
On Computing k-CNF Formula Properties

Ryan Williams?

Computer Science Department, Carnegie Mellon University
Pittsburgh, PA 15213 USA

Abstract. The latest generation of SAT solvers (e.g. [11, 8]) generally have three
key features: randomization of variable selection, backtracking search, and some
form of clause learning. We present a simple algorithm with these three features
and prove that for instances with constant ∆ (where ∆ is the clause-to-variable
ratio) the algorithm indeed has good worst-case performance, not only for com-
puting SAT/UNSAT but more general properties as well, such as maximum sat-
isfiability and counting the number of satisfying assignments. In general, the al-
gorithm can determine any property that is computable via self-reductions on the
formula.
One corollary of our findings is that for all fixed ∆ and k ≥ 2, Max-k-SAT is
solvable in O(cn) expected time for some c < 2 (where n is the number of vari-
ables), partially resolving a long-standing open problem in improved exponential
time algorithms. For example, when ∆ = 4.2 and k = 3, Max-k-SAT is solv-
able in O(1.8932n) worst-case expected time. We also improve the known time
bounds for exact solution of #2SAT in general, and the bounds on k-SAT for
k ≥ 5 when ∆ is constant.

1 Introduction/Background

Exponential time algorithms for SAT with improved performance have been theoreti-
cally studied for over 20 years. Beginning in 1979, Monien and Speckenmeyer [9] gave
a Õ(1.618n) worst-case time algorithm for 3-SAT [9].1 Reviewing the literature, it ap-
pears that studies in improved worst-case time bounds for SAT were mostly dormant
for many years, until a resurgence in the late 1990s (e.g. [12, 5, 1]). The first improve-
ments used DPLL-style variants, where variables were repeatedly chosen in some way,
and the algorithm recursed on both possible values for the variables. The improved
time bounds came about due to clever case analysis about the number of variables or
the number of clauses removed from consideration in each of these recursive branches.
In 1999, Schöning [15] gave a Õ(1.3333n) algorithm for 3-SAT that is essentially the
WalkSAT algorithm [16]; this was followed by a Õ(1.3303n) improvement a couple of
years later [7].

The work on Max-k-SAT has been less successful than that for k-SAT: it has been
open whether or not Max-k-SAT can be solved in cn steps for c < 2. In this work,

? Supported in part by an NSF Graduate Research Fellowship and the NSF ALADDIN Center
(http://www.aladdin.cs.cmu.edu/). Email: ryanw@cs.cmu.edu.

1 Note: All time bounds in this paper will be worst-case.

we will resolve the question in the affirmative, when the clause density ∆ is con-
stant. Further, there has been strong recent progress in counting satisfying assignments
[3]: #2SAT and #3SAT 2 are solvable in 1.3247n and 1.6894n time, respectively. Our
approach supplants these bounds, having 1.2923n and 1.4461n expected time. Also,
for large enough k, our algorithm outperforms the previous SAT algorithms, assum-
ing ∆ = O(1). For example, for k = 20, Schöning’s random walk algorithm runs
in Õ(1.9n) whereas ours runs in Õ(1.8054n). This bound improvement occurs for all
k ≥ 5. It is important to stress that our randomized method is of the Las Vegas variety
and thus complete, unlike the previous randomized algorithms for these problems [12,
15, 7] which are Monte Carlo (with one-sided error).

One disadvantage of some improved exponential time algorithms is their limited
applicability: often, an improved algorithm for one variant of SAT yields little or no
insight about other SAT variants. Here, our strategy can in general be applied to deter-
mine most interesting hard-to-compute properties of an arbitrary k-CNF formula that
have been considered, under conditions that we will formally specify. We deliberately
make our approach as abstract as possible, so that perhaps its ideas may be useful in
other areas as well.
2 NotationLet T (n) be super-polynomial and p(n) be a polynomial. We will express runtime
bounds of the form T (n) · p(n) as Õ(T (n)), the tilde meaning that we are suppressing
polynomial factors.

