arXiv:1007.5450v1 [cs.DS] 30 Jul 2010

Known Algorithms on Graphs of Bounded Treewidth are
Probably Optimal

Daniel Lokshtanot Daniel Marx Saket Saurabh
August 2, 2010

Abstract

We obtain a number of lower bounds on the running time of dlgas solving problems on
graphs of bounded treewidth. We prove the results undertioa@Exponential Time Hypothesis
of Impagliazzo and Paturi. In particular, assuming that $Afinot be solved if2 — ¢)"m ™) time,
we show that for any > 0;

e INDEPENDENTSET cannot be solved if2 — ¢)™() |V (G)|°™) time,

e DOMINATING SET cannot be solved if8 — ¢)™(&) |V (G)|°M) time,

e MAx CuT cannot be solved if2 — €)™ |1V (G)|°M) time,

e ODD CYCLE TRANSVERSAL cannot be solved if3 — €)™(&) |V (G)|°™ time,
For anyq > 3, ¢-COLORING cannot be solved ify — ¢)™() |V (G)|°M) time,

e PARTITION INTO TRIANGLES cannot be solved if2 — ¢)™()|V(G)|°M) time.

Our lower bounds match the running times for the best knogaréghms for the problems, up to the
e in the base.

1 Introduction

It is well-known that many NP-hard graph problems can beesbgfficiently if thetreewidth(tw(G)) of
the input graph is bounded. For an example, an expository algorithm to s@lerTEX COVER and
INDEPENDENT SET running in time©*(4™(%)) is described in the algorithms textbook by Kleinberg
and Tardos[[15] (th&* notation suppresses factors polynomial in the input sizjle the book of
Niedermeier[[2D] on fixed-parameter algorithms presentalgarithm with running time?* (2t(©)).
Similar algorithms, with running times on the foi@t (c‘W(G)) for a constant, are known for many other
graph problems such asdMINATING SET, ¢-COLORING and ObD CyCLE TRANSVERSAL [1} 9,10,
[27]. Algorithms for graph problems on bounded treewidtipgsahave found many uses as subroutines
in approximation algorithms [7 8], parameterized aldoris [6,/19[26], and exact algorithms [12] 23,
28].

In this paper, we show that any improvement over the cugrdagst known algorithms for a number
of well-studied problems on graphs of bounded treewidthld/gield a faster algorithm for SAT. In
particular, we show if there exists an> 0 such that

e INDEPENDENT SET can be solved i0*((2 — ¢)W(&)) time, or
e DOMINATING SET can be solved i0*((3 — €)™(%)) time, or
e MAX CuUT can be solved i0*((2 — €)™(%)) time, or

“Department of Informatics, University of Bergen, Norwdwni el | o@ i . ui b. no
fSchool of Computer Science, Tel Aviv University, Tel Avisrhel.dmar x@s. bne. hu
*The Institute of Mathematical Sciences, Indiaket @ nsc. res.in

1

http://arxiv.org/abs/1007.5450v1

e ODD CYCLE TRANSVERSAL can be solved i0*((3 — ¢)™(©)) time, or
o there is a; > 3 such that;-COLORING can be solved i0*((q — €)™(©)) time, or
e PARTITION INTO TRIANGLES can be solved i0*((2 — €)™(%)) time,

then SAT can be solved i@*((2 — §)™) time for somes > 0. Heren is the number of variables in

the input formula to SAT. Such an algorithm would violate ®ikong Exponential Time Hypothesis
(SETH) of Impagliazzo and Paturi[13]. Thus, assuming SEFRE known algorithms for the mentioned
problems on graphs of bounded treewidth are essentiallpegbepossible.

To show our results we give polynomial time many-one redngtithat transform-variable boolean
formulase to instances of the problems in question. Such reductiangval-known, but for our results
we need to carefully control the treewidth of the graphs thatreductions output. A typical reduction
createsh gadgets corresponding to thevariables; each gadget has a small constant number ofertic
In most cases, this implies that the treewidth can be boubgied(n). However, to prove the a lower
bound of the formO*((2 — ¢)™(%)), we need that the treewidth of the constructed gragh is o(1))n.
Thus we can afford to increase the treewidth by at most onevguéable. For lower bounds above
O*((2 — €)™()), we need even more economical constructions. To understendifficulty, consider
the DOMINATING SET problem, here we want to say that ifdMINATING SET admits an algorithm
with running timeO*((3 — ¢)W(@)) = O*(21°eB-9W(G)) for somee > 0, then we can solve SAT on
input formulas withn-variables in timeO*((2 — §)™) for somed > 0. Therefore by naively equating
the exponent in the previous sentence we get that we neechidrgot an instance for @MINATING
SET whose treewidth is essential{&. In other words, each variable should increase treewidtleds/
than one. The main challenge in our reductions is to squeeze out as w@npinatorial possibilities
per increase of treewidth as possible. In order to contmltteewidth of the graphs we construct, we
upper bound th@athwidth(pw(G)) of the constructed instances and use the fact that fogeaphG,
tw(G) < pw(G). Thus all of our lower bounds also hold for problems on gragfiisounded pathwidth.

Complexity Assumption: TheExponential Time Hypothes{ETH) and its strong variant (SETH) are
conjectures about the exponential time complexityceBAT. The k-SAT problem is a restriction of
SAT, where every clause in input boolean formgldas at most literals. Lets;, = inf{¢ : k-SAT

can be solved i’ time}. The Exponential Time Hypothesis conjectured by Impagtia®aturi and
Zane [14] is thatss > 0. In [14] it is shown that ETH is robust, that ig > 0 if and only if there is a

k > 3 such thats; > 0. In the same year it was shown that assuming ETH the seqyep¢eéncreases
infinitely often [13]. Since SAT has &@*(2") time algorithm,{s;} is bounded by above by one, and
Impagliazzo and Paturi [13] conjecture thiais indeed the limit of this sequence. In a subsequent
paper[3], this conjecture is coined as SETH.

While ETH is now a widely believed assumption, and has beeudl @s a starting point to prove
running time lower bounds for numerous problems [%, 4/ 11173 SETH remains largely untouched
(with one exception[21]). The reason for this is two-foldrsE the assumption thdimy, ., sy = oo
is a very strong one. Second, when proving lower bounds ugderwe can utilize theSparsification
Lemmg14] which allows us to reduce from instances of 3-SAT whaeertumber of clauses is linear in
the number of variables. Such a tool does not exist for SEm#itlais seems to be a major obstruction for
showing running time lower bounds for interesting problemder SETH. We overcome this obstruction
by circumventing it — in order to show running time lower bdarfor algorithms on bounded treewidth
graphs sparsification is simply not required. We would likestress that our results make sense, even if
one does not believe in SETH. In particular, our results sti@t/one should probably wait with trying
to improve the known algorithms for graphs of bounded tredwuntil a faster algorithm for SAT is
around.

Related Work. Despite of the importance of fast algorithms on graphs ohbled treewidth or path-
width, there isno known natural graph problem for which we know an algorithntpeuforming the

2

naive approach on bounded pathwidth graphs. For treewtigéhsituation is slightly better: Alber et
al. [1] gave a0* (4™(©)) time algorithm for DDMINATING SET, improving over the naturad* (9™(©))
algorithm of Telle and ProskurowskKi [25]. Recently, van Ret al. [27] observed that one could use
fast subset convolution [2] to improve the running time afaaithms on graphs of bounded treewidth.
Their results include @*(3™(“)) algorithm for DOMINATING SET and aO*(2(%)) time algorithm

for PARTITION INTO TRIANGLES. Interestingly, the effect of applying subset convolutieas that the
running time for several graph problems on bounded treéngdiphs became the same as the running
time for the problems on graphs of bounded pathwidth.

In [27], van Rooij et al. believe that their algorithms arelmably optimal, since the running times
of their algorithms match the size of the dynamic prograngriable, and that improving the size of
the table without losing time should be very difficult. Ousu#is prove them right: improving their
algorithm is at least as hard as giving an improved algorithnS AT .

2 Preliminaries

In this section we give various definitions which we make uisi ¢the paper. Letz be a graph with
vertex setl’(G) and edge seE(G). A graphG’ is asubgraphof G if V(G') C V(G) and E(G") C

E(G). For subset’”’ C V(G), the subgrapiz’ = G[V'] of G is called asubgraph induced by’

if £(G") = {uv € E(G) | u,v € V'}. By N(u) we denote (open) neighborhoodwfn graphG that
is the set of all vertices adjacent #oand by N[u] = N(u) U {u}. Similarly, for a subseD C V, we

defineN[D] = UpepN|v].

A tree decompositionf a graphG is a pair(X,T) whereT isatree andt = {X; | i € V(T)}isa
collection of subsets df such thatl. (. ;) Xi = V(G), 2. for each edgey € E(G), {z,y} C X;
for somei € V(T'); 3. for eachr € V(G) the set{i | x € X;} induces a connected subtreelaf The
width of the tree decomposition isax;cy () {|X;| — 1}. Thetreewidthof a graphG is the minimum
width over all tree decompositions ¢f. We denote bytw(G) the treewidth of grapiz. If in the
definition of treewidth we restrict the trdéto be a path then we get the notion of pathwidth and denote
it by pw(G). For our purpose we need an equivalent definition of pattwat mixed searclyames.

In a mixed search game, a graphis considered as a system of tunnels. Initially, all edges ar
contaminated by a gas. An edgecisaredby placing searchers at both its end-points simultaneously
or by sliding a searcher along the edge. A cleared edge isnminated if there is a path from
an uncleared edge to the cleared edge without any searchats ertices or edges. A search is a
sequence of operations that can be of the following typgsplécement of a new searcher on a vertex;
(b) removal of a searcher from a vertex; (c) sliding a searohea vertex along an incident edge and
placing the searcher on the other end. A search strategynisng if after its termination all edges are
cleared. The mixed search number of a graph G, denotetsf¥), is the minimum number of searchers
required for a winning strategy of mixed searching@n Takahashi, Ueno and Kajitani [24] obtained
the following relationship betwegow(G) andms(G), which we use for bounding the pathwidth of the
graphs obtained in reduction.

Proposition 1 ([24]). For a graphG, pw(G) < ms(G) < pw(G) + 1.

