1, 2}. We remove

p vertices fromQl
n for everyl ≤ m(n+ 1).

Lemma 20. G has a triangle packing of sizet if and only ifG′ can be partitioned into triangles.

Proof. In the forward direction, consider a triangle packing of size t in G as constructed in Lemma 18.
We can assume that the triangle packing has this form, because by Lemma 19 we have thatφ is satisfi-
able.

For every fixed1 ≤ l ≤ m(n+ 1), we proceed as follows. We know that there exists ani such that
both t2li andt2l−1

i are used in the packing. For everyi′ 6= i, exactly one out oft2li andt2l−1
i is used in

the packing. For each suchi′, we make a triangle containing the unused vertex out oft2li andt2l−1
i and

two vertices ofQl
i′ . Then we “clean up”Ql

1, . . . , Q
l
n as follows.

In particular, we start with the yet unused vertices ofQl
1. There are two of them. Make a triangle

containing these two vertices and one vertex ofQl
2. NowQl

2 has one unused vertex left. Make a triangle
containing this vertex and the two unused vertices ofQl

3. Continue in this fashion until arrive atQl
i. At

this point we have used0, 1 or 2 vertices ofQl
i a triangle containing some vertices inQl

i−1. The case
when we have used0 vertices ofQl

i also covers the case thati = 1. If we only used0 or 1 vertices ofQl
i,

then we add a triangle that contains3 vertices ofQl
i. If there are still unused vertices inQl

i, then their
number is either1 or 2. We make a triangle containing these vertices and1 or 2 of the unused vertices of
Ql

i+1. Now we proceed toQl
i+1 and continue in this manner until we reachQl

n. Since the total number
of vertices in

⋃
j≤nQ

l
j is 4n − p, we know that2n − 2 of these vertices are used for triangles with

vertices ofG, and2n + 2 − p is divisible by3 the process described above will partition all the unused
vertices of

⋃
j≤nQ

l
j into triangles.

In the reverse direction, we argue that in any partitioning of G′ into triangles, exactlyt triangles
must lie entirely withinG. In fact, we argue that for anyl ≤ m(n + 1) exactlyn − 1 vertices out of⋃

i≤n{t
2l
i , t

2l−1
i } are used in triangles containing vertices from

⋃
i≤nQ

l
i.

Pick 1 ≤ j ≤ m andr such thatl = mr + j. Exactly one out of
⋃

i≤n{t
2l
i , t

2l−1
i } is in a triangle

with ĉrj andd̂rj . Furthermore, for eachi ≤ n the vertexp2li must be in a triangle either containingt2li or

t2li . Hence, at mostn− 1 vertices out of
⋃

i≤n{t
2l
i , t

2l−1
i } are used in triangles containing vertices from⋃

i≤nQ
l
i. Furthermore, any triangle containingt2li or t2l−1

i } must either containp2li , ĉrj or some vertex in⋃
i≤nQ

l
i. Hence exactlyn− 1 vertices out of

⋃
i≤n{t

2l
i , t

2l−1
i } are used in triangles containing vertices

from
⋃

i≤nQ
l
i. Thus in the packing, exactly3t vertices inG′ are contained in triangles completely inside

G, and henceG has a triangle packing of sizet.

To complete the proof for PARTITION INTO TRIANGLES we need to bound the pathwidth ofG′.

Lemma 21. pw(G′) ≤ n+ 10.

Proof. We give a search strategy forG′ that usesn + 10 searchers. The strategy consists ofm(n + 1)
rounds and each round hasn stages. In the beginning of roundl, 1 ≤ l ≤ m(n+ 1), there are searchers
n searchers placed, one on each vertexp2l−1

i for everyi. Let r and1 ≤ j ≤ m be integers such that
l = mr+j. We place one searcher onĉrj and one on̂drj . These two searchers will stay put throughout the
duration of this round. In stagei of roundl we place searchers on all vertices ofQl

i andQl
i+1. Then we

place searchers ont2l−1
i , t2li , p2li andp2l+1

i . At the end of stagei we remove the searchers fromQl
i, t

2l−1
i ,

t2li andp2li . We then proceed to the next stage. At the end of the round we remove the searchers from̂crj
andd̂rj . Notice that now, there are searchers onp2l+1

i for everyi, and the next round can commence.

Lemmata 18,19,20 and 21 prove Theorem 6.
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9 Conclusion

We have showed that for a number of basic graph problems, the best known algorithms parameterized by
treewidth are optimal in the sense that base of the exponential dependence on treewidth is best possible.
Recall that for DOMINATING SET and PARTITION INTO TRIANGLES, this running time was obtained
quite recently using the new technique of fast subset sum convolutions [27]. Thus it could have been a
real possibility that the running time is improved for some other problems as well.

The results are proved under the Strong Exponential Time Hypothesis (SETH). While this hypothesis
is relatively recent and might not be accepted by everyone, our results at least make a connection between
rather specific graph problems and the very basic issue of better SAT algorithms. Our results suggest that
one should not try to find better algorithms on bounded treewidth graphs for the problems considered
in the paper: as this would disprove SETH, such an effort is better spent on trying to disprove SETH
directly in the domain of satisfiability. Finally, we suggest the following open questions for future work:

• Can we prove similar tight lower bounds under the restriction that the graph is planar? Or is it
possible to find improved algorithms on bounded treewidth planar graphs?

• Can we prove tight lower bounds for problems parameterized not by treewidth, but by something
else? Naturally, one should look at problems where the algorithm or the the running time suggests
that the best known algorithm is optimal. Possible candidates are theO(2k) time algorithm for
STEINER TREE with k terminals [2], theO(2k) time randomized algorithm fork-PATH [29],
and theO(2k) (resp.,O(3k)) time algorithms for EDGE BIPARTIZATION (resp., ODD CYCLE

TRANSVERSAL) [16, 22].

• For theq-COLORING problem, we were able to prove lower bounds parameterized bythe feedback
vertex set number. Can we prove such bounds for the other problems as well?
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