Subcubic Equivalences Between Path, Matrix, and Triangle
Problems

Virginia Vassilevska Williams ~ Ryan Williams

Abstract

We say an algorithm on x n matrices with entries if—M, M| (or n-node graphs with edge weights
from [— M, M]) is truly subcubidf it runs in O(n3~? - poly(log M)) time for somes > 0. We define a
notion ofsubcubic reducibilityand show that many important problems on graphs and maseable
in O(n?) time areequivalentunder subcubic reductions. Namely, the following weightezblems either
all have truly subcubic algorithms, or none of them do:

e The all-pairs shortest paths problem on weighted digrapRSe).

e Detecting if a weighted graph has a triangle of negativd tatge weight.

o Listing up ton?% negative triangles in an edge-weighted graph.

e Finding a minimum weight cycle in a graph of non-negativeesdgights.

e The replacement paths problem on weighted digraphs.

e Finding the second shortest simple path between two nodeweighted digraph.
e Checking whether a given matrix defines a metric.

o \erifying the correctness of a matrix product over {h&n, +)-semiring.

Therefore, if APSP cannot be solvedsi—¢ time for anye > 0, then many other problems also
need essentially cubic time. In fact we show generic eqgenads between matrix products over a large
class of algebraic structures used in optimization, variya matrix product over the same structure, and
corresponding triangle detection problems over the siractThese equivalences simplify prior work on
subcubic algorithms for all-pairs path problems, sincew suffices to give appropriate subcubic triangle
detection algorithms.

Other consequences of our work are new combinatorial appesato Boolean matrix multiplication
over the (OR,AND)-semiring (abbreviated as BMM). We shoat fhractical advances in triangle detection
would imply practical BMM algorithms, among other resulBuilding on our techniques, we give two
new BMM algorithms: a derandomization of the recent comtanal BMM algorithm of Bansal and
Williams (FOCS’09), and an improved quantum algorithm fodA.

*This work originated while the authors were members of the Institute fomAcded Study, Princeton, NJ and visiting the Com-
puter Science Department at Princeton University.

TComputer Science Division, UC Berkeley, Berkeley, CA. Supported §RA Computing Innovations Fellowship. Email:
Vi r gi @ecs. ber kel ey. edu

fIBM Almaden Research Center, San Jose, CA. Supported by the JRaeif Memorial Fellowship. Email:
ryanwi | | @is. i bm com

1 Introduction

Many computational problems on graphs and matrices have natural cubicdintierss. For example,
n x n matrix multiplication over any algebraic structure can be don&{n?) operations. For algebraic
structures that arise in optimization, such as then, +)-semiring, it is of interest to determine when we
need only a subcubic number of operati@n‘ﬁhe all-pairs shortest paths problem (APSP) also has a cubic-
time algorithm, known for over 40 years [FI062, War62]. One of the “HolgiB” of graph algorithms
is to determine whether this cubic complexity is basically inherent, or whethemdicamt improvement
(say, O(n??) time) is possible. (It is known that this question is equivalent to finding arfadgerithm
for (min, +) matrix multiplication. [EM71/ Mun71]) Most researchers believe that cubic isressentially
necessary: there ar€ pairs of nodes, and in the worst case we should not expect to improvauoh
on Q(n) time per pair. (We should note that a long line of work has produced slighttiguhic algorithms
with small poly(logn) improvements in the running time; the current best run®{n? log log® n/ log? n)
time [Cha0Q7].)

Related to APSP is theeplacement paths problefRPP): given nodes andt in a weighted directed
graph and a shortest pathfrom s to ¢, compute the length of the shortest simple path that avoidsedge
all edge= on P. This problem is studied extensively [Yen71, Law72, Epp98, KIM820R Rod07|, Ber10]
for its applications to network reliability. A slightly subcubic time algorithm is notdhir obtain from a
slightly subcubic APSP algorithm, but nothing faster than this is known. I deem that cubic time may
be inherent, since for all edges in a path (and there may(a¢ of them) we need to recompute a shortest
path. A well-studied restriction of RPP is to find thecondshortest (simple) path between two given nogles
and¢. Of course this problem also has a cubic algorithm, but again nothing msigr fa known. However,
the cubic complexity does not seem to be as vital: we simply want to find a cerpofypath between two
endpoints. Similarly, finding a minimum weight cycle in a graph with non-negatgights is only known to
be possible in slightly subcubic tinfe.

An even simpler example is that of finding a triangle in an edge-weighted gvhpte the sum of edge
weights is negative. Exhaustive search of all triples of nodes t@ke3) time, and applying the best APSP
algorithm makes thi§ (n? log log® n/ log? n) time, but we do not know a faster algorithm. Recent work has
suggested that this negative triangle problem might have a faster algoritiventlsenode-weightedersion of
the problem can be solved faster [VW06, VWY06, CI.07]. (In fact tbderweighted version of the problem
is no harder than thenweightedtriangle detection problem, which is solvable @{n?3®) time [IR78].)
Since the cubic algorithm for negative triangles@simple, and many restrictions of the problem have faster
algorithms, it would appear that cubic complexity is unnecessary for firalimgpative triangle.

We give theoretical evidence that these open algorithmic questions mayd&hasolve, by showing
that they and other well-studied problems are all surprisieglyivalentin the sense that there is a substan-
tially subcubic algorithm for one of them if and only if all of them have sulisi#ly subcubic algorithms.
Compare with the phenomenon BP-completeness: one reasBrvs NP looks so hard to resolve is that
many researchers working in different areas have all been workingssentially thesame(NP-complete)
problem with no success. Our situation is entirely analogous: either thebkems really need essentially
cubic time, or we are missing a fundamental insight which would make all of tireaitaneously easier.

!Note that in the specific case when the structurerisg it is well known that one can solve the problem much faster théur)
operations/[Str69. CW90]. However it is unknown if this fact can beltseompute the matrix product fast on many other important
structures such as commutative semirings.

2Note that if we allowed negative weights, this problem is immediddtyhard.

We say that an algorithm onxn matrices (or am-node graph) computing a set of value§ i/, ..., M}
is truly subcubidf it usesO(n?~° - poly(log M)) time for some’ > 0. In general, polyog M factors are nat-
ural: the truly subcubic ring matrix multiplication algorithms have dopyM overhead if one counts the bit
complexity of operations. In AppendiX F we develsybcubic reductionbetween many problems, proving:

Theorem 1.1 The following problems eitheall have truly subcubic algorithms, eroneof them do:

The all-pairs shortest paths problem on weighted digraphs (APSP).

The all-pairs shortest paths problem on undirected weighted graphs.
Detecting if a weighted graph has a triangle of negative total edge weight.
Listing up ton?“? negative triangles in an edge-weighted graph.

Verifying the correctness of a matrix product over then, +)-semiring.
Checking whether a given matrix defines a metric.

Finding a minimum weight cycle in a graph of non-negative edge weights.
The replacement paths problem on weighted digraphs.

© ©® N kR ONPRE

Finding thesecondshortest simple path between two nodes in a weighted digraph.

Note the only previously known equivalence in the above was that oh.{2).

An explicit definition of our reducibility concept is given in Appendik C. Tthaly subcubic runtimes may
vary depending on the problem: given our reductionséan2-9) algorithm for negative triangle implies an
O(n?9%) algorithm for APSP. However, asymptotic runtime equivalences hold wiffer¢$o polylogarithmic
improvements. That is, for each> 2, the above either all ha\[é(log—cn - polylog M) algorithms, or none of

them do. Hence afi(n3/ log? n) lower bound on APSP would imply a similar lower bound on all the above
(within polylog M factors).

Perhaps the most interesting aspect of Thedremn 1.1 is that some of thenpsadredecisionproblems
and others aréunctions Hence to prove lower bounds on some decision problems, it suffices\te tirem
on analogous multi-output functions. It is counterintuitive thatn?“) algorithm returning one bit can be
used to compute a function éi(n?) bits in O(n?%) time. Nevertheless, it is possible and in retrospect, our
reductions are very natural. See Apperidix A for some intuition.

A few equivalences in Theoreim 1.1 follow from a more general theordmghacan be used to simplify
prior work on all-pairs path problems. In general we considein, ®) structuresdefined over a seR C Z
together with an operatiop : R x R — Z U {—o0, oo}E We define a type ofmin, ®) structure that we call
extendedwhich allows for an “identity matrix” and an “all-zeroes matrix” over the stuue. (For definitions,
see the Preliminaries.) Almost all structures we consider in this paper areegteincluding the Boolean
semiring over OR and AND, th@nin, max)-semiring, and thémin, +)-semiring. In Sectiohl3 we prove:

Theorem 1.2 (Informal Statement of Theorem$ 3]1 an@312) etR be an extendefnin, ®) structure. The
following problems oveR eitherall have truly subcubic algorithms, moneof them do:

¢ Negative Triangle Detection.Given amn-node graph with weight functiom : V' x V' — R U Z, find
nodesi, j, k such thatw(i, j) € Z, w(i, k) € R, w(k,j) € R, and(w(i,5) © w(k, j)) +w(i,j) < 0.

3An analogous treatment is possible fofiax, ®) structures. We omit the details, as they merely involve negations of entries.

e Matrix Product. Given twon x n matricesA, B with entries fromR, compute the product A and
B overR.

e Matrix Product Verification. Given threen x n matricesA, B, C with entries fromR, determine if
the product ofd and B overR is C.

The relationship between matrix product verification and the matrix prodpeirtgularly surprising, as
n x n matrix product verificatiorover ringscan be done i (n?) randomized time [BK95] but we do not
know how to apply this fast verification to ring matrix multiplication. Spinrad [Spi{@en Problem 8.2)
and Alon [Alo09] have asked if the verification problem for various matribdoicts can be done faster than
the products themselves. Our reductions rely crucially on the fact thadtligom operation in dmin, ®)
structure is aninimum

In AppendixX G, we show how our techniques can also be used to desigmadike approaches to matrix
multiplication over OR and AND. First we have as a consequence of Timhi2:

Theorem 1.3 The followingall have truly subcubic combinatorial algorithms, or none of them do:

Boolean matrix multiplication (BMM).

Detecting if a graph has a triangle.

Listing up ton??? triangles in a graph.

Verifying the correctness of a matrix product over the Boolean semiring.

These reductions have low overhead, hence any simple fast triangk&ratgevould yield a simple (and
only slightly slower) BMM algorithm. This is a problem that has been investigayadany researchers,g.
([Woe08], Open Problem 4.3(c)) and ([Spi03], Open Problem 8. bre\toncretely, Theorelm 1.3 can already
yield new BMM algorithms, with a little extra work. First, we can derandomize tltenmecombinatorial
BMM algorithm of Bansal and Williams [BW09]:

Theorem 1.4 There is a deterministic combinatori@l(n?/ log?2® n)-time algorithm for BMM.

The BMM algorithm of [BWQ9] uses randomness in two different ways:educes BMM to a graph
theoretic problem, computes a pseudoregular partition of the graph inméaetbquadratic time, then it uses
random samples of nodes along with the partition to speed up the solution ofaiple groblem. We can
avoid the random sampling by giving a triangle algorithm witfr? / log?> n) running time, and applying
Theoren{_1.B. To get a deterministic triangle algorithm, we show (using a rdwetien) that in fact any
polynomial timealgorithm for pseudoregularity suffices to get a subcubic triangle algoritWith this re-
laxed condition, we can replace the randomized quadratic algorithm fodpssgularity with a deterministic
polynomial time algorithm of Alon and Nadr [ANOG6].

We also obtain an improved quantum algorithm for BMM:

Theorem 1.5 There is anO(min{n!3L7/30 n? 4 [47/60,13/151) quantum algorithm for computing the
product of twon x n Boolean matrices, whetg is the number of ones in the output matrix.

Theoreni 1b is obtained by simply applying the best known quantum algorathtridngle [MSS05] to
our reduction, improving the previous best [BY06] output-sensitivetyuma algorithm for BMM.

Remark. We have spent much time simplifying our proofs (contrary to all advice we heseived), since
one of our goals is to eventually uncover matrix multiplication algorithms that are practical than what is

3

currently known. Earlier versions of our reductions were extremelynieahand gave very little insight; we
hope our simplifications will be useful in future work.