An instance to SAT will always consists of a boolean formpla Cy A --- A C,,, Overn variables
{v1,...,v,} where each claugg; is OR of one or more literals of variables. We also denote asel@;
by the set{¢;, /5, ..., £ .} of its literals and denote by”;| the number of literals i”;. An assignment
7 to the variables is an element §f, 1}, and it satisfies the formula if for every clauseC; there
is literal that is assigned by 7. We say that a variable; satisfies a claus€’; if there exists a literal
corresponding ta@; in {¢1,45,... (.} and itis set td by 7. A group of variables satisfy a claugg if
there is a variable that satisfies the claG$eAll the sections in this paper follows the following patter
definition of the problem; statement of the lower bound; tmesion used in the reduction; correctness
of the reduction; and the upper bound on the pathwidth ofekaltant graph.

3

3 Independent Set

An independent seif a graphG is a setS C V(G) such thatz[S] contains no edges. In thebEPEN-
DENT SET problem we are given a gragh and the objective is to find an independent set of maximum
size.

Theorem 1. If INDEPENDENTSET can be solved it0*((2 — €)™(%)) for somer > 0 thenSAT can be
solved inO*((2 — §)™) time for some) > 0.

Construction. Given an instance to SAT we construct a grapfd as follows. We assume that every
clause has an even number of variables, if not we can add & smgable to all odd size clauses
and force this variable to false. First we describe the coogon of clause gadgets. For a clause
C = {l,ly,...,0.} we make a gadg@ as follows. We take two path§;P = ¢py,cps ..., cp. and
CP' = cpl,cply ... cpl havingc vertices each, and connegt; with cp/, for everyi. For each literal;
we make a vertex; in C and make it adjacent tep; andcp). Finally we add two vertices,,,+ and
Cend, SUCH thatstm is adjacent t@p; andc,,q is adjacent tep.. Observe that the S|ze of the maximum
independent set @ is ¢ + 2. Also, sincec is even, any independent set of size 2 in C must contain
at least one vertex i’ = {¢1,45,...,¢.}. Finally, notice that for any, there is an independent set of
sizec + 2 in C that containg; and none of; for j # .

We first construct a grap@l We maken pathsP, ..., P,, each path of lengtbm. Let the vertices
of the pathP; bep} ... p?™. The pathP; corresponds to the variablg. For every clause€’; of ¢ we
make a gadgef;. Now for every varlable)z, if v; occurs positively irC';, we add an edge betwepfx’
and the literal corresponding g in C If v; occurs negatively ir’;, we add an edge betwe@f\’
and the literal corresponding tgin C Now we construct the graph as follows. We take:. + 1 copies
of G, call themGy, ... G,11. For everyi < n we connectz; andG;. 1 by connectingp?m in G; with
p} in G+ for every;j < n. This concludes the construction Gf

Lemmal. If ¢ is satisfiable, theix has an independent set of sizen + >, |Ci| + 2)(n + 1).

Proof. Consider a satisfying assignmentito\We construct an independent $éh G. For every variable
v; if v; is set to true, then pick all the vertices on odd positionsafadl copies ofP;, that isp}, p3, p?
and so on. If; is false then pick all the vertices on even positions froncalies ofF;, that iSp?,pf,p?
and so on. Itis easy to see that this is an independent seteofisi(n + 1) containing vertices from all
the paths. We will now consider the gadg%tcorresponding to a claugg;. We will only consider the
copy of@j in G; as the other copies can be dealt identically. Let use chotse diteral/, in C; and
let v; be the corresponding variable. Consider the veftex @. If v; occurs positively irC'; thenv; is
true. Then/ does not contaim2j the only neighbour of, outside of(j’-. On the other hand if; occurs
negatlvely inC'; thenv; is false. In this casé does not contamQJ ! the only neighbour of, outside
of CJ. There is an independent set of sizg| + 2 in C that containg,, and none out of;, b # a.
We add this independent seti@and proceed in this manner for every clause gadget. By thekine
procesy) ... |Ci| +2)(n + 1) vertices from clause gadgets are added, tgielding that the size of
is (mn + Y., |Ci| +2)(n + 1), concluding the proof. O

Lemma?2. If G has an independent set of sizenn + 5. |C;i| + 2)(n + 1), then¢ is satisfiable.

i<m

Proof. Consider an independent set@fof size (mn +_,,, |Ci| +2)(n + 1). The set/ can contain
at mostm vertices from each copy a?; for everyi < n and at mostC;| + 2 vertices from each copy
of the gadget’;. Sincel must contain at least these many vertices from each pathlansecgadget in

order to contain atleagtnn + ;.. |Ci| +2)(n + 1) vertices, it follows that’ has exactlyn vertices
in each copy of each path;, and exactly|C;| + 2 vertices in each copy of each clause gad@etFor a
fixed j, consider the: + 1 copies of the pattP;. SinceP; in G; is attached tdP; in G4 thesen + 1

4

P

P, —©

25—1
Dy

vy
Figure 1: Reduction toNDEPENDENT SET: clause gadge@- attached to the paths representing the
variables.

copies ofP; together form a patt® having2m(n + 1) vertices. Sincél N P| = m(n + 1) it follows
that/ N P must contain every second vertex®fexcept possibly in one position whefe P skips two
vertices ofP. There are only: paths anch + 1 copies ofG1, hence the pigeon-hole principle yields that
in some copyG, of G, I contains every second vertex on every pBthFrom now onwards we only
consider such a cop¥,.

In G, for every: < n, I contains every second vertex@f. We make an assignment to the variables
of ¢ as follows. IfI contains all the odd numbered vertices Bfthen v; is set to true, otherwise
I contains all the even numbered verticesipfand v; is set to false. We argue that this assignment
satisfiesp. Indeed, consider any clauég, and look at the gadg&j. We know that/ contains|C| + 2
vertices froméj and hencd must contain a vertex, in corresponding to a literal af';. Supposé,
is a literal ofv;. Sincel containst,, if £, occurs positively inC';, thenI can not contairpfj and hence
v; is true. Similarly, if¢, occurs negatively il'; thenl can not contairpfj ~! and hence; is false. In

both cases; satisfiesC’; and hence all clauses ¢fare satisfied by the assignment. O
Lemma3. pw(G) < n +4.

Proof. We give a mixed search strategy to cle€amsingn + 3 searchers. For eveiywe place a searcher
on the first vertex of®; in G;. Then searchers slide along the patAs ... P, in m rounds. In round

j each searcherstarts orpfj ~!. Then, for every variable; that occurs positively ii';, the searcher
slide forward tOpfj. Observe that at this point there is a searcher on every bbeughof the gadge@.
This gadget can now be cleaned withdditional searchers. Aft@j is clean, the additiona searchers
are removed, and each of thesearchers on the patl#y, ... P, slide forward along these paths, such
that searchei stands orpf(]“). At that point, the next round commences. When the seardtames
cleaned’; they slide onto the first vertex d@?, ... P, in G. Then they proceed to cledr,, ..., G, 11
in the same way tha¥; was cleaned. Now applying Propositidn 1 we get fhatG) < n + 4. O

5

Figure 2: Reduction to DMINATING SET: group gadgeﬁ. The setS is shown by the circled vertices.

The construction, together with LemmaéaidTL, 2 Bhd 3 provesremal.

4 Dominating Set

A dominating sebf a graphG is a setS C V(G) such thatV' (G) = N[S]. In the DOMINATING SET
problem we are given a graggh and the objective is to find a dominating set of minimum size.

Theorem 2. If DOMINATING SET can be solved i0* ((3 — €)PV(%)) time for some > 0 thenSAT can
be solved ir0*((2 — §)") time for some& > 0.

Construction. Givene < 1 and an instance to SAT we construct a grapy’ as follows. We first
chose an integep depending only ore. Exactly howp is chosen will be discussed in the proof of
TheoreniR. We group the variables@fnto groupsFi, Fy, ..., F;, each of size at most = |log 37 |.
Hencet = [n/f]. We now proceed to describe a “group gadgét’Which is central in our construction.

To build the group gadgdt we makep pathsP, . . . , P,, where the pattf; contains the vertices;,
p? andp?. To each pathP; we attach twayuardsg; andg’, both of which are neighbours i, p? and
p3. When the gadgets are attached to each other, the guardswiilave any neighbours outside of their
own gadgetB, and will ensure that at least one vertex ouppfp? andp? are chosen in any minimum
size dominating set ofi. Let P be a vertex set containing all the vertices on the p&ihs. ., P,. For
every subsef of P that picksexactly onevertex from each patl#; we make two vertices s andz’,
wherez s is adjacent to all vertices d? \ S (all those vertices that are on paths and naf)randz’ is
only adjacent tacg. We conclude the construction of by making all the vertices’s (for every setS)
adjacent to each other, that is making them into a clique aaldihg a guard: adjacent tar’y for every
setS. Essentiallyr’y’s together withz forms a clique and all the neighbors:ofeside in this clique.

We construct the grap&y as follows. For every group; of variables we maken(2pt + 1) copies
of the gadgeté, call themﬁg for1 < j < m(2pt + 1). For every fixedi < t we connect the gadgets

BL,B2... ,Ef(zpt“) in a path-like manner. In particular, for evejy< m(2pt + 1) and everyl < p
we make an edge betweg#f in the gadgetB/ with p} in the gadgetB! ™. Now we make two new

6

N

=
=)
=

——

LT
LT
LT
o
8
LT
LT

Figure 3: Reduction to DMINATING SET: arranging the group gadgets. Note that m/{ + 7, thu36§
is attached to vertices iB?, ..., BY.

verticesh andh/, with adjacent td//, pj in Bl for everyi < t, j < pand top? in EZ”(Q’”H) for every

i1 <t,j <p. Thatis, foralll <i <t hisadjacent to first and last vertices of “long paths” obtdine
after connecting the gadgely', B2 .. §Zm(2pt+l) in a path-like manner.