Boolean variables will be denoted as xi ∈ {true, false}. Literals (negated or non-
negated variables) will be denoted by li ∈ {xi, xi}. F will denote a Boolean formula
in conjunctive normal form over variables x1, . . . , xn. We represent F as a family of
subsets over {x1, x1, . . . , xn, xn}. The sets of F are called clauses. We will implicitly
assume that F has no trivial clauses containing both xi and xi for some i. The number
of clauses in F is denoted by m(F), the number of variables is n(F), and the density
of F is ∆(F) = m(F)/n(F). Typically we will just call these n, m, and ∆ when the
formula F under consideration is clear. Two special kinds of formulas are > and ⊥. >
is the empty formula ∅, or trivially true formula. ⊥ := {∅}, the formula with a single,
empty constraint, a trivially false formula.

The formula F [xi = v] is the formula that results when value v ∈ {true, false} is
substituted for variable xi in F .

3 Self-Reducible Properties

Let us formalize the sort of formula properties that are computable by the algorithm
we will describe. Intuitively, they are those properties that may be described due to
self-reducibility. For example, satisfiability of a formula F is a self-reducible property,
since satisfiability of F may be deduced by testing satisfiability on the smaller formulas
F [x = true] and F [x = false].

Definition 1. Let f be a function from k-CNF formulas and natural numbers to a set
V . f computes a feasibly self-reducible property iff:

2 The #3SAT bound holds provided that∆ is upper-bounded by some fixed constant; see Section
4.5.

(1) ∀i ∈ N, f(>, i) and f(⊥, i) are polytime computable.
(2) There exists a polytime computable function g such that

f(F, n) = g(x, f(F [x = true], n− 1), f(F [x = false], n− 1)),

for all formulas F and variables x.

In English, this means we can easily compute f on F using g, provided we are given
f ’s values when some variable is true, and when it is false.

To motivate this definition, we demonstrate that interesting (e.g. NP and #P com-
plete) properties normally determined of SAT instances are feasibly self-reducible, pro-
vided we begin our computation of f(F, n) with n = n(F). The following table shows
some of the properties that fall under our framework, given g and f ’s definition on the
trivially true and trivially false formula. We also provide our algorithm’s expected time
bounds when k = 2 and k = 3 for these various properties. For the first two rows of the
table, the vi are truth values; for the second two rows, they are natural numbers.

f g(x, v1, v2) f(>, i) f(⊥, i) k = 2 k = 3 3

SAT v1 ∨ v2 true false trivial 1.4461n

UNSAT v1 ∧ v2 false true trivial 1.4461n

Max-SAT max{o(x, F) + v1, o(x, F) + v2} 0 0 cn (c < 2)
#SAT v1 + v2 2i 0 1.2923n 1.4461n

(We define o(l, F) to be the number of occurrences of literal l in F .) #SAT(F) is
the number of satisfying assignments. Max-SAT(F) is the maximum number of clauses
satisfied by any assignment. (A simple modification of the algorithm will be able to
extract an assignment satisfying the maximum number, with no increase in asymptotic
runtime.) We remark that Max-SAT is the only function above that uses the variable x
in the specification for g.

4 Algorithm

We now present a way to compute any feasibly self-reducible f on k-CNF formulas
with density ∆. The methodology is quite similar in nature to previous improved expo-
nential time algorithms using dynamic programming [14, 17]. The three major differ-
ences here are the use of randomness, the manner in which dynamic programming is
employed, and the tighter analysis that results from analyzing k-CNF formulas.

Roughly speaking, the algorithm first chooses a random subset of δn variables,
then does a standard depth-first branching on these variables, for some calculated δ ∈
(0, 1). After depth δn has been reached, the algorithm continues branching, but saves
the computed f -values of all formulas considered after this point. The major point is
that for suitable δ (depending on k and ∆), the space usage necessary is small, and the
expected runtime is greatly reduced asymptotically.

3 The bounds for k = 3 assume ∆ = O(1); that is, the clause density m/n (of 3-CNF formulas
given as input) is upper-bounded by some fixed constant.

4.1 Preliminary initialization

Before the main portion of the algorithm is executed, a few preliminary steps are taken
to set up the relevant data structures.

0. Let ∆ = m/n, and δ be the smallest root of the polynomial ∆δk + δ −∆ over
the interval (0, 1). (Existence of such a root will be proven later.) Since k is constant,
one can numerically compute this root to a suitable precision in polynomial time.