2 Preliminaries

Unless otherwise noted, all graphs haveertices. Whenever an algorithm in our paper usesr —oo,
these can be substituted by numbers of suitably large absolute value. \Wetagkenote the smallest real
number such that x n matrix multiplication over an arbitrary ring can be don<n“) operations.

Structures and Extended Structures. We give a general definition encompassing all algebraic structures
for which our results apply. LeR be a finite set. Amin, ®) structure overR is defined by a binary operation
®:Rx R — ZU{—00,c0}. We use the variabl® to refer to a(min, ®) structure. We say émin, ©)
structure iextendedf R C Z andR contains elements) ande; suchthatforallk € R, 10y = egOx =
andes; © xz = x for all z € R. That is,g is a type of annihilator, ang, is a left identity. We use the variable

R to refer to an extended structure. The elemepiands; allow us to define (for every) ann x n identity
matrix I,, and an x n zero matrixZ,, overR. More precisely[,,[i, j] = e, for all i # j, I,[i,i] = 1, and
Znli, j] = eo for all i, 7. We shall omit the subscripts @f andZ,, when the dimension is clear.

Examples of extended structur@sare thef O R, AN D) (or Boolean) semirina,as well as thémin, max)
and (min, +) semirings (also calledubtropicalandtropical), and the(min, <) structure used to solvall
pairs earliest arrivals[Vas08]. An example of a structure thatnst extended is the “existence dominance”
structure defined in AppendixH.

Matrix Products Over Structures. Thematrix product of twa: x n matrices ovefR is

(A© B, j] = lgeli[%(A[ia k] © BIE;, j)-

It is easy to verify that for all matriced over an extende®, I © A = AandZ ©A = A0 Z = F
whereF[i, j] = oo for all i, 5. The problem oimatrix product verificatiorover an extended structuf@ is

to determine whetheningc,|(Ali, k] © Blk, j]) = C[i, j] for all i, j € [n], whereA, B, C are givem x n
matrices with entries fronk. Although it looks like a simpler problem, matrix product verification for the
(min, 4+) semiring (for instance) is not known to have a truly subcubic algorithm.

Negative Triangles Over Structures. Thenegative triangle problem oveR is defined on a weighted tripar-
tite graph with partd, J, K. Edge weights betweehand.J are fromZ, and all other edge weights are from
R. The problem is to detect if there arec I, j € J, k € K so that(w(i, k) © w(k,j)) + w(i, j) < 0. Note

that if one negates all weights of edges betweand.J, the condition becomesu(i, k) ©w(k, j)) < w(i, 7).

In the special case when = + andR C Z U {—o0, oo}, the tripartiteness requirement is unnecessary, and
the negative triangle problem is defined onaahitrary graph with edge weights frof U {—oco, co}. This
holds for the negative triangle problem over both theén, +) and Boolean semirings.

2.1 Prior Work

Since our paper covers many popular problems in the literature, there isreleeant prior work. Due to
lack of space, we highlight the most relevant sources in Appéndix B.

“Observe the Boolean semiring is isomorphic to the structure on elemeatso ande; = 0, wherez © y = z + .

3 Equivalences Between Problems on Generic Structures

A generic approach to computing faghin, ®) matrix products (for an arbitrary binary operatiar)
would be of major interest. Here we prove truly subcubic equivalencigeka matrix products, negative
triangles, and matrix product verification fanin, ®) structures. (For definitions, see the Preliminaries.)

Reminder of Theoremd 3.1 and3]2Let R be an extendetinin, +) structure. The following problems over
R eitherall have truly subcubic algorithms, moneof them do:

¢ Negative Triangle Detection.Given ann-node graph with weight functiom : V' x V' — R U Z, find
nodesi, j, k such thatw(i, j) € Z, w(i, k) € R, w(k,j) € R, and(w(i,5) © w(k, j)) +w(i,j) < 0.

e Matrix Product. Given twon x n matricesA, B with entries fromR, compute the product of and
B overR.

e Matrix Product Verification. Given threen x n matricesA, B, C with entries fromR, determine if
the product ofd and B overR is C.

3.1 Negative Triangle Detection Implies Matrix Product Verification

We start by showing that matrix product verification can solve the negatasegle problem over any
extended structur® in the same asymptotic runtime. For two problersind B, we write A <3 B to
express that there is a subcubic reduction fréito B. (For formal definitions, see Appendix C.)

Theorem 3.1 (Negative Triangle OverR <3 Matrix Product Verification Over R) Suppose matrix prod-
uct verification ovefR can be done in tim&'(n). Then the negative triangle problem for graphs oRecan
be solved irO(7'(n)) time.

Proof. From the tripartite graple = (I U J U K, E) given by the negative triangle problem ovey
construct matrices!, B, C as follows. For each edde, j) € (I x J) N E setC|i, j] = w(i, 7). Similarly,
for each edgéi, k) € (I x K) N E setA[i, k] = w(i, k) and for each edgék,j) € (K x J) N E set
Bk, j] = w(k, j). When there is no edge in the graph, the corresponding matrix enthymB becomes,
and inC' it becomesx. The problem becomes to determine whether theré,gré € [n] so thatA[i, k] ©
Bk, j] < Ci, j]. Let A’ be then x 2n matrix obtained by concatenatingto the left of then x n identity
matrix I. Let B’ be the2n x n matrix obtained by concatenatirig on top of C. ThenA’ ©® B’ is equal to
the componentwise minimum of ©® B andC. One can completd’, B’ andC to squaren x 2n matrices
by concatenating an all n x 2n matrix to the bottom ofd’, an alleg 2n x n matrix to the right ofB” andn
columns of allsgs andn rows of alleys to the right and bottom af' respectively.

Run matrix product verification oA’, B’, C. Suppose there are somg so thatming (A'[i, k|©B'[k, j]) #
Ci, j]. Then since
min(A'li, k| © B'lk, j]) = min{C[i, j], min(A[i, k] © B[k, j])} < C[i, j],

there must exists & € [n] so thatA[i, k] ® Bk, j| < C[i,j]. In other wordsy, k, j is a negative triangle
overR. If on the other hand for all, j we haveminy (A4’'[i, k] ® B[k, j]) = Cl[i, j], then for alli, j we have
ming (A[i, k] © Blk, j]) > C]i, j] and there is no negative triangle. O

3.2 Negative Triangle Detection Implies Matrix Multiplicati on

Next we show that from negative triangle detection ovéman, ®) structureR, we can obtain the full
matrix product ovefR. Specifically, we prove the following.

Theorem 3.2 (Matrix Product Over R <3 Negative Triangle OverR) LetT'(n) be afunction sothaf'(n)/n
is nondecreasing. Suppose the negative triangle problem®varan n-node graph can be solved if(n)
time. Then the product of twox n matrices ovefR can be performed i@ (n? - T'(n'/3)log W) time, where
W is the absolute value of the largest finite integer in the output.

Before we proceed, let us state some simple but useful relationshipsdvetiiangle detecting, finding,
and listing. The proofs of the Lemrha B.1 and Theorem 3.3 appear in ApgBhdix

Lemma 3.1 (Folklore) LetT'(n) be a function so thaf’(n)/n is nondecreasing. If there is &(n) time
algorithm for negative triangle detection ov& on a graphG = (I U J U K, E), then there is arD(7'(n))
algorithm which returns a negative triangle ovRrin G if one exists.

It will be useful in our final algorithm to have a method for finding many triasggiven an algorithm
that can detect one. We can extend Leniméa 3.1 in a new way, to show thabgubegative triangle detec-
tion impliessubcubic negative triangle listingrovided that the number of negative triangles to be listed is
subcubic.

Theorem 3.3 (Negative Triangle Listing OverR <3 Negative Triangle OverR) Suppose there is a truly
subcubic algorithm for negative triangle detection o¥r Then there is a truly subcubic algorithm which
lists A negative triangles oveR in any graph with at least\ negative triangles, for anA = O(n379),
0> 0.

Next we show that fast negative triangle detection gvemplies a fast algorithm for finding many edge-
disjoint negative triangles oveR. Consider a tripartite graph with parfsJ, K. We say a set of triangles
T C I x J x K inthe graph ig J-disjoint if for all (¢, j,k) € T, (¢, 5/, k") € T, (i,5) # (i, 5').

Lemma 3.2 LetT'(n) be a function so thal’(n)/n is nondecreasing. GivenB(n) algorithm for negative
triangle detection oveR, there is an algorithmA which outputs a maximal sét of I.J-disjoint negative
triangles overr in a tripartite graph with distinguished partd, J, K), in O(T(n'/3)n?) time. Furthermore,
if there is a constant : 0 < ¢ < 1 such that for all large enough, T'(n) > T(2'/3n)/(2(1 — ¢)), then there
is an output-sensitive (T'(n/|L|1/3)| L|)-time algorithn{

In particular, Lemma&_3]2 implies that given any graphromodes, we can determine those pairs of nodes
that lie on a negative triangle i (7'(n'/?)n?) time. The condition required for the output sensitive algorithm
holds for all subcubic polynomials, but it does not necessarily holduintimes of the forrmm3/ f(n) with
f(n) =n°M, In the special case whéi(n) is ©(n?/ log® n) for a constant, the output sensitive algorithm
only multiplies alog | L| factor to the runtime.

Proof. Algorithm A maintains a global list. of negative triangles ovéR which is originally empty and
will be the eventual output of the algorithm. Lebe a parameter to be set later. At each point the algorithm
works with a subgrapti’ of the original graph, containing all of the nodes, all of the edges betwead i
and betweery and K but only a subset of the edges betwdeand.J. In the beginnings = G and at each
stepA removes an edge frol.

The condition is satisfied for instance whgiin) /n~° is nonincreasing for some> 0.

Algorithm A starts by partitioning each sét.J, K into n® parts where each part has at mqbsfl—“)}
nodes each. It iterates through afl* possible ways to choose a triple of paff$, .J’, K’) so thatl’ C I,

J' ¢ JandK’' ¢ K. For each triplI’,.J’, K’) in turn, it considers the subgraglf of G induced by
I'UJ'"UK' and repeatedly uses Leminal3.1 to return a negative triangléoveach time a negative triangle
(4,4, k) is found inG, the algorithm add§i, 7, k) to L, removes edgéi, ;) from G and attempts to find a new
negative triangle ir’. This process repeats unfif contains no negative triangles, in which case algorithm
A moves on to the next triple of parts.

Now, let us analyze the running time df For a triple of partg1’, J', K') let ey y - be the number of
edgeq(i, j) in I’ x J' that are found in the set df.J’-disjoint negative triangles whei’, J', K') is processed
by A. LetT'(n) be the complexity of negative triangle detection ofRer Then the runtime can be bounded
from above as:

0 S (e T +T@Y) | ®

all n3e triples1,J’ K’

Note that the sum of all;, ;v is at mostn?, since if edgd(i, j) € I’ x J' is reported to be in a negative
triangle, then it is removed from the graph. Hence there is a constaritsuch that[(ll) is upper bounded by:

C- T(nlfa) . E (6I’J’K’ —+ 1) S C- T(nlia) . n3a —+ E er j K’
all n3a triples1’,J' K’ all n3a triplesI’,J/ K’

< ¢ - T(n'™%) - (n3 +n?).

Settinga = 2/3, the runtime becomed(n>T'(n'/3)).

To get an output-sensitive algorithAf, we make the following modification. For all= 1, ...,2logn,
run algorithmA with a := i/(3logn), and stop when the list contains at leas?’ edges. If[L| = |L; 1]
then returnl; otherwise sel; := L and continue with stage+ 1.

The runtime of4’ is

log |L|
Z T(nl—i/(3logn)) . nSi/(Slogn) + Z (eI’J’K’) <
=1

all n3i/(31og n) triples1’,J/ , K’

log || log | L] log | L]
Z (ni/logn +2i) 'T(nl—i/(i’:logn)) —9 Z 2iT(2logn—i/3) —9 Z 2iT(n/2i/3).
=1 =1 =1

Since there is a constank 1 so that for all, T'(n) > T'(2Y/%n)/(2(1—¢)), then for alli, 2'T'(n/2"/3) <
2711 —)T (n/20+1)/3) and hence the runtime is bounded by

log|L|
O | T(n/ILI"*)L| Y (1—2)" | = O(T(n/|L|'?)|L)).
i=0

We are now ready to prove Theoréml3.2, via a simultaneous binary seaectiries of the matrix product.
The “oracle” used for binary search is our algorithm for-disjoint triangles.