For everyl < i <t, and to every aSS|gnment of the variables in the grbypve designate a subset
S of P in the gadgetB that picks exactly one vertex from each pdth Since there are at mosf
different assignments to the variablesf and there ar8? > 27 such setsS, we can assign anique
set to each assignment. Of course, the sam# sah correspond to one assignment of the grbupnd
some another assignment of the grdup Recall that the clauses ofareC1, . .., C,,. For every clause

C; we make2pt + 1 verticesc!, one for eact) < ¢ < 2pt + 1. The vertext!, will be connected to the
gadgetséé”“j for everyl < ¢ < t. In particular, for every assignment of the variables inghaup F;

that satisfy the claus€’;, we consider the subsgtof P that corresponds to the assignment. For every
0<l<2n+1,we makexig in Em“j adjacent to?f.. The best way to view this is that every cladse
has2pt + 1 private gadgetsB/, B/ ... B"*""*J in every group of gadgets correspondingis.
Now we have2pt + 1 vertices corresponding to the clauSg one each foonegadget from each group
gadgets corresponding fg’s. This concludes the construction Gt

Lemma4. If ¢ has a satisfying assignment, th@rhas a dominating set of sip+ 1)tm(2pt +1) + 1.

Proof. Given a satisfying assignmentowe construct a dominating sét of G that contains the vertex
h andexactlyp + 1 vertices in each gadgeBJ For each groug; of variables we consider the s&t
which corresponds to the restriction of the assignmenteaovéitiables inf;. From each gadgeEBZ? we
add the sef to D and also the vertex’; to D. It remains to argue thdD is indeed a dominating set.
Clearly the size is bounded Ry + 1)tm/(2pt + 1) + 1, as the number of gadgetstis(2pt + 1).
For a fixedi < ¢ andj consider the vertices on the patf) in the gadgetsBé for every /¢ <
m(2pt + 1). Together these vertices form a path of length(2pt + 1) and every third vertex of this

7

path is inS. Thus, all vertices on this path are dominated by otheraeston the path, except for the
first and last one. Both these vertices, however, are doadrath.

Now, fix some: < t andl < m(2pt + 1) and consider the gadgélf. SinceD contains some vertex
on the pathP;, we have that for every both g; andg; are dominated. Furthermore, for every Sétot
equal toS that picks exactly one vertex from eaéh, vertexz s+ is dominated by some vertex on some
P;—namely by all vertices it \ S* # (. The last assertion follows sineg;- is connected to all the
vertices on paths except. On the other hand;s is dominated by:'s, andz’s also dominates all the
other verticests. for S* # .S and the guard:.

The only vertices not yet accounted for are the vert’@{e‘sr everyj < mand/ < 2pt + 1. Fixaj
and a/ and consider the clauge;. This clause contains a literal set to true, and this liteoatesponds
to a variable in the group; for some: < ¢. Of course, the assignment fQ satisfiesC';. Let S be the
set corresponding to this assignmentyf By the construction oD, the dominating set containg; in
Eime“ andz’y is adjacent ta?ﬁ.. This concludes the proof. O

Lemmab. If G has a dominating set of siZg+ 1)tm(2pt + 1) + 1, theng has a satisfying assignment.

Proof. Let D be a dominating set a¥ of size at mostp + 1)tm(2pt + 1) + 1. SinceD must dominate
}L/’ hence without loss of generality we can assume thabntainsh. Furthermore, inside every gadget
Bf, D must dominate all the guards, namg;yandgg. for everyj < p, and alsor. ThusD contains at

leastp + 1 vertices from each gadgéf which in turn implies thatD contains exactly + 1 vertices
from each gadgeéf. The only wayD can dominatgy; andg; for every;j and in addition dominate
with only p + 1 verticesis ifD has one vertex from eadp;, ;7 < p and in addition contains some vertex
in N[z]. LetSbeD N Pin Ef. Observe that:s is not dominated byD N S. The only vertex inV[x]
that dominates 5 is 2’ and henceD containsz’s.

Now we want to show that for every < i < ¢ there existone(< ¢ < 2tp such that for fixed,
DN Pissame in all the gadgeé{”“’“, 1 <r < m. Consider a gadge@f and its foIIower,Ef“. Let
SbeD N PinBfandS’ be D N Pin B{'. Observe that ifs containsp? in Bf andp! in B/ then
we must havéy < a. We call a consecutive pafadif for some;j < p, D containspj in Ef andp?. in

B! andb < a. Hence for a fixed, we can at most havgy consecutive bad pairs. Now we mark all
the bad pairs that occur among the gadgets correspondirmre 5. This way we can mark onlg¢p
bad pairs. Thus, by the pigeon hole principle, there exists@ {0, . .., 2¢tp} such that there are no bad
pairs inB" " forall 1 <i < tandl <r < m.

We make an assignmentby reading off D N P in each gadgeﬁ?“l. In particular, for every
group F;, we considelS = D N P in the gadge@im‘“. This setS corresponds to an assignment/of
and this is the assignment 6} that we use. It remains to argue that every clalisés satisfied by this
assignment.

Consider the vertex;. We know that it is dominated by some, in a gadgeté;”“””. The setS
corresponds to an assignmentgfthat satisfies the clausgé.. BecauseD N P remains unchanged
in all gadgets fromB;"EJrl to Bz.m“’“, this is exactly the assignmedtrestricted to the grou@;. This
concludes the proof. O

Lemma6. pw(G) < tp+ O(3P)

Proof. We give a mixed search strategy to clean the graph tpitih O(3?) searchers. For a gadgét

we call the vertice$]1. andp‘j, 1 < j < p, asentry verticesandexit verticegespectively. We search the
graph inm(2tp + 1) rounds. In the beginning of rountthere are searchers on the entry vertices of the
gadgets@f foreveryi <t. Letl <a <mand0 < b < 2tp + 1 be integers such thdt= a + mb. We
place a searcher aij. Then, for eachi betweenl andp in turn we first put searchers on all vertices of
Ef and then remove all the searchers fréﬁexcept for the ones standing on the exit vertices. After all
gadgetsB! ... B have been cleaned in this manner, we can remove the searsiai’f To commence

8

the next round, the searchers slide from the exit positicﬁnﬁfdo the entry positions oﬁf“ for every

i. Intotal, at mostp + [V (B)| + 1 < tp + O(3P) searchers are used simultaneously. This together with
Propositiori L give the desired upperbound on the pathwidth. O

Proof (of Theorerfil2) Suppose DMINATING SET can be solved ir@*(()pW(G)) O*(3APW(&))
time, where\ = logs(3—¢) < 1. We choose large enough such that —£—- Lplog:ﬂ 10 5 forsomey’ < 1.
Given an instance of SAT we construct an instance OfMINATING SET using the above construction
and the chosen value pf Then we solve the DMINATING SET instance using th@*(3*P%(%)) time
algorithm. Correctness is ensured by Lemrhata 4 and 5. Létyiedds that the total time taken is upper
bounded byO* (3*PW()) < O*(3X W+ N)) < O* (3 TlesaT) < O*(37 ®e3) < O*(20™) =O*((2 —
d)™), for somed”, § < 1. This concludes the proof. O

5 Max Cut

A cutin a graphG is a partition of//(G) into V; andV;. Thecut-setof the cut is the set of edges whose
one end point is iy, and the other i;. We say that an edge esossingthis cut if it has one endpoint in
Vp and one inl/, that is, the edge is in the cut-set. T$ieeof the cut is the number of edges@hwhich
are crossing this cut. If the edges@fhave positive integer weights then theightof the cut is the
sum of the weights of edges which are crossing the cut. In thg KBuT problem we are given a graph
G together with an integerand asked whether there is a cut(of size at least. In the WEIGHTED
MAXx CuT problem every edge has a positive integer weight and thelges to find a cut of weight
at leastt.

Theorem 3. If MAX CuT can be solved i0*((2 — €)P"(©)) for somec > 0 thenSAT can be solved in
O*((2 — 6)™) time for some > 0.

Construction. Given an instance of SAT we first construct an instanc&,, of WEIGHTED MAX
CurT as follows. We later explain how to obtain an instance of ughted Max CuT from here.

We start with making a vertex,. Without loss of generality, we will assume that € 1} in every
solution. We make a verte; for each variable);. For every claus€’; we make a gadget as follows.
We make a patrP havmg 4|C;| vertices. All the edges oﬁ’ have weight3n. Now, we make the
first and last vertex oP adjacent tary with an edge of welgth Thus the patrP plus the edges
from the first and last vertex de to x¢ form an odd cycIeO]. We will say that the first, third, fifth,
etc, vertices are ondd positionson 13] while the remaining vertices are @ven positions For every
variablev; that appears positively i@'; we select a vertex at an even position (but not the last vertex)
on]3] and makev adjacent tg andp’s successor on}A?j with edges of weight. For every variable;
that appears negatively ifi; we select a vertex at an odd position orf?j and makev adjacent top
andp’'s successor omA’j with edges of weight. We make sure that each vertexﬁp receives an edge

at most once in this process. There are more than enougbeeuhf’j to accommodate all the edges
incident to vertices corresponding to variables in thesgty. We create such a gadget for each clause
and set = 1+ (12n + 1) 37", |Cy|. This concludes the construction.

Lemma?7. If ¢ is satisfiable, thewdr,, has a cut of weight at least

Proof. Suppose is satisfiable. We put, in V; and for every variable; we putv; in V; if v; is true and

v; in Vy if v; is false. For every claus€; we proceed as follows. Let us choose a true literal'pfind
suppose that this literal corresponds to a vepiesn]3] We put the first vertex o@j in V4, the second

in Vy and then we proceed ann‘Ag putting every second vertex intg andV; until we reachp;. The
successop’; of p; on 13] is put into the same set as. Then we continue aloné’; putting every second
vertex inV; andVj. Notice that even though'; may contain more than one literal that is set to true, we

9

only select one vertey; from the pathf’j and putp; and its successor on the same side of the partition.
It remains to argue that this cut has weight at léast
For every claus€’; all edges on the patR; except forpjp;. are crossing, and the two edgesip

from the first and last vertex 0@ are crossing as well. These edges contrid2ie|C;| to the weight
of the cut. We know thap; corresponds to a literal that is set to true, and this litecafesponds to a
variablev;. If v; occurs positively inC’; thenv; € Vi andp; is on an even position o@ Thus bothp;
and his successef; are inV; and hence both;p; andv;p’; are crossing, contributing to the weight of

the cut. For each of the remaining variablgsappearing irC’;, one of the two neighbours of on]3]

appear inVy and one inV;, so exactly one edge from) to P; is crossing. Thus the total weight of the
cutist =377 12n|Cy| + |Cj| + 1 = m + (12n + 1) 3772, |Cj]. This completes the proof. O

Lemma8. If G,, has a cut of weight at leagt theng is satisfiable.