1. Let F be a k-CNF formula with n variables. Choose a random permutation σ :
[n]→ [n]. (We will naturally think of σ as a permutation on the variables of F .) Define
Fcover ⊆ F as:

Fcover := {c ∈ F | ∀ li ∈ c. li ∈ {xσ(1), xσ(1), xσ(2), xσ(2), . . . , xσ(δn), xσ(δn)}}.

That is, Fcover is the subset of clauses c such that all k variables of c are contained in
{xσ(1), . . . , xσ(δn)}. Define Frem := F−Fcover. (Fcover is the set of clauses “covered”
by the first δn variables of σ, and Frem is the set that might possibly “remain”, when
the first δn variables of σ are set to values.)

2. Define ≤c to be a lexicographic (total) ordering on the clauses of Frem, where
the ordering is obtained from the variable indices. For instance, given i1 < j1 < k1
and i2 < j2 < k2, {xi1 , xj1 , xk1} ≤c {xi2 , xj2 , xk2} iff either i1 < i2 or (i1 = i2 and
j1 < j2) or (i1 = i2 and j1 = j2 and k1 ≤ k2). Define ci to be the ith clause w.r.t. the
ordering ≤c.

3. Let f be some feasibly self-reducible function we wish to compute for F . Let
V be the co-domain of f . (Typically, V is either {true, false} or N.) Initialize the set
Learned ⊆ {0, 1}m(Frem) × {1, . . . , n} × V of learned f -values as empty.

4.2 Search

The search portion of the algorithm recurses on a formula Fr and integer i, which are
initially F and n, respectively.
Compute-f(Fr, i):

1. [If i = 0 then either Fr = ⊥ or Fr = >; take step 2.]
2. If Fr = ⊥ or Fr = >, return f(>, i) or f(⊥, i), respectively.
3. (Branching phase) If i ≥ n− δn, then return:
g(xσ(n−i+1), Compute-f(Fr[xσ(n−i+1) = true], i− 1),

Compute-f(Fr[xσ(n−i+1) = false], i− 1)).
4. (Learned values phase)
Else, let F kr ⊆ F be the set of original k-clauses in F that correspond to the clauses

that remain (possibly < k-)clauses in Fr. (We say a clause of F remains in Fr if it (a)
has not been satisfied by the partial assignment that reduced F to Fr, and (b) has also
not been falsified; that is, at least one of its literals has not been set false.) It follows that
F kr ⊆ Frem; see the analysis in the following subsection.

Represent Fr as a pair (b(F kr), i), where b(F kr) is a vector of m(Frem) bits: for
j = 1, . . . ,m(Frem),

b(F kr)[j] := 1 ⇐⇒ cj ∈ Frem (the jth clause in ≤c) remains in Fr.

(The analysis subsection will further explain why this uniquely represents Fr.4)
5. If (b(Fr), i, v) ∈ Learned for some v, then return v.
6. Else, let bt and bf be the bit vector representations of F [xσ(n−i+1) = true] and

F [xσ(n−i+1) = false], respectively.
Set vt := Compute-f(f(F [xσ(n−i+1) = true]), i− 1) and
vf := Compute-f(f(F [xσ(n−i+1) = false]), i− 1).
Set v := g(xσ(n−i+1), vt, vf).
Update Learned := Learned ∪ {(b(Fr), i, v)}, and return v.

4.3 Details of Analysis

Sketch of correctness Here, we assume the choice of δ is suitable and defer its justi-
fication until later. We consider each step in the above algorithm one by one.

• Steps 1 and 2, the base cases, are clear. Step 3 is obvious assuming Compute-
f(Fr[xσ(i) = true], i − 1) and Compute-f(Fr[xσ(i) = false], i − 1) return correct
answers.

• i always equals the number of variables that have not been set to values by the
algorithm; the proof is a simple induction. Hence if i < n − δn, then the first δn
variables have all been set in Fr, so letting F kr ⊆ F be the set of original k-clauses
in F that correspond to the clauses of Fr, F kr ⊆ Frem follows from the definition of
Frem: any clause c ∈ F kr cannot be in Fcover (if i < n− δn, then the first δn variables
have been set, hence by definition by Fcover, every literal in c ∈ Fcover has been set, so
c /∈ F kr), hence c ∈ Frem.