Proof of Theorem[3.2. Let A and B be the givem x n matrices. Suppose the integers in the output
A©® Bliein [-W, W] U {co, —oo}. We will binary search ofi—1V, W1 for the finite entries.

We maintain twon x n matricesS and H so that originallyS|i, j] = —W andH[i, j] = W + 1 for all
i,7 € [n]. The algorithm proceeds in iterations. In each iteration a complete tripartjpd gfés created on
partitionsI, J andK. The edges of have weightsv(-) sothatfor € I, j € Jandk € K, w(i, k) = Ali, k],
w(k, j) = Blk,jl andw(i,j) = [(S[i,j] + H][i, j])/2]. After this, using the algorithm from Lemnia8.2,
generate a lisL of I.J-disjoint negative triangles oveR for G in O(7'(n)) time. Now, modifyS and H as
follows. If (i, j) appearsin atriangleib fori € 1,5 € J, thenH[i, j] = w(i, j), otherwiseS|[i, j] = w(i,).
Continue iterating until for all, j, H[i, j] < S[i, j] + 1.

Finally, create the result matriX. To compute the entries @f, set up a complete tripartite graghon
partitions/, J andK. The edges off have weightsu(-) sothatfori € I,j € Jandk € K, w(i, k) = Ali, k],
w(k,j) = Blk,j] andw(i,j) = S[i,j|. Use the algorithm from Lemma_3.2 to obtain a listof I.J-
disjoint negative triangles i®(7'(n)) time. For alli € I,j € J so that(i, j) appears in a triangle ih, set
C[i, j| = S[i, j]; otherwise, se€'[i, j] = H[i, j]. O

Corollary 3.1 Suppose the negative triangle problem ofeis in O(n3/log®n) time for some constant
Then the product af x n matrices ovefR can be done it ((log W)n?/log® n) time.

An important special case of matrix multiplication is that of multiplying rectangulariogstr Negative
triangle detection can also give a speedup in this case as well.

Theorem 3.4 Suppose the negative triangle problem oReis in T'(n) time. Then two matrices of dimensions
m x n andn x p can be multiplied oveR in O(mp - T'(n'/3)log W) time, where the entries in the output
lie in [-W, W] U {—o00,00}.

If T(n) = ne the runtime isO(mp(n)*/3). Notice that ifc < 3 and if p = n(3~9/3, then the runtime
would beO(mn). That is, for anyc < 3, there is some@ > n® such that multiplication ofn x n and
n X p matrices ovefR can be doneptimally. Similar to Lemma 312, for most functiorfg(n), the result can
be modified to give an output-sensitig ¢ - T'((mnp/£)'/?))-time algorithm form x n andn x p matrix
product overR, where/ is the number of ones in the product matrix. The proof of Thedrein 3.4aapjre
AppendiXE.

4 Discussion

In this conference submission, we can only include a few of our result$nvitike first ten pages. The
remaining results appear in appendices. (The full appendix-fre@owensll be available on the authors’
webpages.) Here we summarize the results contained in these appendams/émience.

4.1 Problems Equivalent to All-Pairs Shortest Paths.

In Appendix(F, we prove Theoreim 1.1, which is a series of subcubivaguaces between the All-Pairs
Shortest Paths (APSP) problem, Negative Edge-Weight Triangle, thed @lated problems. Most of the
equivalences follow from Theoreln 1.2 in the special case where thetig@R is the (min, +)-semiring,
or by reweighting tricks. However, the equivalences concerning tiaRement Paths and Second Shortest
Simple Path problems require new reductions. We show that they are leqaigcathe others by showing that

they can be used to detect a negative triangle. (It is known that theyecaadbced to APSP.)
4.2 Boolean Matrix Multiplication and Related Problems.

In Appendix[G, we show how our techniques can be used to provide aiteralgorithms for BMM. It
follows from Theorend_1]2 that triangle detection in an unweighted grapble®a matrix multiplication, and
verifying the Boolean product of two matrices have fast and practicaiateons between each other, so that
any fast practical algorithm for one would entail similar algorithms for therdike.

Roditty and Zwick [RZ05] give a combinatorial algorithm for the secondrtgsb simple path problem
in unweighted directed graphs that runsOrim./nlogn). We show that a polylog improvement on their
algorithm would imply a new subcubic algorithm for BMM.

Theorem 4.1 Suppose there exist nondecreasing functipfits) andm(n) with m(n) > n, and a combina-
torial algorithm which runs inO(m(n)+/n/ f(n)) time and computes the second shortest simple path in any
given unweighted directed graph withnodes andn(n) edges. Then there is a combinatorial algorithm for
triangle detection running i (n3/f(n)) time. If f(n) = n° for somes > 0, then there is a truly subcubic
combinatorial algorithm for BMM.

We also give two new BMM algorithms. First, we can derandomize Bansal alidé’ recent com-
binatorial BMM algorithm [BWQ9], which was the first to asympotically improvethe old Four Russians
algorithm [ADKFE70]. One step is to show that for the problem of prepseitey a graph to answer indepen-
dent set queries fast, applynomial timegorocessing suffices to get faster BMM:

Theorem 4.2 Suppose there aré,c > 0 such that everyr-node graph can be preprocessed@r{n*)
time so that all subsequent batches®@flogn) independent set queries;, .. ., Si,,, can be answered
in O(n?/log®n) time. Then triangle detection (and hence Boolean matrix multiplication) is sehiab
O(n?/log® n) time.

Generalizing Theorem 4.2, we can identify a natural query problem oghtegl graphs whose solution
would give faster APSP algorithms. On a graph with an edge weight functidh — Z, define gprice query
to be an assignment of node weights V' — Z, where a query answer j&sif and only if there is an edge
(u,v) € E such thap(u) + p(v) > ¢(u,v). Intuitively, think of p(v) as a price on node, the edge weight
c(u,v) as the cost of producing bothandwv, and we wish to find for a given list of prices if there is any edge
we are willing to “sell” at those prices.

Theorem 4.3 Suppose there ate ¢ > 0 such that every.-node edge-weighted graph can be preprocessed in
O(n*) time so that any price query can be answeredim?/ log® n) time. Then negative triangle detection
is solvable inO(n3/ log® n) time (and hence APSP is solvable(xin? log W/ log® n) time.

The contrapositive of Theorem 4.3 is interesting: assuming that APSR fi¢et)/polylog n) time, there
is asuper-polynomial timéower bound on the preprocessing needed for efficiently answeriog gueries.
Our second BMM algorithm is a faster quantum BMM algorithm, obtained bydaatoon to quantum
triangle detection.
4.3 A Simplified View of All-Pairs Path Problems and Their Matrix Products.

In Appendix[H we show how our equivalences can be used to simplify thetrations of subcubic
algorithms for several special matrix products and all-pairs path problertie ifiterature: theexistence-
dominanceproduct, node-weighted APSP, all-pairs nondecreasing paths, apdimllbottleneck paths. The

first two reduce to a special triangle detection problem, and the last twaadduanother type of triangle
detection. We show that both triangle problems have simple subcubic algorithms.

4.4 Extension to 3SUM.

Using the ideas of the paper, in Appendix | we show a subquadratic @gqooe between the 3SUM
problem and All-Ints 3SUM. In the 3SUM problem, one is given three list®3, C' of integers, and the goal
is to determine if there are € A, b € B, ¢ € C such thats + b + ¢ = 0. An O(n?) algorithm is well-known
and it is a celebrated open problem in computational geometry to find a muehdiggorithm. The All-Ints
3SUM problem is a function version of tlB&SUM problem: given the same lists, B, C, now the goal is to
determineall integersa € A such that there existe B, c € C with a + b + ¢ = 0. Although this function
version looks much harder, we prove that@am?—¢) algorithm for 3SUM implies aﬂ)(nQ*E’) algorithm for
All-Ints 3SUM. This may be seen as further evidence that the 3SUM prolsddrard to solve substantially
faster than quadratic time.

5 Conclusion

We have explored a new notion of reducibility which preserves truly snibauntimes. Our main con-
tributions aresubcubic reductionsom important function problems (such as all-pairs paths and matrix prod-
ucts) to important decision problems (such as triangle detection and pnatifetation), showing that sub-
cubic algorithms for the latter entail subcubic algorithms for the former. We bhgwn that these reductions
and the ideas behind them have many interesting consequences.

We conclude with three open questions arising from this work:

1. DoesO(n37%) negative triangle detection impt9(n3~%) matrix product (over anyR)? Note we can
currently show tha©(n3~?%) negative triangle implie® (n3~9/3) matrix product.

2. Does a truly subquadratic algorithm f@SUM imply truly subcubic APSP®/e believe truly sub-
guadratic 3SUM should imply truly subcubic negative triangle, which wousthan the question.

3. Is there a truly subcubic algorithm for minimum edge-weight triangidthough it has been asked in
prior work, clearly this question takes on a much stronger importance, raawéhknow it is equivalent
to asking for a truly subcubic APSP algorithm.

References

[ADKF70] V. L. Arlazarov, E. A. Dinic, M. A. Kronrod, and I. A. Fadzev. On economical construction of
the transitive closure of an oriented grajguoviet Math. Dok|.11:1209-1210, 1970.

[AGM97] N. Alon, Z. Galil, and O. Margalit. On the exponent of the all pafrtest path probleml.
Comput. Syst. S¢ib4(2):255-262, 1997.

[Alo09] N. Alon. Personal communication. 2009.

[ANO6] N. Alon and A. Naor. Approximating the cut-norm via Grothendisckequality. SIAM J.
Computing 35:787-803, 2006.

[BDPO8] I. Baran, E.D. Demaine, and M. Patrascu. Subquadraticitdgw for 3sum. Algorithmica
50(4):584-596, 2008.

10

[BDSTO08] J. Brickell, I.S. Dhillon, S. Sra, and J.A. Tropp. The metricrneas problemSIAM J. Matrix

[Berl10]

[BK95]

[BVO6]

[BWOO]

[Cha05]

[Cha07]

[CLO7]

[CW90]

[Die96]

[DP8O]

[DPOY]

[Epp98]

[FK99]

[Fl062]
[FM71]

[FT87]

[GO95]

Anal. Appl, 30(1):375-396, 2008.

A. Bernstein. A nearly optimal algorithm for approximating reptaeat paths an@ shortest
simple paths in general graphs.Rnoc. SODAvolume 21, pages 742-755, 2010.

M. Blum and S. Kannan. Designing programs that check theikwdr ACM 42(1):269-291,
1995.

H. Buhrman and Répalek. Quantum verification of matrix products. S@DA '06: Proceedings
of the seventeenth annual ACM-SIAM symposium on Discrete algoptmmes 880—889, 2006.

N. Bansal and R. Williams. Regularity lemmas and combinatorial algoritim®roc. FOCS
pages 745-754, 2009.

T. M. Chan. All-pairs shortest paths with real weight®im?3/logn) time. InProc. WADS
volume 3608, pages 318-324, 2005.

T. M. Chan. More algorithms for all-pairs shortest paths in wejlgraphs. IProc. STOC
pages 590-598, 2007.

A. Czumaj and A. Lingas. Finding a heaviest triangle is not hattten matrix multiplication. In
Proc. SODApages 986—994, 2007.

D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic pesgions.J. Symbolic
Computation9(3):251-280, 1990.

M. Dietzfelbinger. Universal hashing akewise independent random variables via integer arith-
metic without primes. IfProc. STACSpages 569-580, 1996.

D. Dubois and H. Prade. Fuzzy sets and systems: Theorymoiidations. Academic Press
1980.

R. Duan and S. Pettie. Fast algorithms for (max, min)-matrix multiplicatdrbattleneck short-
est paths. INSODA '09: Proceedings of the Nineteenth Annual ACM -SIAM Sympasium
Discrete Algorithmspages 384—-391, 2009.