Proof. Let (Vp, V1) be a cut ofG of maximum weight, hence the weight of this cut is at leas¥ithout
loss of generality, lety € V;. For every claus€’; at least one edge of the odd cy@; iS not crossing.

If more than one edge of this cycle is not crossing, then tte teeight of the cut edges incident to the
path]3j is at mosBn(4|C;| —1)+2n < 12|C;|. Inthis case we could change the partitidn, V1) such
that all edges oﬁj are crossing and the first vertexﬁf is in V1. Using the new partition the weight of
the crossing edges in the cyc(ﬁg is at leastl2|C;| and the edges not incident ﬁ’) are unaffected by
the changes. This contradicts tti&h, V;) was a maximum weight cut. Thus it follows that exactly one
edge of@ IS not crossing.

Given the cui1p, V1) we set each variable to true ifv; € V; andv; to false otherwise. Consider a
clauseC; and a variabley; that appears id’;. Letuv be the edge o@; that is not crossing. If there is a
variablev; adjacent to both andv, then it is possible that bothu andv;v are crossing. For every other
variablev; in C};, at most one of the edges frasm to 13] is crossing. Thus, the weight of the edges that
are crossing in the gadgé‘g is at most(12n + 1)|C;| + 1. Hence, to find a cut-set of weight at leat
G, we need to have crossing edgezﬁpwith sum of their weights exactly equal t1@n|C;| + |C;| + 1.

It follows that there is a verte¥; adjacent to both andv such that both;« andv;v are crossing.

If v; occurs inC'; positively thenu is on an even position and heneeg V. Sincev;u is crossing
it follows thatv; is true andC); is satisfied. On the other handif occurs inC; negated them is on an
odd position and hence, € V;. Sincev;u is crossing it follows that; is false and”; is satisfied. As
this holds for each clause individually, this concludespheof. O

For every edge € E(Gy), letw, be the weight ot in G,,. We construct an unweighted gragh
from G, by replacing every edge= uv by w. paths fromu to v on three edges. Lét" be the sum of
the edge weights of all edges,.

Lemma9. G has a cut of siz€W + t if and only ifG,, has a cut of weight at least

Proof. Given a partition o (G,,) we partitionV (G) as follows. The vertices @ that also are vertices
of V(@) are partitioned in the same way asliiiG,,). On each path of length, if the endpoints of the
path are in different sets we can partition the middle vestiof the path such that all edges are cut. If
the endpoints are in the same set we can only partition thdlenietrtices such th& out of the3 edges
are cut. The reverse direction is similar. O

Lemma10. pw(G) < n + 5.

Proof. We give a search strategy to cle@mwith n + 5 searchers. We place one searcher on each vertex
v; and one searcher afy. Then one can search the gadg/H\;sone by one. IrG,, it is sufficient to use
searchers for eacfff\j, whereas ir; after the edges have been replaced by multiple paths onebgss,

we need! searchers. This combined with Proposifidn 1 gives the e@ésipper bound on the pathwidth

of the graph. O

10

The construction, together with Lemm&ia 171,18, 9 land 10 pravesreni B.

6 Graph Coloring

A g-coloring of G is a functiony : V(G) — [g]. A g-coloring . of G is proper if for every edge
uwv € E(G) we haveu(u) # u(v). In the ¢-COLORING problem we are given as input a graph
and the objective is to decide wheth@rhas a proper-coloring. In the LST COLORING problem,
every vertexv is given a listL(v) C [¢] of admissible colors. Avroper list coloringof G is a function
w: V(G) — [q] such thai is a proper coloring of7 that satisfiegi(v) € L(v) for everyv € V(G). In
theg-LI1ST COLORING problem we are given a gragh together with a list.(v) C [¢] for every vertex
v. The task is to determine whether there exists a properdistiog of G.

A feedback vertex seff a graphG is a setS C V(G) such thatG \ S is a forest; we denote by
fvs(G) the size of the smallest such set. It is well-known tiwatG) < fvs(G) + 1. Unlike in the other
sections, where we give lower bounds for algorithms pararizetd bypw(G), the following theorem
gives also a lower bound for algorithms parameterizedvsyG). Such a lower bound follows very
naturally from the construction we are doing here, but nainfthe constructions in the other sections.
It would be interesting to explore whether it is possible tove tight bounds parameterized fws(G)
for the problems considered in the other sections.

Theorem 4. If g-COLORING can be solved ir0*((q — €)Vs(@) or O*((3 — ¢)PV(©)) time for some
e > 0, thenSAT can be solved il0*((2 — §)") time for some) > 0.

Construction. We will show the result for LsT COLORING first, and then give a simple reduction that
demonstrates that COLORING can be solved id*((q—¢)V(&)) time if and only ifg-LI1ST COLORING
can.

Depending or andg we choose a parametgr Now, given an instance to SAT we will construct
a graphG with a list L(v) for everyw, such thati' has a proper list-coloring if and only fis satisfiable.
Throughout the construction we will call coldfred, color 2-whiteand color3-black

We start by grouping the variables @into ¢ groupsfty, . . ., F; of size|log ¢”|. Thust = (m} .

We will call an assignment of truth values to the variables igroupF; a group assignmentWe will
say that a group assignment satisfies a clatisef ¢ if C; contains at least one literal which is set to
true by the group assignment. Notice thigtcan be satisfied by a group assignment of a gilBy@ven
though('; also contains variables that are notfin

For each groupF;, we make a seV; of p verticesv},...,v". The vertices inV; get full lists,
that is, they can be colored by any color[gf. The coloring of the vertices ii; will encode the group
assignment of;. There are? > 27l possible colorings of;. Thus, to each possible group assignment
of F; we attach a unique coloring &f. Notice that some colorings df; may not correspond to any
group assignments df;.

For each claus€’; of ¢, we make a gadgef;. The main part ofC; is a long pathP; that has
one vertex for each group assignment that sati@'yes!\lotice that there are at masft” possible group
assignments, and thatandp are constants independent of the inputThe list of every vertex or?j
is {red white, black}. We attach two verticegs'*"* and pj”d to the start and end oﬁ respectively,
and the two vertices are not counted as vertices of the Battself. The list ofpstert is {white}. If
|V (P;)| is even, then the list qfe"? is {white}, whereas ifV (P;)| is odd then the list ops"* is {black}.
The intention is that to properly coId@ one needs to use the color red at least once, and that once is
sufficient. The position of the red colored vertex on the d%tlencodes how the claugg is satisfied.

For every vertex on]3j we proceed as follows. The vertexorresponds to a group assignment to
F; that satisfies the claugg;. This assignment in turn corresponds to a coloring of théoes of V;.

Let this coloring beu;. We build aconnectorwhose role is to enforce thatcan be red only if coloring

11

Figure 4: Reduction tg-COLORING: the way the connector connects a vertgwith v for a particular
“bad color’x € [q] \ {ui(v})}. The left side shows the case= red = 1, the right sider = 2 (¢ = 4).

i appears ofv;. To build the connector, for each vertekxe V; and colorz € [g] \ {u:(v})} we do the
following.

e If zisred, then we add one vertey, for every colory except for red. We make, adjacent ta!
and the list ofw, is {red y}. Then we add a vertex which is adjacent to all vertices, andv,
and whose list is all ofg].

e If z is not red, we add two vertices, andw;, for each colory except for red. We make,
adjacent ta! andw,, adjacent tav,. The list ofw, is {z, red} while the list ofw;, is {y, red}.
Finally we add a vertex> adjacent tav;, for all y and tov. The list ofw is all of [q].

Notice that in the above construction we have reused the same, andw;, for many different vertices:
in each connector, there is a separate vertéor each vertex! € V; and colorz € [g]\ {x;(v!)}. Build-
ing a connector for each vertexon 13] concludes the construction of the clause ga«fgeand creating
one such gadget for each clause concludes the construét@nThe following lemma summarizes the
most important properties of the connector:

Lemma 11. Consider the connector corresponding a vertexn]3j and coloringp; of V;.

1. Any coloring onV; and any colorc € {white, black} on v can be extended to the rest of the
connector.

2. Coloring i; on'V; and any colore € {red white, black} on v can be extended to the rest of the
connector.

3. In any coloring of the connector,ifis red, thernu; appears ornv;.

Proof. 1. For each vertex! € V; and colorz € [g] \ {ui(v!)} we do the following.

e If z is red then in the construction (ffj we added a vertew, with list {y, red} for every color
y # red adjacent tojﬁ, and a vertexw with list [¢] adjacent tow, for everyy # red. If vﬁ is
colored red, then we color each vertey with y andw with red. Notice thatv is adjacent ta,
but v is colored either white or black, so it is safe to colored. If, on the other hand! is not
colored red, we can colav, red for everyy. Then all the neighbours af have been colored with
red, except fow which has been colored white or black. Thus it is safe to celevith the color
out of black and white which was not used to calor

12

e If = is not red, then in the construction 6@ we added two vertices), andwy, for each colory
except for red, and also added a vertexThe verticesu, are adjacent to! and for everyy # red
the verteXw; is adjacent tav,. Finally w is adjacent to al the vertices; and tov. For everyy
the list ofw, is {x, red} while the list ofwy, is {y, red}. The list ofw is [q]. If vt is colored with
z, then we letw, take color red andb;, take colory for everyy # red. We colorw with red. In
the case that! is colored with a color different fronz, we letw, be colored withz andw), be
colored red for every # red. Finally, all the neighours ab except forv have been colored red,
while v is colored with either black or white. According to the cotdrv we can either colotw
black or white.

2. We can assume thatis red, otherwise we are done by the previous statement. debr \eertex
vt € V; and colorx € [q] \ {ui(v!)} we do the following.

e If x is red then in the construction &fj we added a vertew, with list {y, red} for every color
y # red adjacent te!, and a vertexv with list [¢] adjacent tav, for everyy # red. Sincev, is
not colored red by:;, we can colorw, red for everyy. Then all the neighbours af including v
have been colored with red and it is safe to calowith white.

e If = is not red, then in the construction 6@ we added two vertices, andw;, for each colory
except for red, and also added a vertexThe verticesu, are adjacent to! and for everyy # red
the vertexwy, is adjacent tav,. Finally w is adjacent to all the vertices;, and tov. For everyy
the list of w,, is {z, red} while the list ofw;, is {y, red}. The list ofw is [g]. Sincey; colors v}
with a color different fromw we letw, be colored with: andw;, be colored red for every # red.
Finally, all the neighours ofv including v have been colored red so it is safe to calowhite.