• In Steps 4 and 5, notice the representation (b(F kr), i) tells us two things: (a) which
clauses of Frem have been either satisfied or falsified (and which have not) to yield Fr,
and (b) which variables have been set to values in Fr (those variables that have been set
are just those xσ(j) where j < i).

Thus, if literals of these variables appear in the (un-satisfied and un-falsified) clauses
specified by b(F kr), we may infer that these literals are false, as in the example of

4 To illustrate with an example, suppose Frem = {{a, z}, {a, b}, {a, y}, {x, y}} and Fr =
F [a = true, y = false] = {{b}, {x}}. Then F k

r = {{a, b}, {x, y}}: {a, y} is not included
because it’s falsified, and {a, z} is not included because it’s satisfied. If the ordering ≤c is
given by {a, z} ≤c {a, b} ≤c {a, y} ≤c {x, y}, then b(F k

r) = [0 1 0 1]. Observe that,
given b(F k

r) and the knowledge that a and y have been set to some values, this is enough to
reconstruct Fr: the presence of y in {x, y} ∈ Fr implies that y was set false, and the presence
of a in {a, b} ∈ Fr implies that a was set true.

the footnote on the preceding page. Therefore we can reconstruct Fr given the pair
(b(F kr), i): b(F

k
r) tells us F kr , which is the set of clauses in F that remain in Fr, and i

tells us which literals in those clauses of F kr do not appear in Fr (i.e. are set to false).
Hence the map Fr 7→ (b(Fr), i) is 1-1, and it is semantically correct to return v for
f(Fr) if (b(Fr), i, v) ∈ Learned in Step 5.

For every f -value computed, it is stored in Learned and search for it before recom-
puting. The Learned set used in step 5 can be implemented using a binary search tree,
where the keys are pairs containing (a) the m(Frem) bit vector representations of the
Frs and (b) the variable index i. The relevant operations (insert and find) take only
polynomial time.

Runtime analysis We claim the algorithm devotes Õ(2δn) time for the branching phase
(when i ≤ δn) and a separate count of Õ(2E[m(Frem)]) expected time for the learned
values phase, where E[m(Frem)] is the expected number of clauses in Frem over the
choice of random σ. Hence in total, the expected runtime is Õ(2E[m(Frem)] +2δn), and
the optimal choice of δ to minimize this expression will make E[m(Frem)] = δn.

To simplify the analysis, we consider an “unnatural” procedure, for which our algo-
rithm has runtime no worse than it. The procedure will perform the phases of the algo-
rithm described above, but in the opposite order. It will first (a) construct the Learned
set of f -values recursively, saving each discovered value as it goes along. Then it will
(b) run the branching phase until depth δn, in which case it simply refers to the corre-
sponding stored value in Learned.

It is clear that if the runtime of (a) is bounded by T , then the runtime of this pro-
cedure is Õ(2δn + T), as looking up an f -value in Learned takes only polynomial
time. Thus it suffices for us to prove that (a) takes Õ(2E[m(Frem)]) expected worst-
case time. Each (b(Fr), i) pair’s f -value in Learned is computed at most once, and is
determined in polynomial time using g and assuming the f -values for smaller Fr are
given. (We defer the cost of computing the f -values for smaller Fr to those smaller
formulas). Moreover, the base cases f(>, i) and f(⊥, i) are polytime computable by
self-reducibility.

Thus the total time used by the learned formula phase will be at most

poly(n)· [number of possible (b(Fr), i) pairs] = Õ(2E[m(Frem)]),

since the total number of pairs possible in Learned is at most n · 2m(Frem).

Let us specify the procedure for constructing Learned more formally. Start with
(⊥, i) and (>, i) for every i = 1, . . . , n, and put (⊥, i, f(⊥, i)) and (>, i, f(>, i)) in
Learned.

0. Initialize j := n− 1.
1. Repeat steps 2-3 until j = δn:
2. Set F := {Fr ∪ {c ∈ F |xσ(j) ∈ c ∨ xσ(j) ∈ c} | ∃v. (b(Fr), j + 1, v) ∈

Learned}. That is, F represents the class of all formulas that currently have values

in Learned, each one being unioned with the clauses that contain xσ(j). (Observe that
successive members of this set can be generated in order, with polynomial time delay.)