D. Eppstein. Finding thee shortest pathsSIAM Journal on Computing@8(2):652—673, 1998.

A. M. Frieze and R. Kannan. Quick approximation to matrices ampdieations. Combinatorica
19(2):175-220, 1999.

R. W. Floyd. Algorithm97: shortest pathComm. ACM5:345, 1962.

M. J. Fischer and A. R. Meyer. Boolean matrix multiplication and titargsclosure. InProc.
FOCS pages 129-131, 1971.

M. L. Fredman and R. E. Tarjan. Fibonacci heaps and thedringmproved network optimization
algorithms.JACM, 34(3):596-615, 1987.

A. Gajentaan and M. Overmars. On a class(af) problems in computational geomet@om-
putational Geometry5(3):165-185, 1995.

11

[HSBO7]

[IR78]

[KIM82]

[KKP93]

[Law72]

[Lin09]

[Mat91]

[MSS05]

[Mun71]

[Pan78]

[Pan80]

[Rod07]

[RZ04]
[RZ05]

[Spi03]
[Str69]
[SZ99]

[Vas08]

J. Hershberger, S. Suri, and A. Bhosle. On the difficultyomhe shortest path problema.CM
TALG, 3(1):5, 2007.

A. Itai and M. Rodeh. Finding a minimum circuit in a gra@AM J. Computing7(4):413—-423,
1978.

N. Katoh, T. Ibaraki, and H. Mine. An efficient algorithm fdf shortest simple pathietworks
12(4):411-427, 1982.

D. Karger, D. Koller, and S. Phillips. Finding the hidden path: Timoginds for all-pairs shortest
paths.SIAM J. Computing22(6):1199-1217, 1993.

E.L. Lawler. A procedure for computing th€ best solutions to discrete optimization problems
and its application to the shortest path problédanagement Scienc&8:401-405, 1971/72.

A. Lingas. A fast output-sensitive algorithm for boolean matrix miiltgtion. In Proc. ESA
pages 408-419, 2009.

J. Matousek. Computing dominanceshfi. Information Processing Letter88(5):277-278,
1991.

F. Magniez, M. Santha, and M. Szegedy. Quantum algorithmghéotriangle problem. In
Proc. SODApages 1109-1117, Philadelphia, PA, USA, 2005. Society for InduatribApplied
Mathematics.

J. I. Munro. Efficient determination of the transitive closureaalirected graphlinf. Process.
Lett, 1(2):56-58, 1971.

V. Y. Pan. Strassen’s algorithm is not optimal; trilinear techniqueggregating, uniting and
canceling for constructing fast algorithms for matrix operations.Pioc. FOCS volume 19,
pages 166-176, 1978.

V. Y. Pan. New fast algorithms for matrix operatio85AM J. Comput.9(2):321-342, 1980.

L. Roditty. On thé<-simple shortest paths problem in weighted directed grapH3rdo. SODA
volume 18, pages 920-928, 2007.

L. Roditty and U. Zwick. On dynamic shortest paths problem&3$4 pages 580-591, 2004.

L. Roditty and U. Zwick. Replacement paths @nsimple shortest paths in unweighted directed
graphs. InProc. ICALP, volume 32, pages 249-260, 2005.

J. P. Spinrad. Efficient graph representatidtislds Institute Monographd9, 2003.
V. Strassen. Gaussian elimination is not optilhlmer. Math,. 13:354-356, 1969.

A. Shoshan and U. Zwick. All pairs shortest paths in undiregtaghs with integer weights. In
Proc. FOCS pages 605-614, 1999.

V. Vassilevska. Nondecreasing paths in weighted graphkparto optimally read a train sched-
ule. InProc. SODApages 465-472, 2008.

12

[VWO06] V. Vassilevska and R. Williams. Finding a maximum weight trianglein® time, with applica-
tions. InProc. STOCpages 225-231, 2006.

[VWYO06] V. Vassilevska, R. Williams, and R. Yuster. Finding the small&ssubgraph in real weighted
graphs and related problems.Proc. ICALP, volume 4051, pages 262—-273, 2006.

[VWYO07] V. Vassilevska, R. Williams, and R. Yuster. All-pairs bottleneckhsafor general graphs in truly
sub-cubic time. IrProc. STOCpages 585-589, 2007.

[War62] S. Warshall. A theorem on boolean matricdsACM 9(1):11-12, 1962.

[Wil07] R. Williams. Matrix-vector multiplication in sub-quadratic time (some prepssing required).
In Proc. SODA pages 995-1001, 2007.

[Woe08] G. J. Woeginger. Open problems around exact algorithibscrete Applied Mathematics
156(3):397 — 405, 2008. Combinatorial Optimization 2004, CO2004.

[Yen71l] J.Y.Yen. Finding thé(shortest loopless paths in a netwokkanagement Scienc#7:712—-716,
1970/71.

[Yuv76] G. Yuval. An algorithm for finding all shortest paths using®! infinite-precision multiplica-
tions. Inf. Proc. Letters4:155-156, 1976.

A A Little Intuition

One of our key observations is the counterintuitive result that subcudpicithms for certain triangle
detection problems can be used to obtain subcubic matrix products in many fiectading products that are
not known to be subcubic. Let us first review some intuition for why fashgle detection shouldotimply
fast matrix multiplication, then discuss how our approach circumvents it. Follisitpplet us focus on the
case of Boolean matrix multiplication (BMM) over OR and AND.

First, note that triangle detection returns one bit, while BMM returAsits. This seems to indicate
thatO(n*%9) triangle detection would be useless for subcubic BMM, as the algorithm wmaed to be run
Q(n?) times. Furthermore, BMM can determifer all edgesif there is a triangle using the edge, while
triangle detection only determinessibme edgés in a triangle. Given our intuitions about quantifiers, it looks
unlikely that the universally quantified problem could be efficiently reduicethe existentially quantified
problem. So there appears to be strong intuition for why such a reductiolal wot be possible.

However, there is an advantage to be found in calling triangle detection dhgsaphs corresponding to
small submatrices. Let and B ben x n matrices ove0, 1}. Observe that triangle detection can tell us if
A - B contains any entry with & Set up a tripartite graph with parts, S» andSs, each containing nodes
which we identify with[n]. The edge relation fof; x S is defined byA4, and the edge relation faf, x S3
is defined byB (in the natural way). A path of length two froine Sy to j € S3 corresponds to & in the
entry (A - B)[i, j]. Putting all possible edges betwegnand.Ss, there is a triangle in this graph if and only
if A- B contains al-entry. (Note we are already relying on the fact that our addition oper&#iOR.)

The above reasoning can also be appliedutbmatricesA’ and B/, to determine ifA’ - B’ contributes a
1-entry to the matrix product. More generally, triangle detection can tell usibdyzt of two submatrices
contains al-entry,among just those entries of the product that we have not already dethplhat is, we
only need to put edges betwesn and S; that correspond to undetermined entries of the product. That is,

13

triangle detection can tell us if submatricd$ and B’ have any newi-entries to contribute to the current
matrix product so far.

On the one hand, if all possible pairs of submatrices frérand B do not result in finding a triangle,
then we have computed all tHeentries and the rest must be zeroes. On the other hand, when wealetect
triangle, we determine at least one newentry (i, j) in A - B, and we can keep latter triangle detection calls
from recomputing this entry by removing the eddej) betweenS; and Ss;. By balancing the number of
triangle detection subproblems we generate with the numbeeatries inA - B, we get a subcubic runtime
for matrix multiplication provided that the triangle algorithm was also subcubitfadt we get aroutput
sensitivealgorithm.) With additional technical effort and a simultaneous binary saaethod, the above
ideas can be generalized to any matrix product where “addition” is a minimenatup.

B Prior work

Matrix Products and Path Problems. Matrix multiplication is fundamental to computer science. The case
of multiplying over a ring is well known to admit surprisingly faster algorithms gsire magic of subtraction,
beginning with the famous algorithm of Strassen [Str69] showing that it @(im°s27) time. After many
improvements on Strassen’s original result, the current best uppedbmu ring matrix multiplication is
O(n?376) by Coppersmith and Winograd [CW9O0].

Over algebraic structures without subtraction, there has been little ggoigrthe search for truly subcubic
algorithms. These “exotic” matrix products are extremely useful in grapbrigtigns and optimization. For
example, matrix multiplication over thenax, min)-semiring, withmax andmin operators in place of plus
and times (respectively), can be used to solveath@airs bottleneck paths problei@PBP) on arbitrary
weighted graphs, where we wish to find a maximum capacity path fromi for all pairs of nodes andt.
Recent work[[VWYQ7, DP09] has shown that fast matrix multiplication oireggg can be applied to obtain a
truly subcubic algorithm over th@nax, min)-semiring, yielding truly subcubic APBP. Matrix multiplication
over the(min, +)-semiring (also known as thdistance produgtcan be used to sohal pairs shortest paths
(APSP) in arbitrary weighted graphs [FM71]. That is, truly subcubitadise product would imply truly
subcubic APSP, one of the “Holy Grails” of graph algorithms. The fastestvn algorithms for distance
product are the (n3 log log® n/ log? n) solution due to Chan [ChaD5], ag¥{ Mn*) where)M is the largest
weight in the matrices due to Alon, Galil and Margalit [AGM97] (following Yuiji#uv76]). Unfortunately,
the latter ispseudopolynomialexponential in the bit complexity), and can only be used to efficiently solve
APSP in special cases [SZ99].

Many over the years have asked if APSP can be solved faster thanticobicFor an explicit reference,
Shoshan and Zwick [SZ99] asked if the distance product oftwon matrices with entries ig1,..., M}
can be computed i (n3~%log M) for somes > 0. (Note an APSP algorithm of similar runtime would
follow from such an algorithm.)

Triangles and Matrix Products. Itai and Rodeh [IR78] were the first to show that triangle detection can be
done with Boolean matrix multiplication.

The trilinear decomposition of Pan [Pan78, Pan80] implies that any bilineaitdfior computing the trace
of the cube of a matrix (i.e,, tr(A3)) over any ring can be used to compute matrix products over any ring.
So in a sense, algebraic circuits that caount the number of triangléa a graph can be turned into matrix
multiplication circuits. Note, this correspondence relies heavily on the aligadireuit model: it is non-black
box in an extreme way. (Our reductions are all black box.)

14

The k Shortest Paths and Replacement Paths Problems.A natural generalization of the, t-shortest
path problem is that of returning the firgtof the shortest paths betweenand¢. In the early 1970s,
Yen [Yen71] and Lawler[[Law72] presented an algorithm which solved pinoblem for directed graphs
with m edgesy nodes and nonnegative edge weights; with Fibonacci héaps [FT87hterithm runs in
O(k(mn + n?logn)) time. Eppstein[[Epp98] showed that if the paths can have cycles, thendhkepr
can be solved i (k + m + nlogn) time. When the input graph is undirected, even trghortestsimple
paths problem is solvable i@(k(m + nlogn)) time [KIM82]. For directed unweighted graphs, the best
known algorithm for the problem is tr(é(km\/?z) time randomized combinatorial algorithm of Roditty and
Zwick [RZ05]. Roditty [Rod0¥] noticed that the shortest simple paths can be approximated fast, culmi-
nating in Bernstein’s [Ber10] amazin@(km /<) running time for a1 + ¢)-approximation. When the paths
are to be computed exactly, however, the best running time is stiDttt¢mnn + n? logn)) time of Yen and
Lawler’s algorithm.

Roditty and Zwick [RZ05] showed that the shortest simple paths can be reduced toomputations
of the second shortest simple path, and so&fw:, n) time algorithm for the second shortest simple path
implies anO (kT (m,n)) algorithm for thek shortest simple paths. The second shortest simple path always
has the following form: take a prefix of the shortest p&tto some node:, then take a path to some nogle
on P using only edges that are not é¢h(this part is called a detour), then take the remaining portioR td
t. The problem then reduces to finding a good detour.

A related problem is the so calledplacement pathproblem in which one is required to find for every
edgee on the shortest path fromto ¢ in G, the shortest path betweerandt in G \ {e}. The replacement
paths problem is at least as hard as the second shortest simple patimpantadeso the best known algorithms
for it in directed graphs also take(mn + n?logn) time.

Verifying a Metric. In themetricity problemwe are given am x n matrix and want to determine whether

it defines a metric orfin]. The metricity problem is a special case of the metric nearness problem){MNP
given a matrixD, find aclosestmatrix D’ such thatD dominatesD’ and D’ satisfies the triangle inequality.
Brickell et. al [BDSTOE&] show that MNP is equivalent to APSP and ask whether the metgoitylem is
equivalent to MNP. Theorefn 3.2 partially answers their question in theskassubcubic metricity implies
subcubic MNP.