3. Suppose for contradiction thatis red, but some verteuf € V; has been colored with a color

x # p;(vh). There are two cases. dfis red, then in the construction we added verticgsadjacent to
vf for every colory # red. Also we added a vertex adjacent taw and tow, for eachy # red. The
list of w, is {red y} and hencev, must have been coloregdfor everyy # red. But thenw is adjacent
to v which is colored red, and t@, which is coloredy for everyy # red. Thus vertexv has all colors
in its neighborhood, a contradiction. In the case whes not red, then in the construction we added
two verticesw, andwy, for eachy # red. Eachu, was adjacent to! and had{z, red} as its list. Since
vl is coloredz, all thew, vertices must be colored red. For every red, we have thaty, is adjacent
to w, and has{red y} as its list. Hence for every # red the vertexw,, is colored withy. But, in the
construction we also added a vertexadjacent ta and tOw; for eachy # red. Thus again, vertex
has all colors in its neighbourhood, a contradiction. O

Lemma12. If ¢ is satisfiable, thet has a proper list-coloring.

Proof. Starting from a satisfying assignment@®fve construct a coloring of G. The assignment to
corresponds to a group assignment to each gigufach group assignment corresponds to a coloring of
V;. For everyi, we lety color the vertices oV; using the coloring corresponding to the group assignment
of F;.

Now we show how to complete this coloring to a proper colorfigz. Since the gadget@j are
pairwise disjoint, and there are no edges going between, ihesnsufficient to show that we can complete
the coloring for every gadg&j. Consider the claus€;. The clause contains a literal that is set to true,
and this literal belongs to a variable in the grolip The group assignment df; satisfies the clause
C;. Thus, there is a vertex on]3j that corresponds to this assignment. We-get) as red (that isy
colorswv red), p;?m” is colored white an(;bj"d is colored with its only admissible color, namely black

if |V(]3j)| is even and white ifV(]3j)| is odd. The remaining vertices (EAfJ are colored alternatingly
white or black. By LemmBR311(2), the coloring can be extendegl/ery vertex of the connector between

13

P

[........] [U';"”“v%]

1% Vi
Figure 5: Reduction tg-COLORING. Thet groups of verticed, ..., V; represent the groups of
variablesFt, . .., F; (each of sizglog ¢”]). Each vertex of the clause pafh is connected to one group

V; via a connector.

V; andv: the coloring appearing o¥; is the coloringu; corresponding to the group assignmént For
every other vertex: on P;, the color ofu is black or white, thus Lemniall1(1) ensures that the coloring
can be extended to any connectorwon R

As this procedure can be repeated to color the gadgéor every clause’;, we can complete to
a proper list-coloring of=. O

Lemma13. If G has a proper list-coloringy, theng is satisfiable.

Proof. Given~ we construct an assignment to the variables) @ s follows. For every groug; of
variables, ify colorsV; with a coloring that corresponds to a group assignment;dghen we set this
assignment for the variables #}. Otherwise we set all the variables i to false. We need to argue
that this assignment satisfies all the clauses.of

Consider a claus€’; and the corresponding gadga}. By a simple parity argumenf?j can not be
colored using only the colors black and white. Thus, som&xeron 13] is colored red. The vertex
corresponds to a group assignment of some gigupat satisﬁe@j. As v is red, LemmaTl1(3) implies
thatV; is colored with the coloring:; that corresponds to this assignment. The constructionitheines
that our chosen assignment satisfigs As this is true for every clause, this concludes the proof.[

Observation 1. The verticeg J,, V; form a feedback vertex set@f Furthermorepw(G) < pt + 4

Proof. Observe that after removirig]igt V;, all that is left are the gadge@j which do not have any
edges between each other. Each such gadget is a tree ancwlggde form a feedback vertex set of

G. If we place a searcher on each vertex ff , V; it is easy to see that each gad@tcan be searched
with 4 searchers. The pathwidth bound Grfollows using Propositiohl1. O

Lemma 14. If ¢-LI1ST COLORING can be solved it0*((q — €)V(©)) time for some: < 1, thenSAT
can be solved i©*((2 — §)™) time for some < 1.

Proof. Let O*((g — €)V%))= 0*(¢*"(¥)) time, where\ = log,(q — ¢) < 1. We choose a sulfficiently
large p such thaty’ = Azer < L Given an instance of SAT we construct a graply using the
construction above, and run the assumeldisT COLORING. Correctness follows from Lemmdial12
and[13. By Observation 1 the graghhas a feedback vertex set of sige—~-—1. The choice of

o [plogq]
implies that

n n ,

Lplogqﬂ =2 tp=dn

A . 4p<é
ol p(p—l)logq+p log ¢

14

for somed” < 1. Hence SAT can be solved in tingg* (2°'") =O*((2 — 6)"), for somes > 0. O

Finally, observe that we can redugd.1ST-COLORING to ¢-COLORING by adding a clique®) =
{q1,-..,qc} onq vertices toG and makingg; adjacent tov wheni ¢ L(v). Any coloring of @ must
useq different colors, and without loss of generalityis colored with colori. Then one can complete
the coloring if and only if one can properly col6f using a color fromL(v) for eachv. We can add the
clique Q to the feedback vertex set—this increases the size of themmim feedback vertex set hy
Sinceq is a constant independent of the input, this yields Theddem 4

7 0Odd Cycle Transversal

An equivalent formulation of Mx CuT is to delete the minimum number of edges to make the graph
bipartite. We can also consider the vertex deletion versfahe problem. Arodd cycle transversaif a
graphG is a subsef C V(G) such thatz\ S is bipartite. In the ®D CYCLE TRANSVERSAL problem

we are given a grapy together with an integer and asked whethe¥ has an odd cycle transversal of
sizek.

Theorem 5. If ObDD CYCLE TRANSVERSAL can be solved i0*((3 — ¢)P¥(%)) time fore > 0, then
SAT can be solved i©*((2 — §)™) time for some > 0.

Construction. Givene > 0 and an instance of SAT we construct a grap@¥ as follows. We chose an
integerp based just or. Exactly howp is chosen will be discussed at the end of this section We star
by grouping the variables ef into ¢ groupsF?, . . ., F; of size at mostlog 37 |. Thust = [=I5
will call an assignment of truth values to the varlables imreug F; agroup as5|gnmentRNe WI|| say
that a group assignment satisfies a clatisef ¢ if C; contains at least one literal which is set to true by
the group assignment. Notice th@f can be satisfied by a group assignment of a grbyeven though
C; also contains variables that are notfn

Now we describe an auxiliary gadget which will be very us@iuur construction. For two vertices
u andv by adding an arrowfrom « to v we will mean adding a patha;azasv on four edges starting
in v and ending inv. Furthermore, we add four verticés, b, bs andb, and edgesiby, biai, aibs,
boag, asbs, bsas, agby, byv, andbyv. Denote the resulting graph(u, v). None of the vertices il (u, v)
except foru andv will receive any further neighbours throughout the corcdtam of G. The graph
A(u,v) has the following properties, which are useful for our comnston.

e The unigue smallest odd cycle transversalAgf, v) is {a1,as}. We call this thepassiveodd
cycle transversal of the arrow.

e In A(u,v) \ {a1,as}, uwandv are in different connected components.

e The set{as, v} is a smallest odd cycle transversal 4fu, v) \ {u}. We call this theactive odd
cycle transversal of the arrow.

The intuition behind an arrow from to v is that if u is put into the odd cycle transversal, thercan
be put into the odd cycle transversal “for free.” When thévacbdd cycle transversal of the arrow is
picked, we say the arrow is active, otherwise we say the ais@assive.

To constructG we maket - p paths,{P; ;} for 1 < <t,1 < j < p. Each path ha8m(tp + 1)
vertices, and the vertices &% ; are denoted by for 1 < ¢ < 3mf(tp + 1). For a fixed:, the paths
{P;; : 1 < j < p} correspond to the s€f; of varlables Forevery < i <t 1< j < pand
1 < /¢ < 3m(tp+ 1) we add three vertlcezsf], bfj andq” adjacent to each other. We also add the
edgesa! ;pf ; andbf pi*".

One can think of the vertices of the patfs; ;} layed out as rows in a matrix, where for every fixed
1 <€ < 3m(tp+1) thereis acolumr{pf,j :1<i<t1<j<p}. Wegroup the colums three by three.

15

In particular, For every < t and0 < ¢ < m(tp + 1) we define the set®/ = {p?’!,p}’*2 p}it* .

4 4
1<] < p} AZ _ {(13 —‘rl’ 7,3l;+27a?j+3 1<] < p} BZ _ {b3€+1,bf’§+2,bf’§+3 1<] < p} and

Qf = {a)5", qf§+2, qfﬁ“’ 1 <j<p}h

For everyi < t and0 < ¢ < m(tp + 1) we make two new sets! and R¢ of new vertices. Both
Lf and R! are independent sets of sizg, and we add all the edges possible betwggand Rf. From
L we pick a special verte¥ and fromR! we pick 7. We make all the vertices i/ adjacent to all
vertices ofL¢, and we make all vertices i?! adjacent to all vertices aRf. We makel! adjacent to

ritl, except forl = m(tp + 1) — 1.

We will say that a subsef of Pf which picks exactly one vertex fromR, ; for everyl < j < pis
good The idea is that there aB® > 2" good subsets aP/, so we can make group assignmentspf
correspond to good subsets f. For every good subsét of P/ we add a cycleX/ ;. The cycleX; g
has lengtiep + 1. We select a vertex o/ ¢ and call itz} ;. For every vertex. € P/ \ S we add an
arrow fromu to a vertex ofo ¢- We add arrows in such a way that every vertezé((ﬁq is the endpoint
of exactly one arrow. 7 ’

For everyi < tand0 < ¢ < m(tp + 1) we make a cycléff of length3?, notice that the length of
the cycle is odd. Every vertex af/ corresponds to a good subsebf PY. For each good subsstof
Pf we add an arrow from! ¢ of the cycleX ; to the vertex inv; which corresponds t§.