3. For all Fr ∈ F ,
Find vt and vf such that (b(Fr[xσ(j) = true]), i+ 1, vt) and
(b(Fr[xσ(i) = false]), i+ 1, vt) in Learned, using a search tree.
Put (b(Fr), i, g(xσ(i), vt, vf)) in Learned, and set i := i− 1.

Notice we are always placing a value for a new pair in Learned. Hence we place at
most n2m(Frem) values in Learned, in total. Each iteration of the for-loop for a fixed Fr
takes polynomial time. The number of possible Fr in F is at most 2m(Frem) (though
it will be much less in most cases). There are at most n − δn repetitions of the repeat
loop, hence this procedure takes Õ(2E[m(Frem)]) expected time, in the worst case.

Theorem 1. For every k and ∆, there exists a constant c < 2 such that any feasibly
self-reducible f on k-CNF Boolean formulas with density ∆ is computable in Õ(cn)
expected (worst-case) time.

Proof. It suffices to show that the optimal choice of δ is always less than 1. Let ci be
a k-CNF clause. For a randomly chosen σ, the probability that a particular variable v
is among the first δn variables is δ. Hence the probability that every variable in ci is
among the first δn variables designated by σ is at least δk[1− o(1)]. (So the probability
that ci ∈ Fcover is this quantity.) More precisely, the probability is

k−1∏
i=0

δn− i
n− i

≥ δk
k−1∏
i=0

(
1− i

n

)
≥ δk

(
1− d

n

)
,

for some constant d > 0. Thus the probability that ci ∈ Frem = F − Fcover is at most
1 − δk[1 − o(1)]. For each clause ci ∈ F , define an indicator variable Xi that is 1 if
ci ∈ Frem, and 0 otherwise. Then the expected number of clauses in Frem is

E[m(Frem)] =
∑m
i=1E[Xi] ≤ m · [1− δk(1− d/n)],

by linearity of expectation. Hence the expected time for the learned value phase is
(modulo polynomial factors)

2E[m(Frem)] ≤ 2[1−δ
k](1−d/n)∆n = 2[1−δ

k]∆n−d·∆·[1−δk] ∈ Õ(2[1−δ
k]∆n),

and the optimal choice of δ satisfies the equation

δ = (1− δk)∆ =⇒ ∆δk + δ −∆ = 0.

Notice that the variance in m(Frem) will be small in general (more precisely, suscepti-
ble to Chernoff bounds), thus our expectation is not a mathematical misnomer; we will
not analyze it in detail here.

We now show that for k > 0 and ∆ > 0, the polynomial p(x) = ∆xk + x−∆ has
at least one root x0 ∈ (0, 1); the theorem will follow. First, p(x) has at least one real
root r. Note p(1) = 1 for all k and ∆, while p(0) = −∆. Since p(1) > 0 and p(0) < 0,
it follows that there is an r ∈ (0, 1) satisfying p(r) = 0. �

A remark on the tightness of this result. We have empirically observed that as either∆ or
k increase, the relevant root of p(x) approaches 1. Thus, if either k or ∆ are unbounded
functions in terms of n, we cannot (using the above analysis) guarantee any δ < 1 such
that the aforementioned procedure takes at most 2δn time.

4.4 Max-k-SAT solution

Ever since Monien and Speckenmeyer [10] showed in 1980 that there exists an algo-
rithm for Max-3-SAT running in Õ(2m/3), it has been a well-studied open problem as
to whether Max-k-SAT could actually be solved in O(cn) time for c < 2. All previous
exact algorithms for this problem have runtimes of the form O(cm), with c decreasing
slowly over time (e.g. [10, 1, 5]). One prior algorithm was very close to a cn time bound:
a (1− ε) approximation scheme was given by Hirsch [6] that runs in (cε)

n for some cε;
however, cε approaches 2 as ε approaches 0.

A corollary of our above theorem is that when k and the clause density ∆ are con-
stant, there exists a less-than-2n algorithm. While this is probably the more relevant
situation for applications, it remains open whether Max-k-SAT can be solved when ∆
is an unbounded function of n.