Prior reductions of APSP to other problems. Roditty and Zwick [RZ04] consider the incremental and
decremental versions of the single source shortest path problem intee@hd unweighted directed graphs.
They show that either APSP has a truly subcubic algorithm, or any datastedor the decremental/incremental
single source shortest paths problem must either have been initializedidartiowd, or its updates must take
amortizedQ2(n?) time, or its query time must b@(n). They also give a similar relationship between the
problem for unweighted directed graphs and combinatorial algorithmsiiviB

C Subcubic Reducibility

Here we formally define the notion of subcubic reducibility used in this paget,prove a few conse-
guences of it. Recall that algorithm with oracle access tB has special workspace in memory reserved for
oracle calls, and at any step in the algorithm, it can Batin the content of the special workspace in one unit
of time and receive a solution 1 in the workspace.

Let X be an underlying alphabet. We definsiae measuréo be any functionn : ¥* — N. In this
paper, the size measure on weighted graphs with weights ffralf, /| (or square matrices with entries

15

from [— M, M]) is taken to be the number of nodes in the given graph times/ (or the matrix dimension
timeslog M).

Definition C.1 Let A and B be computational problems with a common size measuan inputs. We say
that there is asubcubic reductiofrom A to B if there is an algorithmA with oracle access t®, such that
for everye > 0 there is a) > 0 satisfying three properties:

e For every instance of A, A(z) solves the problerd onz.
e ArunsinO(m>%) time on instances of size.

e For every instance: of A of sizem, let m; be the size of théth oracle call toB in A(x). Then
S imiTE <mPo,

We use the notatiod <3 B to denote the existence of a subcubic reduction frbte B, and A =3 B as
shorthand ford <3 B andB <3 A. In such a case we say thdtand B are subcubic-equivalent

There is a natural extension of the concepOt@?) running times, for any constant> 1, by replacing
all occurrences a in the above definition witly. For such reductions we denote their existencelby, B,
and say there is sub+ reductionfrom A to B, for values ofg such as “quadratic”, “cubic”, “quartic”, etc.

First let us observe that the reducibility relation is transitive.
Proposition 1 Let A, B, C be problems so that <, BandB <, C. ThenA <, C.
Proof. By definition, we have:
1. For every: > 0 there exists @ > 0 so that for large enough there exist{n;} with >, nf ° < na=°

and an algorithnP, . for A which on instances of sizeruns inO(n9~°) time and makes oracle calls
to B with sizesn;.

2. Forevery:’ > 0 there exists @' > 0 so that for all large enough; there exist{n;; } with 3 nfj’s' <

—_ / - — 4 -
ng * and an algorithmPg .- for B which on instances of size; runs inO(n]) time and makes
oracle calls taC with sizesn;;.

We will show that:

3. Forevery:’ > 0 there exists @” > 0 so that for all large enoughthere exist{n;; } with >, nfj’sl <

n?-%" and an algorithn., for A which on instances of sizeruns inO(n?~%") time and makes oracle
calls toC' with sizesn;;.

Lete’ > 0 be given. ConsidePp .- and leté’ > 0 be the value corresponding g as in 2. Picke = ¢'.
Consider algorithnmP, . and letd > 0 be the value corresponding4opas in 1. Replace each oracle call from
algorithm P4 .. for sizen; with a call toPg /.

Now, the new algorithnP., makes oracle calls t6' of sizesn;; and runs in time
O(ni=° + Z nd=%.
7
As we pickeds = &', 3, n?™% = 37, n77° < n4=9 (from 1), and the runtime af.: is O(n?=9).

16

. . . v 5
Consider the oracle calls. They are of sies; } so that, as in 2, for each Zj nfj © <n! % Hence
o Y _ _
PIURED SR ST
i 7 7

where the last inequality is from 1. We can §ét= § and soA <, C. O

Now let us verify that the definition gives us the property we want. In thleviing, let A and B be
computational problems om x n matrices with entries ifi—M, M] (or equivalently, weighted graphs on
nodes).

Proposition 2 If A <3 B then a truly subcubic algorithm faB implies a truly subcubic algorithm foA.

Proof. If there is anO(n3~¢polylog M) algorithm for B then the algorithm for in the reduction runs
in >, n2 “polylog M < n3~°polylog M time. O

Strongly Subcubic Reductions. All subcubic equivalences proved in this paper have one additionp} pro
erty in their reductions: the number of oracle calls and the sizes of ordidalependonly on the input, and
not on the parameter. (In some other reductions, such as the example below, this is not the tase
define a reduction with this property to betaongly subcubic reductiorirhese stronger reductions have the
nice quality that, with respect to polylogarithmic improvements, running times aseped.

Theorem C.1 If there is a strongly subcubic reduction framto B, then

e Forall ¢ > 0, an O(n?(log M)¢/log® n) algorithm for B implies anO(n?(log M)3?/log®n) algo-
rithm for A, and anO(n?/1og® n) algorithm for B implies anO(n?3/ log® n) algorithm for A.

e Forall vy > 0, ann? /228" ™) algorithm for B implies ann?/22(°&” ») algorithm for A.
Proof. For simplicity letn be the input size measure. First, we show that
Z nz3 <nd. 2)
7

A strongly subcubic reduction gives us a fixed algorithm such that faizdsn, the number of oracle calls
and the sizes of oracle calfs;} depend only on the input. Then, for alt> 0, there is @ > 0 satisfying

Zn?‘a < n379 < nd.
i

Since{n;} andn are independent af, this means that for every fixed set;} andn, we can take the limit
on both sides of the above inequalitysas- 0. We obtain that for every, and every set of oracle call sizes
{ni} onan input of sizes, >, n3 < n?.

Now consider an algorithm faB that runs inO(n3/log®n) time. Then an algorithm foA that uses the
reduction callingB as an oracle would run i@(n®=% + 3=, n3/log®n;) time for somes > 0. Leta < §/3.

Then
Zn?/logcni: Z n3 /log® n; + Z n3/log® ng,

i ny<n® i n;>n?

17

which is at most

O | n?0 - n 4+ Z n3/logn | ,

i:n;>n®

since the number of oracle calls is at me%t.>—?). The first term is:3~<" for somes’ > 0, by our choice of
a. By (2), we have

O | n3 < + Z n?/logcn SO(ng/logcn).

i n;>n?
The proof of the second item is analogous. O

It can be shown that strongly subcubic reductionsregeessanfor Theoren] Cll to hold. If the sizes
of oracle calls or their number depend grone can find cases where polylog factors are diminished in the
algorithm for A. (In fact, the reduction below of Mat8ek is one example.)

These kinds of reductions were implicit in prior work, but have not bdaedisd systematically. For
one example, Mata&ek [Mat91] showed that computing dominance®Rihbetween pairs of. vectors can
be done inO(n(+1/2) time, whereO(n!) is an upper bound on x n integer matrix multiplication. The
algorithm works by making)(n?/2/n!/?) calls ton x n integer matrix multiplication. (Note this isot a
strongly subcubic reduction, since the number of calls dependg dotice that for any < 3, the running
time O(n(3t9/2) is truly subcubic. Hence we can say:

Dominances irR" <3 Integer Matrix Multiplication

Another example is that 3SUM-hardnesén computational geometry. Gajentaan and Overniars [GO95]
showed that for many probleni§ solvable in quadratic time, one can reduce 3SUNItm such a way that

a subquadratic algorithm fdi implies one for 3SSUM. Hence under the conjecture that the 3SUM problem
is hard to solve faster, many othHrare also har. Proofs of 3SUM-hardness imply 3SUM- II, but the
notion of reduction used in [GOY5] is weaker than ours. (They only allgw) calls to the oracle foFl.)

D Proofs of the generic results on detection, finding, listing

Reminder of Lemmal[3.1(Folklore) LetT'(n) be a function so thal’(n)/n is nondecreasing. If there is a
T'(n) time algorithm for negative triangle detection ovron a graphG = (I U J U K, F), then there is an
O(T(n)) algorithm which returns a negative triangle ovRrin G if one exists.

Proof of Lemmal[3.1. The algorithm is recursive: it proceeds by first splittihg/ and K each into
two roughly equal part$; andl,, J; and.Js, and K; and K,. Then it runs the detection algorithm on all
8 induced subinstancds;, J;, K;), 4, j, k € {1,2}. If none of these return 'yes’, then there is no negative
triangle inG. Otherwise, the algorithm recurses on exactly one subinstance on whidetéction algorithm
returns 'yes’. The base case is whéh= |J| = |K| = 1 and then one just checks whether the three nodes
form a triangle inO(1) time. The running time becomes

T'(n) = 8T(n) + T'(n/2),T'(1) = 1.

5SometimedT is definedto be 3SUM-hard if f1 is in subquadratic time implies 3SUM is in subquadratic time”. This definition
leaves something to be desired: if 3SUM turned out to be in subquadratithtnall problems are 3SUM-hard, and if 3SUM is not
in subquadratic time then no subquadratic problem is 3SUM-hard. Hea&SthM-hardness of some problems would be contingent
on the complexity of 3SUM itself. Note this it the definition of [GO95], which is a reducibility notion like ours.

18

If T'(n) = nf(n) for some nondecreasing functigitn), thenT'(n) = 25 f(n) > 25 f(n/2) = 2T(n/2).
Hence the recurrence above solve§'ton) = O(T'(n)). O

Reminder of Theorem[3.3Suppose there is a truly subcubic algorithm for negative triangle detectian ove
‘R. Then there is a truly subcubic algorithm which lissnegative triangles oveR in any graph with at least
A negative triangles, for anp = O(n379), 5 > 0.

Proof of Theorem[3:3. Let P be anO(n3~¢log® M) algorithm for negative triangle ovéR for ¢ > 0.
Let A = O(n?7%) for § > 0. Given an3n-node tripartite graplir = (I U J U K, E) with at leastA negative
triangles ovefR we provide a procedure to ligt negative triangles oveR.

We partition the nodes if, J, K into A'/3 parts, each of siz&(n/A'/3). For allA triplesI’ c I,.J' C
J,K' C K of parts, runP in O(A(n/AY3)3~¢1og® M) time overall to determine all triples which contain
negative triangles oveR.

On the triples which contain negative triangles, we run a recursive guoeeLetl’ c I,J' c J K' C K
be a triple which is reported to contain a negative triangle ®e8plit I’, J' and K’ each into two roughly
equal halves. On each of tlepossible triples of halves, ruR and recurse on the triples of halves which
contain negative triangles, with the following provision. For each léeglrecursion (wheré ranges fron?
to log #), we maintain a global counter of the number of recursive calls that have been executed at that
level. Oncer; > A then we do not recurse on any more triples at recursion fe@hce a triple only contains
3 nodes, we output it if it forms a negative triangle. Notice that all listed triamate distinct.

Level ; of the recursion examines triples which conté?r(m%ﬁ)) nodes. At each level, at mostA
triples containing negative triangles are examined, due to the global ceumtezrefore the runtime at level

1 is at mostO (A . (2%"71/3)3*6 log® M). Sinces < 3, the overall runtime becomes asymptotically

A (ﬁ)g_a log® M - Z <231_E>Z =0 (AS/B‘nS*E log® M> :

WhenA < O(n?~9), the runtime is
O(n375+35/3755/3 logc M) _ O(n3755/3 logc M),

which is truly subcubic for any, § > 0. O

E Proof of Theorem[3.4

Theoreni 34 follows from a more general lemma:

Lemma E.1 LetT'(n) be a function so théf'(n)/n is nondecreasing. Suppose there @) time algorithm
for negative triangle detection ov&t in ann node graph. Then:

e There is an algorithm that computésntries of the product oveR of anm x n matrix by ann x p
matrix inO(¢-T((mnp/£)*/3)log W) time, where the entries in the output lig[iaV, W]U{—oo, oo }.

e If there is a constant : 0 < ¢ < 1 such that for all large enough, T'(n) > T(2/%n)/(2(1 — ¢€)),
then there is arO (¢ - T'((mnp/£)'/3))-time algorithm for computing the product ov&rof anm x n
by ann x p matrix, wheref is the number of ones in the product matrix.