We say that a good subset &f is equalwith a good subses’ of Pf’ if for every1 < j < t,
the distance along; ; between the vertex of on P; ; and the vertex o’ on P, ; is divisible by 3.
Informally, S and.S’” are equal if they look identical when we superimp(%eonton'. To every group
assignment of variables; we designate a good subsetRf for every/. We designate good subsets in
such a way that good subsets corresponding to the same ggsigpment are equal.

Finally, for every claus€’,, 1 < h < m, we will add¢p + 1 cycles. That s, for everg < r < tp
we add a cycIeOA;". The cycle contains one vertex for every< ¢ and group assignment #;, and
potentially one dummy vertex to make it have odd length. @airound the cycle counterclockwise
we first encounter all the vertices corresponding to grogigasents offy, then all the vertices cor-
responding to group assignmentsof, and so on. Foi < ¢t and every good subsét of Pi’"m“ that
corresponds to a group assignmentrpthat satisfies”; we add an arrow from:;ffg*j to the vertex on

@}“ that corresponds to the same group assignme#t k.S does. This concludes the construction of
G.

The intention behind the construction is thadiis satisfiable, then a minimum odd cycle transversal
of G can pick:

e One vertex from each trlangl{ez”, bt e qf,j} foreachl <i<t,1<j<p,1<l<3m(tp+1).
There argp(3m(tp + 1) — 1) such triangles in total.

o One vertex from{p*!, p¥"2 2t} foreachl <i <t,1<j<p,0<¢<m(tp+1). There
aretpm(tp + 1) such triples.

e Two vertices from every arrow addedjthout counting the starting point of the arrow. For each
i < tand0 < ¢ < m(tp + 1) there are2p3P arrows ending in some cyclﬁﬁs. Hence there are
2p3Ptm(tp+1) such arrows. For every< t and0 < ¢ < m(tp+ 1) there are8? arrows ending in
the cycleY,’. Hence there arg’tm(tp + 1) such arrows. For every claugg there aren arrows
added for every group assignment that satisfies that clduetq: be the sum over all clauses of
the number of group assignments that satisfy that clausetotal number of arrows added is then
mu+ (2p+1)3Ptm(tp+1). Thus the odd cycle transversal can pieku+2(2p+1)3Ptm(tp+1)
vertices from arrows.

e One verteXQ:f’S for everyi < tand0 < ¢ < m(tp+ 1). There arém(tp + 1) choices fori and/.
We let thea be the value of the total budget, that is the sum of the iternogeb

Lemma15. If ¢ is satisfiable, theids has an odd cycle transversal of size
16

Proof. Given a satisfying assignmentto ¢ we construct an odd cycle transversalof GG of size «
together with a partition oV (G) \ Z into L and R such that every edge 6f \ Z goes between a vertex
in L and a vertex ilk. The assignment tp corresponds to a group assignment of eBcfor 1 < i < t.
Foreveryl < i < tand0 < ¢ < m(tp+ 1) we add toZ the good subsef of P/ that corresponds to the
group assignment df;. Notice that for each fixed the sets picked fron®! ande’ are equal for any
¢, €. Atthis point we have picked one vertex frofp?’ ™", p2°2 p?°t%} foreachl < i <t,1< j <p,
0</l<m(tp+1).

For every fixedl < i < t,1 < j < pthere are three cases.pllfj € Z we putpf,j into L andpij
into R. If p?; € Z we putp; ; into R andp} ; into L. If p?; € Z we putp; ; into L andp; ; into R.
Now, for every4 < ¢ < 3m(tp + 1) such thap| ; ¢ Z we putp; ; into the same set out dfL, R} as
pf:j wherel < ¢ < 3and/=/¢ mod 3.

Foreveryl <i<t,0</¢<m(tp+ 1) we putL!into L and R! into R. For every triple ofu, b, ¢
of pairwise adjacent vertices such tlhat A‘ be Be andq € Qf, we proceed as follows. The vertex
a has a neighbout’ in P/ andb has a nelghbour’ in Pf. There is g such that' is the successor af
on P; ;. Thus, there are three cases;

e d/ € Zandl/ € L,we putain R, qin Landbin Z.
e ¢/ € RandV/ € Z,we putain Z, gin Randbin L.
e ¢/ € LandV € R, we putain R, ¢in Z andbin L.

Foreveryl <i <t,0</¢<m(tp+1) there are many arrows from verticesi to vertices on cycles
X{ ¢ for good subsets of P/. For each arrow, if its endpoint it/ is in Z we add the active odd cycle
transversal of the arrow tg, otherwise we add the passive odd cycle transversal of toevdo Z. In
either case the remaining vertices on the arrow form a foaest therefore we can insert the remaining
vertices of the arrow intd. and R according to which sets out §f, R, Z} u andv are in.

Foreveryl <i <t,0</{¢ < m(tp+ 1) there is exactly one sét such that the cyclé(fs only
has passive arrows pointing into it. This is exactly theSethich corresponds to the restrictionoto
F;. Each cycIeXﬁS/ that has at least one arrow pointing into them already corglieast one vertex in
Z—the endpoint of the active arrow pointing into the cycleug e can partition the remaining vertices
of X & into L and R such that no edge has both endpointd.ior both endpoints iz. For the cycle
st we putm s into Z and partition the remaining vertlcesmfs into L and R such that no edge has
both endpomts i, or both endpoints irR. We add the active odd cycle transversal in the arrow from

27 s to the cycleY into Z. For all other good subsef& we add the passive odd cycle transversal in the
arrow froma;f’s to the cycleY;’ into Z. Thus each cycl&; contains one vertex i&f and the remaining
vertices ofY;’ can be distributed intd and R.

For every arrow that goes from a vertefgs into a cycleég we add the active odd cycle transversal
of the arrow toZ if azﬁs € Z and add the passive odd cycle transversa¥ totherwise. Again the
remaining vertices on each arrow can easily be partitionénl i and R such that no edge has both
endpoints inL or both endpoints irk. This concludes the construction &#f Since we have put the
vertices intoZ in accordance to the budget described in the constructiofiatvs that|Z| < «. All that
remains to show, is that for ea¢h< h < m and0 < r < n + 1, the cycleag has at least one active
arrow pointing into it.

The cycle@;; corresponds to the claugg,. The clause”}, is satisfied byy and hence it is satisfied
by the restriction ofy to a groupF;. This restriction is a group assignmentfGfand hence it corresponds
to a good subsef of P"*", which happens to be exactlyn P/"*". Thusz}"¢™" € Z and since the

restriction ofy to F; satisfie”}, there is an arrow pointing frong”h and into@g. Since this arrow is
active, this concludes the proof. O

Lemma 16. If G has an odd cycle transversal of sizethen¢ is satisfiable.

17

Proof. Let Z be an odd cycle transversal @fof sizea. SinceG \ Z is bipartite, the vertices aff \ Z
can be partitioned intd, and R such that every edge @f \ Z has one endpoint i, and the other in
R. GivenZ, L and R, we construct a satisfying assignment¢to Every arrow inG must contain at
least two vertices i/, not counting the startpoint of the arrow. Létbe a subset of containing two
vertices from each arrow, but no arrow start point. Obsemaéno two arrows have the same endpoint,
and thereforeZ| is exactly two times the number of arrowséh Let 2’ = Z \ Z.

We argue that forany < i < tand0 < ¢ < m(tp+1) we have Z'N(L{URIUALUBIUQUPY)| >
4p. Observe that no vertices itf, RY, A, Bf, Q¢ or P! are endpoints of arrows, and hence they do not
contain any vertices of . - Suppose for contradiction thgt’ N N(LEURC U AU BfUQS U P£)| < 4.
Then there is a vertex ihe L{\ Z', and a vertex € Rf\ Z'. Without loss of generality;, € L and
7 € R. Furthermore, there isi< j < p such that

\Z’ﬂ{p3e+1,pf’€+2,pf’§+3 30+1 a3€+2 a3€+3 b3€+1 b3€+2 b3€+3 30+1 3042 3€+3}‘ < 4.

Qg Qg Qg 05 05 05 5 5 5

Since{a; ™, b5 T {ad 20202, 20T and{a T b3, ¢) form triangles and must
contain a vertex fron¥’ each, it foIIows that each of these trlangles contain exaxte vertex fromz’,
and thatz’ 0 {p?™, p25t2, p}its) = 0. Sincel € L and7 € R, 1 is adjacent to all vertices of! ; and
7is adjacent to all vertices d; it follows that A ; \ Z' C RandB;; \ Z’' C L.

Hence, there are two cases to consider erther{@ffl,p?";”} C L and p?’”2 € Ror (2
P} p}H) € R andpl™? € L. In the first case observe that eithel™* € R or b}'"* € L
and hence erthem?’”Qp‘;“;Jr2 or 52572p?"* have both endpoints in the same set ou(be} a con-
tradiction. The second case is similar, eitagf™ € R or v € L and hence eithes}’ "' p}*!
or b p?"* have both endpoints in the same set out{btR}, a contradiction. We conclude that
1Z' 0 (LY URCU AL U B U QLU PY)| > 4p.

Foranyl < i < tand0 < ¢ < m(tp + 1), Y is an odd cycle s&;’ contains a vertex irf.

If Yé contains no vertices of’ it contains a vertex fronZ and there is an active arrow pointing into
Yf The starting point of this arrow is a verte:fi ¢ for some good subsét of P‘ Since the arrow is
active andxﬁs is not the endpoint of any arrow, we know théts € Z'. Hence foranyi < i <t and

0 < £ < m(tp+ 1) we have that either there is a good sulef P/ such thatr ; € Z’ or at least one
vertex of Y/ isin Z'.

The above arguments, together with the budget constramfdy that for everyl < i < ¢ and
0 < ¢ < m(tp+1), we have Z'N(L{UR{UA{UB{UQ{UF/)| = 4pand that z'n{U{z{ s }uV (V)| = 1,
where the union is taken over all good subsgtsf P!. It follows Z’ N P/ is a good subset aP/. Let
S=2n Pe The cycIeXf has odd length, and hence it must contain some vertex #for@®n the
other hand, all the arrows pointing mﬂé g are passive, s& ¢ g cannot contain any vertices frodh.
ThusXﬁS contains a vertex fron@’, and by the budget constraints this mustzﬁg.