Corollary 1. For every constant k and ∆, there exists a constant c < 2 such that Max-
k-SAT on formulas of density ∆ is solvable in Õ(cn) expected time.

4.5 Improvements on Counting and SAT for high k

If the property we seek is some function on the satisfying assignments of F , then a
better runtime bound can be achieved; we will outline our modified approach here.
For instance, if we wish to count the number of satisfying assignments or determine
satisfiability, then we can use the unit clause rule in branching. The unit clause rule has
been used since the 60’s [4] for reducing SAT instances.

Rule 1 (Unit clause) If {lj} ∈ F then set F := F [lj = true].

For feasibly self-reducible f on satisfying assignments, we incorporate the unit
clause rule into the previous algorithm, between Steps 2 and 3. Now we observe that, in
order to say that a clause c ∈ F is not in Frem, rather than requiring all k variables of
c to be assigned values in the first δn variables, only k − 1 of the variables need to be
assigned: if one of them makes c true, c is no longer present; if k − 1 literals are false
in c then the unit clause rule applies.

This gives us a slightly better equation for δ, namely

δ = (1− δk − kδk−1)∆,

since the probability that at least k − 1 variables of any clause c appear in the first δn
variables of σ is at least 1− δk − kδk−1, the third term coming from the fact that there
are k ways to choose k − 1 of the variables in c that appear. As might be expected, this
equation yields better time bounds. There is no longer a strict dependence on ∆, and
we obtain bounds such as the following:

Theorem 2. #3SAT is solvable in Õ(1.4461n) expected time, for any constant ∆.

Proof. (Sketch) Assume∆ is fixed. We wish to compute the largest possible δ ∈ (0, 1)
s.t. δ = (1− δ3 − 3δ2)∆, i.e.

∆δ3 + 3∆δ2 + δ −∆ = 0.

This cubic equation has three solutions; the only one that is non-negative for ∆ > 0 is:

δ(∆) = −F
1/3

12∆
+

3∆− 1

F 1/3
− 1 + i

√
3

2

(
F 1/3

6∆
+

2− 6∆

F 1/3

)
,

where

F =

(
−108∆+ 108 + 12

√
12

∆
− 27 + 162∆− 243∆2

)
∆2.

When ∆ = 1, it is straightforward to calculate that δ(1) =
√
2− 1 ≈ 0.414

For ∆ > 1, the solution for δ(∆) >
√
2− 1. F is dominated by c1 · i ·∆3− c2 ·∆3

for some constants c1, c2. Note that every term in the expression for δ involving F
cancels out these ∆3 terms (by taking a cube root and then dividing by ∆). Hence the
expression for δ approaches a certain constant as ∆ increases.

Our numerical experiments show that δ(∆) → 0.53208 . . . as ∆ → ∞. Therefore
20.53208n ≤ 1.4461n is the bound. �

For k ≥ 5, even an improvement in SAT (over previous algorithms) is observed,
using similar reasoning. The best known algorithm in that case has been that of Paturi,
Pudlak, Saks, and Zane [13], which has the bounds 1.5681n and 1.6370n for k = 5 and
6. We have found through numerical experiments that our algorithm does strictly better
for k ≥ 5. An example:

Corollary 2. 5-SAT and #5-SAT are solvable in Õ(1.5678n) expected time for any con-
stant ∆; 6-SAT and #6-SAT are solvable in Õ(1.6065n) for any constant ∆.

Proof. (Sketch) Numerical solution of the equations δ5 + 5∆δ4 + δ − 1 = 0 and
δ6 + 6∆δ5 + δ − 1 = 0 show that we can upper bound δ by δ ≤ 0.6486 . . . and
δ ≤ 0.6839 . . ., respectively. These δ-values yield the time bounds of the corollary. �

A sharper improvement can be given for #2SAT, since for large ∆, single variable
branches can remove many variables due to the unit clause rule. Specifically, in the

worst case, one variable is assigned to a value in one branch, while at least 2∆ variables
are assigned in another.

Theorem 3. #2SAT is solvable in Õ(1.2923n) expected time.