19

Proof. Following the ideas from Theorelm 8.2/ J-disjoint negative triangles oveR can be found in
O((£ +a*) - T((mnp)'/* /a))

time, wherea is a bucketting parameter. We set= ¢'/3 and we get a runtime ab(¢ - T'((mnp/£)'/?)).
We set! = mp and apply binary search on top of this to obtain a matrix product algorithm. eT@ugy
output-sensitive algorithm, for each= 1, .. ., log mp, we seta = 2/3: the runtime is now

log mp

S 2 T((mnp/2)/3).
=1

Since there is a constant 1 so that for allr, T'(n) > T(2'/3n) /(2(1—¢)), thenfor alli, 2! T ((mnp) /3 /21/3) <
211 —)T ((mnp) /3 /20+1D/3) and hence the runtime @(¢ - T'((mnp/¢)'/3)), wherel is the number of
ones in the output. O

F Problems Equivalent to All-Pairs Shortest Paths

The goal of this section is to prove Theorem| 1.1 from the Introduction.

Reminder of Theorem[1.1 The following weighted problems eithalt have truly subcubic algorithms, or
none of them do:

The all-pairs shortest paths problem on weighted digraphs (APSP).
Detecting if a weighted graph has a triangle of negative total edge weight.
Listing up ton?%? negative triangles in an edge-weighted graph.

Verifying the correctness of a matrix product over then, +)-semiring.

The all-pairs shortest paths problem on undirected weighted graphs.
Checking whether a given matrix defines a metric.

Finding a minimum weight cycle in a graph of non-negative edge weights.
The replacement paths problem on weighted digraphs.

© ©o N 0k~ WD

Finding thesecondshortest simple path between two nodes in a weighted digraph.

The subcubic equivalence bf2, 3, and4 directly follow from TheoremB 311, 3.2, ahd B.3. The rest of the
equivalences are proved in the following. Most of our equivalenseghe negative triangle problem, since it
is so easy to reason about.

The equivalence betweenand’5 is probably folklore, but we have not seen it in the literature so we
include it for completeness.

Theorem F.1 (Undirected APSP=; Directed APSP) Let d,c > 0 be any constants. APSP in undirected
graphs with weights if—M, M] is in O(n3~%1og® M) time iff APSP in directed graphs with weights in
[~ M, M]isin O(n®>=%log® M) time.

Proof of Theorem[E1. Clearly, undirected APSP is a special case of directed APSP. We shoa tha

truly subcubic algorithm for undirected APSP can be used to computerthe +) product of two matrices
in truly subcubic time, and hence directed APSP is in truly subcubic time.

20

Suppose that there is a truly subcubic algoritArfor undirected APSP. Led andB be then x n matrices
whose(min, +) product we want to compute. Suppose the entried ahd B are in[—M, M}[?]. Consider
the edge-weighted undirected tripartite graplwith n-node partitiond, J, K such that there are no edges
between/ andK, andforalli € I,j € J k € K, (i,7) and(j, k) are edges withu(i, j) = A[i, j] + 6 M and
w(j, k) = Blj, k] + 6M. Using P, compute APSP .

Any path on at least edges inG has weight at leadts M, and any path on at mo3tedges has weight at
most2 x 7M < 15M. HenceP will find for every two nodes € I,k € K, the shortest path betweéand
k usingexactly2 edges, thus computing thienin, +) product ofA and B. O

Theorem F.2 (Metricity =3 Negative Triangle) Let T'(n, M) be nondecreasing. Then there is @n?) +
T(O(n),O(M)) algorithm for negative triangle im node graphs with weights ip-M, M| if and only if
there is anO(n?) + T(O(n), O(M)) algorithm for the metricity problem of] such that all distances are in
[_Mv M]

Proof of Theorem[E2. Given an instancé of the metricity problem, consider a complete tripartite
graphG on 3n nodesn nodes in each of the partitiordsJ, K. Foranyi € I,j € J k € K, define the edge
weights to bew(i, j) = DJi, j|,w(j, k) = D[j, k] andw(i,k) = —D][i, k]. A negative triangle irG gives
iel, je J ke K sothatD[i, j| + D[j, k] — D[i, k] <0, i.e. D[i, j] + D[j, k] < D[i, k]. HenceD satisfies
the triangle inequality iff there are no negative triangle&inChecking the other properties for a metric takes
O(n?) time.

Let G be a given a graph with edge weights: £ — Z which is an instance of negative triangle so that
foralle € E, w(e) € [-M, M] for someM > 0. Build a tripartite graph witm node partitiond, J, K and
edge weightsy'(-) sothatforanyi € I,j € J k € K, w'(i,j) = 2M 4+ w(i,j),w' (j, k) = 2M + w(j, k)
andw’(i, k) = 4M — w(i, k). For all pairs of distinct nodes, b so thata, b are in the same partition, let
w'(a,b) = 2M. Finally, letw’(z,z) = 0 for all . Clearly,w’ satisfies all requirements for a metric except
possibly the triangle inequality. For any three vertigeg, ~ in the same partition’(z, y) + w'(y, z) =
4M > 2M = w'(x, z). Consider triples:, y, z of vertices so that andy are in the same partition ands in
a different partition. We havev'(z, z) + w'(z,y) > M + M = 2M = w'(z,y) andw'(x, z) — w'(y,2) <
2M = w'(z,y). Furthermore, ifi € I,j € J k € K, w'(i,k) + w'(k,j5) > M + 3M > w(i,j) and
w'(i,7) +w'(j, k) > M + 3M > w(i, k). Hence the only possible triples which could violate the triangle
inequality are triples with € I,j € J, k € K, andw’ is not a metric iff there existe I, j € J, k € K such
thatw'(i,7) + w'(4, k) < w'(i, k), i.e. w(i, j) + w(j, k) + w(i, k) < 0 andi, j, k is a negative triangle ifr.

O

Theorem F.3 (Minimum Cycle =3 Negative Triangle) If there is aT'(n, M) algorithm for finding a min-
imum weight cycle in graphs om nodes and weights ifi, M] then there is &'(n, O(M)) algorithm for
finding a minimum weight triangle in-node graphs with weights ir-M, M].

Since any algorithm for APSP can find a minimum cycle in a graph with nonnegagights in the same
running time, we get that APSP and Minimum-Cycle are equivalent w.r.t. fibalgorithms.

Proof. LetG = (V,E) be given withw : E — [—M, M]. Consider grapl&z’ which is justG with
weightsw’ : E — [TM,9M] defined asw’(e) = w(e) + 8M. For anyk and any cycleC' in G with &
edgesw’(C) = 8Mk + w(C), and henc& Mk < w'(C) < 9Mk. Hence, all cycle€’ with > 4 edges have
w'(C') > 28M and all triangles have’ weight< 27M < 28 M. That is, the minimum weight cycle i@’ is
exactly the minimum weight triangle if3. O

"Infinite edge weights can be replaced with suitably large finite values, WLOG.

21

It remains to show the equivalences of 8 and 9 with the other problems.
F.1 Replacement Paths and Second Shortest Paths

The replacement paths and second shortest simple path problems havabee to be closely related
to APSP in an informal sense. For instance, any algorithm for APSP dam the two problems in asymp-
totically the same time: remove all edges from the shortest Bdibtweens and¢ and compute APSP in the
remaining graph. This computes the minimum weight detour for all pairs ofsnal€, and so in additional
O(n?) time one can solve both the replacement paths problem, and the seconststiogée path problem. It
was not clear however that the two problems cannot be solved fastek@®&ia For instance, Roditty [Rod07]
took his fast approximation algorithms as evidence that the two problems migtasier than APSP. In an
attempt to explain why it has been so hard to find fast algorithms, Hergbetrgl. [HSBO?7] showed that
in the path comparison model of Karger et al. [KKP93] the replacemens jpatiblem need€(m./n) time.
This bound does not apply to second shortest path, and is the only kaaenbound for these problems.

Here we present a reduction which shows that if the second shortest giaiplan a directed graph with
n nodes can be found in time which is truly subcubiminthen APSP is in truly subcubic time. Thus, the
two problems are equivalent w.r.t. subcubic algorithms, for dense gr&ihee the second shortest simple
path problem is a special case of the replacement paths problem, duimgdies that for dense graphs the
replacement paths problem is equivalent to APSP, w.r.t. subcubic algorithms

In the next section we modify the reduction to show that if for sam@) and nondecreasing(n)
there is a combinatorial algorithm which runs@{m(n)/n/f(n)) time and computes the second shortest
simple path in unweighted directed graphs, then there (@t / f(n)) combinatorial algorithm for triangle
detection, and hence a corresponding subcubic combinatorial algoothBMM. This implies that if there
is no truly subcubic combinatorial algorithm for BMM, then in order to improwmelte algorithm of Roditty
and Zwick [RZ05], one would need to use algebraic techniques.

Theorem F.4 (Minimum Triangle =3 Second Shortest Simple Path)Suppose there is @'(n) time algo-
rithm for computing the second shortest simple path in a weighted directgah geéth » nodes. Then
there is a7'(O(n)) time algorithm for finding a minimum weight triangle in annode graph, and hence
an O(n*T(0(n'/3))1log W) time algorithm for APSP im node graphs with weights in- W, TW].

Proof. Let G be an instance of Minimum Triangle. WLOG has3 partsU, V, T with no edges within
them, and the edges going frarmto V', from V' to 7" and from7" to U. Furthermore, WLOG all edge weights
are positive (otherwise add a sufficiently large numbeo all edges, so that now the min weight triangle has
weight3Y + its original weight). WLOG alsd~ contains edges between every two nodeg U,v; € V,
between any two nodesg € V andt; € 7" and between any two nodés € T andu; € U (if some edge
isn’t there, add it with weigh8WW"” + 1 whereW” is the max edge weight if7). Note that all of these
transformations increased the max weight by at most a constant factor.

Now we will reduce any instance of minimum weight triangle to one of finding gde®isd shortest path.
First, create a path om + 1 nodes,P = py — p1 — ... — p,. For every edgép;, p;+1) in P, let it have
weight0. All other edges in the graph we will construct will be positive and hefwell be the shortest path
betweerpy andp,,.

Create three parts with nodes eachd = {ay,...,an}, B = {b1,...,b,},C = {c1,...,¢c,} SO that
for eachi, j € [n] there's an edgéua;, b;) with weightw(u;, v;) (the weight inG), and an edgéb;, ¢;) with
weightw(v;, t;); that is, we have created a copy@fexcept that the edges betweEmndU are removed (no
edges betweef and A).

22

Let W’ be the maximum weight i6' and letiW = 3W' + 1.
Now, for every; > 0, add an edge from; to p; with weightj1/.

For everyi < n and anyr € [n], add an edge frormp; to a, with weight(n —i — 1)W + w(cit1, ar).
The second shortest path must have the fpgm- ... — p, followed by a path of length two from someg
through a node irB to a noder; in C with ¢ > s, followed by an edgéc,, p;) and therp; — ... — p,: we
are looking for the shortest detour between a nadand a node; on P with ¢ > s.

The weight of a detour between andp; going through nodes;, b;, c; is
(n—s—1W +w(cst1,ai) + w(ai, bj) +w(bj, c) + tW.
Claim 1 In the graph we have constructed, any optimal detour must have + 1.

Proof of claim: Clearlyt > s. If t > s + 2, then the weight of the detour is at least
(n—s—=14s+2)W +w(cst1,a:) +w(as, bj) +w(bj,) > (n+ 1)W.
Consider any detour between andp,1, say going through;, b;, c.+1. Its weight is
(n—s—=14+s+1)W +w(csy1,a:) +w(as, bj) +w(bj,csp1) <nW + W = (n+1)W,

sinceW is greater thatimes the largest weight in the graph. O

Now, the detours between, andp,,1 have weightn W + w(a;, bj) + w(bj, cs41) + w(csy1,a:). In
particular, the shortest detour betwegrandp;,, has weight:WW+ the minimum weight triangle containing
cs+1- The second shortest path hence has weight exattly- the minimum weight of a triangle iv. DO

Since the second shortest path problem is a special case of the repiapathes problem, we have:

Corollary F.1 If the replacement paths problem is ff{n) time then APSP is i (n>T(O(n'/?))log M)
time.