Now, consider three consecutive vertiqég, pf‘;l, pf+2 forsomel <i<t,1<j<p 1</l
3m(tp + 1) — 2. We prove that at least one of them has to b& irSuppose not. We know that neither
Ll UL U nor s8I are inZ. Thus, without loss of generalitgit/®' 71/*/71} ¢ I and
(FU3) R R There are two cases. Eithgl, € Randp{t' € Lorp/*' € Landp{*® € R.

In the first case we obtain a contradiction since erttfere Ror b - € L. Inthe second case we get
a contradiction since eltheu‘“rl € Ror bg+1 € L. Hence for any three consecutive verticesop, at
least one of them is i&. Srnce the budget constraints ensure that there are atm@st;)|/3 vertices
in P; ; N Z it follows from the pigeon hole principle, that there is@r< » < n + 1 such that for any
1<i<tandl <h<mandl <& <mthe sett’™" n Z equalsP"™ " n Z. Here equality is in
the sense of equality of good subsetsﬂﬁf

Foreveryl <i <t, P/ n Zis agood subset a?/™**. If P+ N Z corresponds to a group
assignment of;, then we set the variables i to this assignment. Otherwise we set all the variables

18

in F; to false. We need to argue that every cladges satisfied by this assignment. Consider the cycle
@;“L. Since it is an odd cycle, it must contain a vertex fr@mthe budget constraints and the discussion
above implies that this vertex is fromd. Hence there must be an active arrow pointing iﬁ'g;o The
starting point of this active arrow is a verteX's ™" for somei and good subsef of P/, The set

S corresponds to a group assignmentrfthat satisfie<”),. Since the arrow is actlvem’”rh e 7,

and by the discussion above we have tRA&t " 1 Z’ = S. Now, S = P/ ™" n 7’ ands is equal to
PZ.’"’”rl N Z' and hence the assignment to the variableB;&fatisfies”;,. Since this holds for all clauses,
this concludes the proof. O

Lemmal7. pw(G) < t(p+ 1)+ 10p3P.

Proof. We show how to search the graph using at m@st- 1) + 10p3? searchers. The strategy consists
of m(tp+ 1) rounds numbered from rouricto roundm (tp+ 1) — 1. Each round hasstages, numbered
from 1 to ¢t. In the beginning of round: there is a searcher qvfk“ andr foreveryl < ¢ < t,
1 <j <p Letrandl < h < m be integers such thdat+ 1 = rm + h Recall, that as we go
aroundGT counterclockwise we first encounter vertices correspantbrgroup assignments &f , then
to assignments af; and so on. In the beginning of roudwe place a searcher on the first vertex on
Ch that corresponds to an assignmentf If Ch contains a dummy vertex, we place a searcher on this
vertex as well. These two searchers will remain on theirgesye vertices throughout the round. In the
beginning of stage of roundk we will assume that the vertices on the cyélﬁcorresponding to group
assignments of/, s’ < s have already been cleaned, and in the beginning of everg stagl, there
is a searcher standing on the first vertex corresponding towpgssignment af.

In stages of round k, we place searchers on all verticesRff, A*, B, Q%, L*, RF, Y¥ and all
vertices of cyclesy f ¢ for every good subsef of P¥, on all vertices of arrows starting or ending in such

cycles, and on all vertices ég corresponding to group assignments-f In total this amounts to less
than10p3P vertices.

In the last part of stage of roundk, we place searchers @f:i (FEDFL for everyl < j < pandon
71, Then we remove all the searchers that were placed out inrieoéirt of phase except for the
searcher on the last vertex ﬁ‘j; corresponding to a group assignment/f Unlesss = 1 there is
also a searcher on the last vertex(ﬁpcorresponding to a group assignmentrf ;. We remove this
searcher, and the next stage can commence. In the end oktlstdge of round we remove all the
searchers fror@;. Then the last stage can commence. At any point in time, at ffs 1) + 10p3P
searchers are placed 6h O

Proof (of TheorerEIS)Suppose ©D CYCLE TRANSVERSAL can be solved i0*((3 — ¢)P¥()) time
for e < 1. Then there is a@’ < 1 such thatO*((3 — ¢)PW(&)) < O*(3¢PW(©)). We chosep large
enough such that' - p“ = ¢’ < 1. Given an instance of SAT we construct an instance obO
CYCLE TRANSVERSAL usmg the above construction and the chosen valge ®hen we solve the OD
CYCLE TRANSVERSAL instance using th@*((3 — ¢)P¥(%)) time algorithm. Correctness is ensured by
Lemmatd 15 and 16. Lemrfial17 yields that the total time takeppsr bounded bg* (3 — ¢)PW(@)) <

O*(ge’pW(G)) < O*(3e'(t(p+1)+f(e’))) < O*(ge'(m]@ﬁ‘l)) < O*(gﬁl%) < O*(Be/%) <
O*(3°T3) < O*(2°7) =. O*((2 — 6)") for 6 < 1. O

8 Partition Into Triangles

A triangle packingin a graphG is a collection of pairwise disjoint vertex sefs, S,S; in G such
that S; induces a triangle ity for everyi. The size of the packing is If V(G) = (J,-, Si then
the collectionS; ... S; is apartition of G into triangles In the TRIANGLE PACKING problem we are
given a graphG and an integet and asked whether there is a triangle packing-if size at least

19

t. In the RARTITION INTO TRIANGLES problem we are given a graph and asked whethe® can
be partitioned into triangles. Notice that sinceRPITION INTO TRIANGLES is the special case of
TRIANGLE PACKING when the number of triangles is the number of vertices diviole3, the bound of
Theoreni6 holds for RIANGLE PACKING as well.

Theorem 6. If PARTITION INTO TRIANGLES can be solved i0*((2 — €)P¥() for ¢ > 0 thenSAT
can be solved i0*((2 — §)™) time for som& > 0.

Construction. first show the lower bound forRIANGLE PACKING and then modify our construction
to also work for the more restrictedaRTITION INTO TRIANGLES problem. Given an instancg of
SAT we construct a grap&y' as follows. For every variable; we make a pattP; on2m(n + 1) + 1
vertices. We denote théth vertex of P; by pl. For everyi we add a sef; of 2m(n + 1) vertices, and
let thel'th vertex of 7; be denoted!. For everyl <1 < 2m(n + 1) we add the edgesp! andt!p/ ™.

For every clause”’; we addn + 1 gadgets corresponding to the clause. In particular, foryeve

0 < r < nwe do the following. First we add the vertic@;sandc@? and the edgé;?c?;. For every variable
v; that occurs inC; positively we add the edg@tf(mr“) and c@?tf(mr”). For every variabley; that
occurs inC; negated we add the edg@s?(mrﬂ)=

clauseC’; concludes the construction 6f.

! andcfgtf(mr”)_l. Doing this for every- and every

Lemma 18. If ¢ satisfiable, ther¥ has a triangle packing of sizen(n + 1) + m(n + 1).

Proof. Consider a satisfying assignmenigoFor every variable; that is set to true and integér< [<
m(n + 1) we add{t?~!, p?’~* p?'} to the triangle packing. For every variahlgthat is set to false and
integerl <1 < m(n + 1) we add{t?, p?, p?'} to the triangle packing. For every clauseg there is
a literal set to true. Suppose this literal correspondseovéiriablev;. Notice that ifv; occurs positively
in Cj, thenv; is set to true, and if it occurs negatively it is set to falser €ach0 < r < n, if v; occurs
positively inC;, thentf(mrﬂ) has not yet been used in any triangle, so we can{atl A;“-, tf“mﬂ N to
the triangle packing. On the other handy;ifoccurs negated i6; thentf(mT”)1 has not yet been used

in any triangle, so we can add’, Jg, t?(m’"”)_l} to the triangle packing. In totahn(n+1)+m(n+1)

triangles are packed. U

Lemma 19. If G has a triangle packing of sizen(n + 1) + m(n + 1), then¢ satisfiable.

Proof. Observe that for any andr, every triangle that contairﬁ; also contains@f and vice versa.

Furthermore, if we remove all the vertic@j‘sandc@? for every;j andr from GG we obtain a disconnected
graph withn connected component&[T; U V (P;)] for everyi. Thus, the only way to packn(n +
1) +m(n + 1) triangles inG is to packmn(n + 1) triangles in each compone67; U V' (F;)] and in
addition make sure that every p⁢, d;) is used in some triangle in the packing.

The only way to packnn(n + 1) triangles in a componer@[T; U V' (F;)] is to use every second
triangle of the form{tl,pﬁ,p§+l}, except possibly at one point where two triangles on thisnfare

7

skipped. By the pigeon hole principle there istar » < n such that for every, every second triangle
of the form {27+t p2mr+l p2mritl for 1 < | < 2mis used. We make an assignment to the variables

v g v g
of ¢ as follows. For every such thatt2™"+1, p2mr+1 p2mr+it1y s ysedy; is set to true, and otherwise

{g2mrt2 p2mr2 g2mrtdh s used in the packing and is set to false. We prove that this assignment

satisfiesp.

For everyj, the pair(E‘;,d;T) is used in some triangle in the packing. This triangle eittwtains
£20mrH3) op ¢2mTH)=1 for somei. If it containst>"™), thenw; occurs positively inC;. Furthermore,
since the triangle packing contains every second trianfjtbeform {277+ p2mrtl 2mrtly for

7) g
1 <1< 2m, it follows that the triangle packing contaifg’™ !, p?m 1 p2mr+i+11 and hence; is
set o true. By an identical argument, if the triangle canitgg the pair(c}, c?;) containst?(””””)_1 then
v; 0ccurs negated i@'; andv; is set to false. This concludes the proof. O

20

We now modify the construction to work folrARTITION INTO TRIANGLES instead of RIANGLE
PACKING. Given the graphG as constructed from, we construct a grapt’ as follows. For every
1 <i<mnandl <! < m(n+1)wemake a cquueQﬁ on four vertices. The vertices «ijﬁ are all
adjacent ta? and tot?~'. For everyi < n and andl < [< m(n + 1) we make all vertices of)!
adjacent to all vertices 032§+1. Suppose than + 2 is p modulo 3 for some € {0, 1,2}. We remove
p vertices fromQ!, for everyl < m(n + 1).