Proof. (Sketch) Let c be a constant to be fixed later. We consider the following algo-
rithm for computing #2SAT.

Given a k-CNF F ,

(0) If {x} ∈ F (resp. {x} ∈ F), recursively compute the number of SAT assign-
ments A for F [x = true] (resp. F [x = false]), and return A.

(1) If ∆ ≥ c, then we claim the average number of occurrences per variable in the
2-CNF F is at least 2c. (Let o be the average; then o·n = 2m, wherem is the number of
clauses.) Therefore there is at least one variable x that occurs in 2c clauses. Recursively
compute the number of SAT assignments Ax=t for F [x = true]. Then compute the
number of SAT assignments Ax=f for F [x = false]. Return Ax=t +Ax=f .

(2) If ∆ < c, then return Compute-f(F, n) for f = #SAT , i.e. the dynamic pro-
gramming algorithm for counting satisfying assignments.

Now we analyze the algorithm. Case (0) is just the unit clause rule.

Case (1) analysis: It can be shown that the worst case is when x appears either
all positively or all negatively. In this case, if x = true then only one variable (x) is
removed from F in one recursive branch. When x = false , all of the variables in clauses
with x are set to true by case (0); hence at least 2c+1 variables are removed from F in
the other branch.

The analysis of Case (2) is simply that from previous sections.

This gives an upper bound on the time recurrence in terms of n:

T (n) ≤ max{T (n− 1) + T (n− 2c), 2δn},

where δ ∈ (0, 1) is the smallest value such that δ < (1 − δ2 − 2δ)c. (The first term in
the max corresponds to Case (1), the second term to Case (2).)

We want an integer c such that the runtime is minimized (so the two terms in the
max are roughly equal). To do this, let λ(A,B) be r ∈ (1, 2) satisfying 1 − 1/rA −
1/rB = 0. (Note that r is unique, andO(λ(A,B)n) is an upper bound on the recurrence
T (n) = T (n−A) + T (n−B), T (1) = 1.)

Observe that as c increases, λ(1, 2c) decreases while δ ∈ (0, 1) such that δ =
(1− δ2−2δ)c increase. Thus, we wish to choose c such that both λ(1, 2c)n and 2δn s.t.
δ = (1− δ2 − 2δ)c are minimized.

Choosing c = 3, λ(1, 2c) ≈ 1.2555 and δ ≈ 0.36993, so 2δ ≈ 1.2923. Hence the
runtime of the procedure is upper bounded by Õ(1.2923n). �

A remark on applications. Consider the problem #Min2SAT, where we wish to
count the number of satisfying assignments that have a minimum number of variables
set true. (It is easy to check that #Min2SAT is feasibly self-reducible, by having the
function f return a pair containing the minimum number of trues in a satisfying as-
signment and the number of such assignments. It follows that a simple generalization of
the above procedure solves #Min2SAT.) There is a natural reduction from #Min2SAT to
#Min-Vertex-Cover, which we will refrain from describing here. Quite interestingly, the
existence of a good #Min-Vertex-Cover algorithm implies good algorithms for several
other problems as well. We refer the reader to [2].

5 Conclusion

We have shown, in a very general manner, how various hard properties of k-CNF prop-
erties may be determined in less than 2n steps. It is interesting to formulate our main
result in the language of strong backdoors [18]. Informally, for a function f comput-
ing a property of F , a strong backdoor is a subset S of variables in F , defined with
respect to some “subsolver” A that runs in polynomial time and solves special cases
of the function f . A strong backdoor S has the property that systematically setting all
possible assignments to the variables of S allows one to compute f on F , by using
A to solve each reduced F that results from a variable assignment. Since each assign-
ment takes only polynomial time to evaluate with A, the overall runtime is bounded by
2|S|poly(n).

Our main result may be stated in terms of randomly chosen backdoors.

Theorem 4. For any feasibly self-reducible f and k-CNF formula F with constant
clause density ∆, there exists a δ ∈ (0, 1) s.t. a random subset S of δn variables is a
strong backdoor for f with probability at least 1/2, with respect to a subsolver A that
runs with 2δn preprocessing (and polynomial time on each assignment to variables in
S).