Corollary F.2 Replacement Paths; APSP.

G Boolean Matrix Multiplication and Related Problems

In this section, we describe several applications of our techniques tadhkem of finding fast practical
Boolean matrix multiplication algorithms, a longstanding challenge in graph algoritiifts more back-
ground on this problem, see the Preliminaries.)

As a direct consequence of Theordms B.2, 3.1add 3.3 we obtain:

Theorem G.1 The following eitheall have truly subcubic combinatorial algorithms, or none of them do:

1. Boolean matrix multiplication (BMM).

2. Detecting if a graph has a triangle.

3. Listing up ton??? triangles in a graph.

4. Verifying the correctness of a matrix product over the Boolean segnirin

23

Theorem G.2 For any constant the problems listed in Theordm 6.1 eitladirhave combinatorial algorithms
running inO(n3/ log® n) time, or none of them do.

Another immediate corollary of Theordm B.3 is an efficient triangle listing algorith

Corollary G.1 There is an algorithm that, giveA and a graphG onn nodes, lists up ta\ triangles from
G intimeO(Al=“/3p¥) < O(A021n238),

Note whenA = n3, one recovers the obviou3(n?) algorithm for listing all triangles, and whetx =
O(1), the runtime is the same as that of triangle detection.

G.1 Output-Sensitive BMM

LemmalE.1l can be applied to show that in the special case of BMM, there is aoviedprandomized
output-sensitive algorithm:

Theorem G.3 LetT'(n) be a function so thal'(n)/n is nondecreasing. Let > nlogn. Suppose there is
a T'(n) time algorithm for triangle detection in an node graph. Then there is a randomized algorithm
running in time

O(n® + L-T(n*3/L1%)),

so thatR computes the Boolean productof two givenn x n matrices with high probability, provided that

C contains at mosL nonzero entries. Whefi(n) = O(n?) for some2 < A < 3, the runtime becomes
O(HQA/SLI—A/G)_

Proof. The algorithm uses ideas from a paper by Lindas [Lin09]. Lingas stidvesv to reduce,
in O(n?logn) time, computing the Boolean matrix product of twox n matrices to computing (log n)
Boolean matrix products of af(v/L) x n by ann x O(v/L) matrix and2 output-sensitive Boolean matrix
products of arO(v/L) x n by ann x n matrix.

Using Lemma EJ1 we get an asymptotic runtime of
n*logn +logn- L-T(n'/?) + L-T(n*3/L'/°).

SinceT'(n) is nondecreasing and sinde < n?, we get thatl'(n?/3/LY/%) > T(n'/3) and hence we can
bound the runtime by ((n? + L - T(n?/3/L'/6)) logn).

If T(n) = O(n®) for some2 < A < 3andL > n we haveL - (n??3/L'/6)% > n?. Hence the runtime
is justO(n?A/3 [1-A/6), O

G.2 Second Shortest Paths and BMM

Similar to the case of APSP, we can prove a close relationship between BMMrating the second
simple shortest path between two given nodes imnianeighteddirected graph. The relationship naturally
extends to a relationship between BMM and RPP in unweighted directedsgrapk theorem below shows
that in the realm of combinatorial algorithms, Roditty and Zwick’s [RZ05] dathan for the second shortest
simple path problem in unweighted directed graphs would be optimal, unlesddtetruly subcubic combi-
natorial algorithm for BMM. Furthermore, any practical improvement ofrtakgorithm would be interesting
as it would imply a new practical BMM algorithm.

Theorem G.4 Suppose there exist nondecreasing functipfrs) andm(n) with m(n) > n, and a combina-
torial algorithm which runs inO(m(n)+/n/ f(n)) time and computes the second shortest simple path in any

24

given unweighted directed graph withnodes andn(n) edges. Then there is a combinatorial algorithm for
triangle detection running i (n3/ f(n)) time. If f(n) = n° for somes > 0, then there is a truly subcubic
combinatorial algorithm for BMM.

Proof. Suppose we are given an instance of triangle detectien(V, E') whereV is identified with[n].
Let L be a parameter. Partitidni into n/L bucketsV}, = {bL + 1,...,bL + L} of sizeL.

We will createn/ L instances of the second shortest simple path problem. In indidfwe < {0,...,n/L—
1), we will be able to check whether there is a triangle going through a nodeckebl;,.

Fix someb. First, create a path obh+ 1 nodes,P =py — p1 — ... — pr.
In our construction we will make sure th&tis the shortest path fromy to py,. The second shortest path

would have to go fronpg to somep; using P, then take a detour (say of lengthto p; with ¢ > s, and then
take P from p, to p;,. The length of the second shortest path would then be

L—t+s+d=L+d+(s—1).

Create three partsd = {a1,...,an}, B = {b1,...,b,},C = {c1,...,cr} so that for each, j € [n]
there is an edg@u;, b;) iff (4, 5) € E and for everyi € [n], j € [L], there is an edg@;, ¢;) iff (i,bL+j) € E.

Now, for every; > 0, add a pathR; of length2; from c; to p;, adding2; new nodes.

For everyi < L add a pathy); of length2(2L — i), ending at some nodg (thus addingtL — 2i new
nodes). The overall number of new nodes is at Mgt + 1).

For everyr € [n] andi < L, add an edge frony, to a,. iff (bL +i+ 1,7) € E.

Now, any simple path fromg to p;, which uses nodes from, B or C must go through one of the paths
Q;, and hence has length at le@é2L — L + 1) = 2(L + 1) > L + 1. HenceP is the shortest path between
Po andpL.

The second shortest path must have the fagm- . .. — p, followed by a detour te, for ¢ > s, followed
by p; — ... — pr. The detours between, andp; look like this: take pattQ) from p, to ¢,, then a path of
length3 through some; through a node i to a node:; in C with ¢ > s, and then taking patR; to p,. The
length of the detour is

dst =2(2L — s) + 3+ 2t = 4L + 3+ 2(t — s).

The length of the full path is
L+dg+(s—t)=5L+3+(t—s).

Hence the closet andt are, the shorter the path.

Now, G has a triangléi, j, bL + s) going throughV} iff there is a path with detour between_; andp;
going throughQ,_1, a;, bj, cs, Rs. Its length is5L + 4. For anys,t with ¢ > s 4 2, the length of the path
with detour betweep, andp; is atleasbL + 3+ 2 > 5L + 4. Hence the shortest that a second shortest path
can be isSL + 4. Itis exactly of this length (and goes between sgmandp,_ 1) iff there is a triangle going
throughV;,. Computing the length of the second shortest simple path then will tell us witbgheriginal
graph has a triangle going through.

Each of then/L graphs (for each setting éj hasO(n + L?) nodes and)(n?) edges. Fol. = Q(y/n)
the graph haé)(L?) nodes and)(n?) edges.

Suppose that for some nondecreasingV) and f(N) there is anO(m(N)v/N/f(N)) combinatorial
algorithm for the second shortest simple path in directed unweighted graipés, letZ be such thatn(n +

25

4L(L + 1)) = O(n?). One can find a triangle using a combinatorial algorithm in time
O(n/L- (n*L)/f(L?)) = O(n’/f(L?)) < O(n®/f(n)).
If f(n)is a polynomial, then there is a truly subcubic combinatorial algorithm for BMM. O

G.3 Two New BMM Algorithms

Our results allow us to provide two new algorithms for BMM, relying on the retestiop between BMM
and triangle detection.

G.3.1 Output-Sensitive Quantum BMM

In the theory of quantum computing there are many fantastic results. Ones# th that a triangle
in a graph onn nodes can be found using on@y(n'3) operations [MSS05]. Recently, Buhrman and
Spalek [Bv06] studied the problem of verifying and computing matrix prixlusing a quantum algo-
rithm. Among other nice results, their paper showeddn'-5+/L) output-sensitive algorithm for computing
the Boolean matrix product of twa x n matrices, wherd. is the number of ones in the output matrix.
Lemmal3.2 is a black box reduction which implies an improved algorithm by pluggiMpioniez, Santha
and Szegedy’s [MSS05] triangle algorithm.

Lemma G.1 There is arO(n!3 L'7/30) quantum algorithm for computing the Boolean matrix product of two
n X n matrices, wherd. is the number of ones in the output matrix.

Notice that sincd. < n?, we always have!'3L!7/30 << O(n'5\/L).

Proof of Lemmal[G.1. Let A and B be the given Boolean matrices. Consider a tripartite graph with
partitions!/, J, K so thatfori € I,j € J (i,j) is an edge iffA[i, j] = 1, forj € J, k € K, (j,k) is an edge
iff B[j,k] = 1and(i, k) is an edge forall € I,k € K. The graph does not need to be created explicitly —
whenever the algorithm has a query whetfien) is an edge in the graph, it can just quehyand B, and any
output it has already produced. Then, in the output-sensitive paregrthof of Lemma 3]2, we can just use
T(n) = O(n'?) given by the algorithm of [MSS05]. Notice that the condition of the lemma is sedigir
T(n) = O(n"3). Hence we get an algorithm with quantum complexitgn '3 L1=13/3) = O(n! 3 L17/30),
O

Using the improved output-sensitive algorithm from Theokeni G.3 the ahmtare can be modified to
be O(n? + L7/60,,13/15) which is better than the result above for AI> Q(n'2*). We prove Theorern 1.5.

Reminder of Theorem[I% There is anO(min{n'3L'7/30 n2 4 [47/60,13/151) quantum algorithm for
computing the Boolean matrix product of twox n matrices, wherd. is the number of ones in the output
matrix.

G.4 Polynomial Preprocessing and Faster Combinatorial BMM

The divide-and-conquer ideas in our theorems are admittedly quite simpléhdyuare also powerful.
It is evident that these ideas are useful for solving function problemslgarithms for related decision
problems. These ideas can also be applied to greatly relax the conditiatesdrteeachieve faster algorithms
for the decision problems themselves. Williarhs [Wil07] showed that it is possibieetorocess a graph
in O(n?*¢) time (for alle > 0) such that queries of the foris S an independent set2an be answered
in O(n?/log®n) time. This data structure can be easily used to solve triangle detecti@tvity log® n),

26

by simply querying the neighborhoods of each vertex. Bansal and Willi@W&B] show that every graph
can be (randomly) preprocessed(xin?*<) time so that any batch @P(logn) independent set queries can
be answered i®(n?/log! %> n) (deterministic) time. This implies af(n?/1log?? n) randomized triangle
detection algorithm. A major limitation in this approach to fast triangle detection is thgtréprocessing
time apparently must be subcubic. In fact, this subcubic requirement is theeason why Bansal and
Williams’ preprocessing algorithm needs randomization. It turns out thadnanypolynomialamount of
preprocessing suffices:

Reminder of Theorem[4.2 Suppose there are ¢ > 0 such that every.-node graph can be preprocessed in
O(n*) time so that all subsequent batche€xfog n) independent set queriés, . . ., Siog, can be answered
in O(n?/log®n) time. Then triangle detection (and hence Boolean matrix multiplication) is siehiab
O(n?/1log®t n) time.

That is, in order to attain better combinatorial algorithms for BMM, it sufficeanswer independent set
queries quickly with anypolynomialamount of preprocessing. Theoreml4.2 holds for both randomized and
deterministic algorithms: a deterministic preprocessing and query algoritluttsresa deterministic BMM
algorithm.

Proof of Theorem[4.2. Leta = 1/(2k). Divide then nodes of the graph inta!~¢ parts, each part
having at mos2n® nodes each. For each pairj of parts, letG; ; = (V;;, E; ;) be the subgraph ofr
restricted to the nodes in paitand;. Preproces&; ; for independent set queries@(n?*) time. This stage
takesO (n?(1-)taky < p2=1/k+1/2 < O(n%5) time.

To determine ifG has a triangle, partition the set of nodes®@finto n/logn groups ofO(logn)
nodes earch. For each group ..., vg, and all pairs of indices,j = 1,...,n!'~%, and queryN(v;) N
Vijr---» N(viegn) NV ; forindependence. If any query answers “no” then report thaetisea triangle;if all
queries answer “yes” over all nodes then report that there is no keiafiis stage take9(n/ log n-n?(1=).
n??/(alogtn)) < O(n®/log! n) time. O

Theoreni 4.2 makes it easy to give derandomized versions of Bansdlilliatns’ algorithms, since there
are deterministipolynomial timealgorithms for the problems they need to solve, just not subcubic ones.