Lemma 20. G has a triangle packing of sizeif and only if G’ can be partitioned into triangles.

Proof. In the forward direction, consider a triangle packing okgsim G as constructed in Lemniall8.
We can assume that the triangle packing has this form, bedaukemmd 1P we have thatis satisfi-
able.

For every fixedl <[< m(n + 1), we proceed as follows. We know that there exists amnch that
botht? andt?~! are used in the packing. For evefy# i, exactly one out of? andt*~! is used in
the packing. For each suéh we make a triangle containing the unused vertex omflaindt?l‘l and
two vertices ofQ!,. Then we “clean up®)!, ..., Q! as follows.

In particular, we start with the yet unused verticesQ4f There are two of them. Make a triangle
containing these two vertices and one vertek)bf Now Q) has one unused vertex left. Make a triangle
containing this vertex and the two unused vertice®f Continue in this fashion until arrive &)!. At
this point we have used, 1 or 2 vertices of@Q! a triangle containing some vertices@_,. The case
when we have usetlvertices ofQ)! also covers the case that 1. If we only used) or 1 vertices ofQ)!,
then we add a triangle that contaiBwertices of@!. If there are still unused vertices @, then their
number is eithet or 2. We make a triangle containing these vertices hod2 of the unused vertices of
@', ;. Now we proceed t@)., , and continue in this manner until we rea@). Since the total number
of vertices intgn Qé- is 4n — p, we know that2n — 2 of these vertices are used for triangles with
vertices ofG, and2n + 2 — p is divisible by3 the process described above will partition all the unused
vertices of J, ., Q" into triangles.

In the reverse direction, we argue that in any partitionifg>6into triangles, exactly triangles
must lie entirely withinG. In fact, we argue that for any< m(n + 1) exactlyn — 1 vertices out of
U< {2,271} are used in triangles containing vertices frof.,, Q..

Pick1 < j < m andr such that = mr + j. Exactly one out oUiSn{t? }is in a triangle
with ¢ and@?. Furthermore, for each< n the vertexp?’ must be in a triangle either containing or
t2. Hence, at most — 1 vertices out of J,, {t?,t?'~'} are used in triangles containing vertices from
U,<,, Q.. Furthermore, any triangle containing or ¢~} must either contaip?, ¢ or some vertex in
Ui<, Q.. Hence exactly, — 1 vertices out ot J,,, {t?, ¢}~ '} are used in triangles containing vertices
from,-,, Qﬁ. Thus in the packing, exactBt vertices inG’ are contained in triangles completely inside
G, and hencé& has a triangle packing of size O

1 420-1
7t7j

To complete the proof for ARTITION INTO TRIANGLES we need to bound the pathwidth Gf.
LemmaZ2l. pw(G’) < n+ 10.

Proof. We give a search strategy fof that uses: + 10 searchers. The strategy consistsigf + 1)
rounds and each round hastages. In the beginning of rouadl < < m(n + 1), there are searchers
n searchers placed, one on each vepﬁil for everyi. Letr andl < j < m be integers such that

I = mr+j. We place one searcher ghand one om?;?. These two searchers will stay put throughout the
duration of this round. In stageof round! we place searchers on all vertices@fand @’ ;. Then we
place searchers aff !, t?, p? andp?'*!. Atthe end of stagewe remove the searchers fragj, ¢3!,

2

t2' andpj'. We then proceed to the next stage. At the end of the round wewe the searchers frofi)
and@?. Notice that now, there are searcherg@i* for everyi, and the next round can commencé.]

Lemmatd 118,79.20 aid 21 prove Theofdm 6.
21

9 Conclusion

We have showed that for a number of basic graph problemsgigtekhown algorithms parameterized by
treewidth are optimal in the sense that base of the exp@iel@pendence on treewidth is best possible.
Recall that for DMINATING SET and RARTITION INTO TRIANGLES, this running time was obtained
quite recently using the new technique of fast subset suwodations [27]. Thus it could have been a
real possibility that the running time is improved for sontiees problems as well.

The results are proved under the Strong Exponential Timettgsis (SETH). While this hypothesis
is relatively recent and might not be accepted by everyameresults at least make a connection between
rather specific graph problems and the very basic issue w@irt&#tr algorithms. Our results suggest that
one should not try to find better algorithms on bounded trdgwgraphs for the problems considered
in the paper: as this would disprove SETH, such an effort teebspent on trying to disprove SETH
directly in the domain of satisfiability. Finally, we suggése following open questions for future work:

e Can we prove similar tight lower bounds under the restnictivat the graph is planar? Or is it
possible to find improved algorithms on bounded treewidémat graphs?

e Can we prove tight lower bounds for problems parameteriz¢dy treewidth, but by something
else? Naturally, one should look at problems where the ilhgoror the the running time suggests
that the best known algorithm is optimal. Possible candilatre theO(2*) time algorithm for
STEINER TREE with k terminals [2], theO(2*) time randomized algorithm fok-PaTH [29],
and theO(2%) (resp.,0(3%)) time algorithms for BGE BIPARTIZATION (resp., @D CYCLE
TRANSVERSAL) [16,[22].

e Fortheg-COLORING problem, we were able to prove lower bounds parameterizéaddgedback
vertex set number. Can we prove such bounds for the othelgpnskas well?

References

[1] J. Alber and R. Niedermeier. Improved tree decompasibased algorithms for domination-like
problems. INLATIN, pages 613-628, 2002.

[2] A. Bjorklund, T. Husfeldt, P. Kaski, and M. Kolvisto. leoier meets mobius: fast subset convolu-
tion. In STOGC pages 6774, 2007.

[3] C. Calabro, R. Impagliazzo, and R. Paturi. The compjeaftsatisfiability of small depth circuits.
In IWPEC pages 75-85, 2009.

[4] J. Chen, X. Huang, I. A. Kanj, and G. Xia. On the computadibhardness based on linear FPT-
reductions.J. Comb. Optim.11(2):231-247, 2006.

[5] J. Chen, X. Huang, I. A. Kanj, and G. Xia. Strong compwa#l lower bounds via parameterized
complexity. J. Comput. Syst. S¢ir2(8):1346-1367, 2006.

[6] E. D. Demaine, F. V. Fomin, M. T. Hajiaghayi, and D. M. Tikds. Subexponential parameterized
algorithms on bounded-genus graphs and -minor-free grap#sCM 52(6):866—893, 2005.

[7] E. D. Demaine and M. Hajiaghayi. The bidimensionalitgdhny and its algorithmic applications.
Comput. J.51(3):292-302, 2008.

[8] D. Eppstein. Diameter and treewidth in minor-closedpgréamilies.Algorithmicg 27(3):275-291,
2000.

[9] S. Fiorini, N. Hardy, B. A. Reed, and A. Vetta. Planar drdppartization in linear timeDiscrete
Applied Mathematigsl56(7), 2008.

22

[10] J. Flum and M. GroheParameterized Complexity Theor$pringer, Berlin, 2006.

[11] F. Fomin, P. Golovach, D. Lokshtanov, and S. SaurablgoAihmic lower bounds for problems
parameterized by clique-width. BODA pages 493-502, 2010.

[12] F. V. Fomin, S. Gaspers, S. Saurabh, and A. A. StepanowO techniques of combining branch-
ing and treewidth Algorithmica 54(2):181-207, 2009.

[13] R. Impagliazzo and R. Paturi. On the complexity of k-satComput. Syst. S¢i62(2):367-375,
2001.

[14] R. Impagliazzo, R. Paturi, and F. Zane. Which problemgehstrongly exponential complexity®?
Comput. Syst. S¢i63(4):512-530, 2001.

[15] J. Kleinberg and E. TardosAlgorithm Design Addison-Wesley Longman Publishing Co., Inc.,
Boston, MA, USA, 2005.

[16] D. Lokshtanov, S. Saurabh, and S. Sikdar. Simpler patarized algorithm for oct. IWOCA
pages 380-384, 2009.

[17] D. Marx. Can you beat treewidth? FOCS pages 169-179, 2007.

[18] D. Marx. On the optimality of planar and geometric appnoation schemes. IROCS pages
338-348, 2007.

[19] D. Molle, S. Richter, and P. Rossmanith. Enumerate exjghnd: Improved algorithms for con-
nected vertex cover and tree cov&heory Comput. Sys#3(2):234-253, 2008.

[20] R. Niedermeier.Invitation to fixed-parameter algorithmsolume 31 ofOxford Lecture Series in
Mathematics and its Application®©xford University Press, Oxford, 2006.

[21] M. Patrascu and R. Williams. On the possibility oftrssat algorithms. 1Rroc. 21st ACM/SIAM
Symposium on Discrete Algorithms (SOD2)10. To appear.

[22] B. Reed, K. Smith, and A. Vetta. Finding odd cycle traarsals. Operations Research Letters
32(4):299-301, 2004.

[23] A.D. Scott and G. B. Sorkin. Linear-programming desagyml analysis of fast algorithms for max
2-csp.Discrete Optimization4(3-4):260-287, 2007.

[24] A. Takahashi, S. Ueno, and Y. Kajitani. Mixed searchamgl proper-path-widthTheor. Comput.
Sci, 137(2):253-268, 1995.

[25] J. A. Telle and A. Proskurowski. Practical algorithms jpartial k-trees with an application to
domination-like problems. IRVADS pages 610-621, 1993.

[26] D. M. Thilikos, M. J. Serna, and H. L. Bodlaender. Cuttiid: A linear time fixed parameter
algorithm. J. Algorithms 56(1):1-24, 2005.

[27] J. M. M. van Rooij, H. L. Bodlaender, and P. Rossmanitlyn®mic programming on tree decom-
positions using generalised fast subset convolutior 34 pages 566577, 2009.

[28] J. M. M. van Rooij, J. Nederlof, and T. C. van Dijk. Incios/exclusion meets measure and
conquer. INESA pages 554-565, 2009.

[29] R. Williams. Finding paths of length k in*sz) time. Inf. Process. Let}.109(6):315-318, 2009.

23

	1 Introduction
	2 Preliminaries
	3 Independent Set
	4 Dominating Set
	5 Max Cut
	6 Graph Coloring
	7 Odd Cycle Transversal
	8 Partition Into Triangles
	9 Conclusion