While the dynamic programming scheme used in this paper is very general, one
obvious caveat is that the procedure requires exponential space in order to achieve this.
Therefore one open problem is to find algorithms that can compute self-reducible for-
mula properties in polynomial space. Another question (which we believe to be not so
difficult) is how to derandomize the algorithm– that is, convert it a deterministic one,
without much loss in efficiency. A further direction is to use some clever properties of
Max-k-SAT when ∆ = ω(1) to get an less-than-2n algorithm for general Max-k-SAT.

Finally, it is worth exploring what other useful properties of CNF formulas can
be expressed via our definition of self-reducible functions, to determine the full scope
of the method we have described. One hard problem that probably cannot be computed

with it is solving quantified Boolean formulas. This is because in QBFs, it seems crucial
to maintain the fixed variable ordering given by the quantifiers. On the other hand, if
we assume the number of quantifier alternations is small, this may permit one to use a
variable-reordering approach of the form we have described.

6 Acknowledgements

Many thanks to the anonymous referees for their very helpful comments.

References

1. N. Bansal and V. Raman. Upper bounds for MaxSat: Further improved. Proc. of the 10th
ISAAC, 247–258, 1999.

2. V. Dahllöf and P. Jonsson. An algorithm for counting maximum weighted independent sets
and its applications. Proc. of ACM-SIAM SODA, 292–298, 2002.

3. V. Dahllöf, P. Jonsson, Magnus Wahlström. Counting Satisfying Assignments in 2-SAT and
3-SAT. Proc. of COCOON, 535-543, 2002.

4. M. Davis and H. Putnam, A computing procedure for quantification theory. Journal of the
ACM, 7(1):201-215, 1960.

5. E. A. Hirsch. New worst-case upper bounds for SAT. Journal of Automated Reasoning, Spe-
cial Issue II on Satisfiability in Year 2000, 2000. A preliminary version appeared in Proceed-
ings of SODA 98.

6. E. A. Hirsch. Worst-case Time Bounds for MAX-k-SAT with respect to the Number of Vari-
ables Using Local Search. ICALP Workshop on Approximation and Randomized Algo-
rithms in Communication Networks, 69-76, 2000.

7. T. Hofmeister, U. Schöning, R. Schuler, O. Watanabe. A probabilistic 3-SAT algorithm fur-
ther improved. Proc. of STACS, 192202, 2002.

8. I. Lynce and J. Marques-Silva. Complete unrestricted backtracking algorithms for satisfi-
ability. In Fifth International Symposium on the Theory and Applications of Satisfiability
Testing, 2002.

9. B. Monien, E. Speckenmeyer, 3-satisfiability is testable in O(1.62r) steps, Bericht Nr.
3/1979, Reihe Theoretische Informatik, Universität-Gesamthochschule-Paderborn.

10. B. Monien and E. Speckenmeyer. Upper bounds for covering problems. Bericht Nr. 7/1980,
Reihe Theoretische Informatik, Universität-Gesamthochschule-Paderborn.

11. M. Moskewicz, C. Madigan, Y. Zhao, L. Zhang, and S. Malik. Chaff: Engineering an Effi-
cient SAT Solver. Proc. DAC-01, 2001.

12. R. Paturi, P. Pudlak, and F. Zane. Satisfiability Coding Lemma. Proc. of the 38th IEEE FOCS,
566-574, 1997.

13. R. Paturi, P. Pudlak, M. E. Saks, and F. Zane. An improved exponential-time algorithm for
k-SAT. Proc. of the 39th IEEE FOCS, 628-637, 1998.

14. M. Robson. Algorithms for maximum independent sets. Journal of Algorithms, 7(3):425-440,
1986

15. U. Schöning. A probabilistic algorithm for k-SAT and constraint satisfaction problems. Proc.
of the 40th IEEE FOCS, 410-414, 1999.

16. B. Selman, H. Kautz, and B. Cohen. Local Search Strategies for Satisfiability Testing.
Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, 1993.

17. R. Williams. Algorithms for quantified Boolean formulas. Proc. ACM-SIAM SODA, 299-
307, 2002.

18. R. Williams, C. Gomes, and B. Selman. Backdoors To Typical Case Complexity. To appear
in Proc. of IJCAI, 2003.