Reminder of Theorem[1.4 There is a deterministic combinatorial algorithm for BMM runningn? / log®%> n)
time.

Proof of Theorem[1.4. We will show that there is a deterministic combinatofi#n?/ log*2° n) time
algorithm for triangle finding. By Corollafy 3.1 this also gives a deterministioltioatorialO(n?/ log?? n)
time algorithm for BMM.

The preprocessing algorithm of Bansal and Williams (Theosehnin [BW09]) proceeds by finding ai
pseudoregular partition in the senselof [FK990)(n?) randomized time. The resulting independent set query
algorithm answer® (log n) independent set queries(n?/ log'?* n) time and is completely deterministic.
Alon and Naor[[ANOG6] give a deterministic polynomial time algorithm for computamg:-pseudoregular
partition, which works for all < ¢/+/logn for a fixed constant > 0. By replacing the randomized
preprocessing with the algorithm of Alon and Naor and applying Thebr&mwve obtain the result. a

Using the connection between negative triangle and APSP, we can idemt#yugal query problem on
weighted graphs whose solution would give faster APSP algorithms. Capa grith an edge weight function
¢: E — Z, define gorice queryto be an assignment of node weightsV — Z, where the answer to a query
is yesif and only if there is an edg@u, v) € E such thap(u) + p(v) > ¢(u,v). Intuitively, think of p(v) as

27

a price on node, the edge weight(u, v) as the cost of producing bothandv, and we wish to find for a
given list of prices if there is any edge we are willing to “sell” at those prices

Reminder of Theorem[4.3 Suppose there are, ¢ > 0 such that every.-node edge-weighted graph can be
preprocessed i) (n*) time so that any price query can be answeredim?/log®n) time. Then negative
triangle detection is solvable i@ (n?/ log® n) time (and hence APSP is solvableliin? log W/ log® n) time.

To some, the contrapositive of Theorem 4.3 may be more interesting: assinatidd®SP need3(n? /polylog n)
time, there is asuper-polynomialower bound on the preprocessing time for efficiently answering price
queries.

H A Simplified View of All-Pairs Path Problems and Their Matrix Products

In this section we consider various algebraic structures other thamtie+) and Boolean semirings.
We relate their matrix products and respective triangle problems, showimgédweral prior results in the area
can be simplified in a uniform way.

Existence-Dominance. The dominance product of two integer matricésand B is the integer matribxC
such thatC|[i, j] is the number of indices such thatA[i, k] < B[k, j]. The dominance product was first
studied by Matogek [Mat91] who showed that for x n matrices it is computable i®(n(3+«)/2), The
existence-dominance product of two integer matri¢deend B is the Boolean matrix’ such thatC[i, j| = 0

iff there exists & such thatA[:, k| < B[k, j]. This product was used in the design of the first truly subcubic
algorithm for the minimum node-weighted triangle problem [VWO06]. Although tkistence-dominance
product seems easier than the dominance product, the best known atgfoitfit actually computes the
dominance product.

The existence-dominance product is defined over(thi, ®) structure for whichR = Z U {—o0, 00}
anda ®b = 0if a < banda ® b = 1 otherwise. The corresponding negative triangle problem, the
dominance trianglgroblem, is defined on a tripartite graph with pafts/, K. The edges betweehand
J are unweighted, and the rest of the edges in the graph have real weldtegyoal is to find a triangle
i,7,k € I x J x K such thatw(i, k) < w(k,j).

Minimum Edge Witness. The minimum edge witness product is defined over a restriction dfitie, ©)
structure ovetkR = Z U {00, —o0}, where® = x is integer multiplication. For an integer matrik and a
{0, 1} matrix B, the(, j) entry of the minimum edge witness proddcof A andB is equal taninyg (A[i, k] x
Blk, j]). This product is important as it is in truly subcubic time iff APSP on node-weygraphs is in truly
subcubic time. Chan [Cha07] used this relation to obtain the first truly sitboutitime for node-weighted
APSP.

The negative triangle problem corresponding to the minimum edge witnessgblisdagain the domi-
nance triangle problem. Hence, by Theorem 3.2 we can conclude thdy awhcubic algorithm for the
dominance triangle problem (such as Matekis algorithm for the dominance product) implies truly sub-
cubic node-weighted APSP. That is, we get an alternative subcubidtaigdor node-weighted APSP as a
byproduct, although it is a bit slower than the best known. To obtain hisitiigpfor node-weighted APSP,
Chan [ChaQl7] gave a completely new algorithm for minimum edge witness giradihn exactly the same
runtime as Matosek’s dominance product algorithm.

28

(Min-<). The (min, <) structure is defined oveR = Z U {co, —oo}, where the binary operatiofd on
input a, b returnsd if a < b and oo otherwise. The first author showed [Va508] that thein, <) matrix
product is in truly subcubic time iff the all pairs minimum nondecreasing patbisigmn (also calle@arliest
arrivals) is in truly subcubic time. The first truly subcubic runtime for the prodaxt;>++/3), was obtained
by the present authors and R. Yuster [VWYO07]. The techniques ohluna Pettie[[DP(9] also imply an
O(nB+«)/2) algorithm.

The negative triangle problem ovémin, <) is the followingnondecreasing triangl@roblem: given a
tripartite graph with partitiong, J, K and real edge weights, find a triangle 1,5 € J, k € K such that
w(i, k) < w(k,7) <w(i,j).

Both known algorithms for this problem follow from the algorithms fenin, <)-product [VWYO07,
DP09] and are somewhat involved. Below we give a simg¥n®/2,/T(n)) algorithm, wherel'(n) is
the best runtime for finding a triangle in amweightedgraph. If matrix multiplication is used, the runtime
is the same as in Duan-Pettie’s algorithtn;(3++)/2). Furthermore, the algorithm can actually be applied
O(log n) times to obtain anothed (n(3++)/2) algorithm for the(min, <)-product.

Theorem H.1 (Nondecreasing Triangle<s Triangle) If a triangle in an unweighted graph can be found in
T(n) time, then a nondecreasing triangle can be foun®im?/2,/T(0(n))) time, and(min, <) product is

in O(n3/2\/T(O(n)) logn) time.

Proof. We are given a weighted tripartite graph with partitians/, K and are looking for a triangle
iel, je J ke Ksuchthatw(i, k) < w(k,j) < w(i,J)).

Begin by sorting all the edges in the graph, breaking ties in the following wedges from/ x J are

considered bigger than edges frdihx J of the same weight which are considered bigger than edges from
I x K of the same weight; withid x J or J x K or I x K equal edges are arranged arbitrarily.

Lett be a parameter. For every vertexn J or K, consider the sorted order of edges incident tnd
partition it into at most: /¢t buckets oft consecutive edges each and at most one bucketwithlet B,
denote theh-th bucket for nodes. For each edgéx, v) such that is in J or K and (z,v) is in B, go
through all edgesv, y) in B,, and check whether, v, y forms a nondecreasing triangle. This tak&s:%t)
time.

Partition the edges of the graph by takifgn/t) consecutive groups of nt edges in the sorted order
of all edges. Leti, denote theg-th such group. For each consider all bucket®,, of verticesv in J or
K such that there is some ed@e z) € B,, N G,. There can be at mogi such buckets: there are at most
n +nt/t = 2n buckets completely contained @, and at mosgn straddlingG ,— at most one per vertex per
group boundary.

Create a tripartite grapH,, for eachy as follows. H,, has partitions?!, H andH*. H! has a node for
eachi € I. ForS € {J,K} Hf has a node for each node buckgf, such thatB,, N G, # 0 andv € S.
ThereforeH, has< 9n nodes.

The edges ofi, are as follows. For alBj;, Hg’ andByy € H;{, (Bjy, Bry) is an edge if(j, k) is an
edge and itis iBj, N Byy. Fori € H] andBy, € HY/, (i, Bj) is an edge i, iff (i, j) € E and thereis a
buckett’ < b such tha(i, j) € Bjy. Fori € H] andBy, € H)Y, (i, Biy) is an edge i, iff (i, k) € E and
there is a bucket’ > b such that(i, k) € Byy.

Any trianglei, B;;, By iy in H, corresponds to a nondecreasing trianglg k in G. If a nondecreasing

trianglei, j, k of G is not contained in any/,, then for some either both(i, j) and(j, k) are inBj, or both
(i,k) and(j, k) are in By, both cases of which are already handled.

29

The runtime isO(n%t + T(9n) - n/t). Settingt = /T(9n) /n, the time become® (n/2,/T(9n)). O

Min-Max. The subtropical semiringmin, max) is defined overR = Z U {00, —oc0}. The (min, max)
matrix product was used by the present authors and R. Ylster [VIWt6GsHow that the all pairs bottleneck
paths problem is in truly subcubic time. The current best algorithm for thisigm runs ir0(n(3+«)/2) time

by Duan and Pettie [DP09]. Thenin, max) product is an important operation in fuzzy logic, where it is
known as theomposition of relationg|DP80], pp.73).

The negative triangle problem ovénin, max) is the following.J-bounded trianglgroblem. Given a
tripartite graph with partitiond, J, K and real weights on the edges, find a trianglke 1,5 € J .k € K
such that bothw(i, k) < w(i,j) andw(j, k) < w(i,j), i.e. the largest triangle edge is ihx J. We
note that any algorithm for the nondecreasing triangle problem also sblvéd-bounded triangle problem:
any I.J-bounded triangle appears as a nondecreasing triangle either in timeggagh, or in the graph with
partitions.J and K swapped. Hence a corollary to TheoremlH.1 is thaf afbounded triangle can be found
in O(n®2,/T(n)) time, whereT'(n) is the runtime of a triangle detection algorithm for unweighted graphs.

| Extension to 3SUM

Finally, we describe an application of the ideas in this paper to the 3SUM pnoblée show that the
3SUM problem has a trulgubquadraticalgorithm if and only if the All-Ints3SUM problem does. In both
problems, one is given a ligt of n integers each. In All-Number3SUM one needs to retusll integerscin
A such that there are b € A with a + b+ ¢ = 0, and for3SUM one merely has to detect whether one such
c exists.

The All-Ints 3SUM problem is a generalization of tlUM problem: given three listgl,B,C of n
integers each, one wants to determitiéntegerss € A such that there existe B,c € C witha+b+c¢ = 0.
We show that our techniques can be used to show the theorem below.

Theorem I.1 (All-Ints 3SSUM =5 3SUM) All-Ints 3SUM is in truly subquadratic time ifSUM is in truly
subquadratic time.

Proof. We first use a hashing scheme given by Dietzfelbinger [Die96] andlms8@&ran, Demaine and
Patrascu [BDP(08] which maps each distinct integer independently to gyie bticketB. For eachi € [v/n],
let A;, B;, andC; be the sets containing the elements hashed to bucKdie hashing scheme has two nice
properties:

1. for every pair of bucketd; and B; there are two bucketSy, ., andCy, ., (which can be located i@(1)
time givens, j) such thatifa € A; andb € B;, thenifa + b € C'thena + bis in eitherCy,,, or Cy,;

3517
2. the number of elements which are mapped to buckets with atdgaselements i€)(/n) in expecta-
tion.

After the hashing we process all elements that get mapped to large busikets §./n). Suppose: € A is
such an element (WLOG itis id). Then go through all elementoof B and check whether+ b € C. This
takesO(n!-%) time overall in expectation.

8The scheme performs multiplications with a random number and someiftst Isence we require that these operations are not
too costly. We can ensure this by first mapping the numbers doélteg n) bits, e.g. by computing modulo some sufficiently large
O(logn) bit prime.

30

Now the bucketsi;, B;, C; for all i € [\/n] containO(/n) elements each. In particular, we have reduced
the problem t@2n subinstances A3SUM ((4;, Bj, Cy,,,) for b = 0,1). For every one of thesgn subin-
stances, in turn: Call the detection algorithm. We can assume that the detdgtdthen actually returns
atriplea € A;,b € Bj,c € Cy,,, which is a3SUM (by a self-reduction, halving argument). Remave
from A;, recording that it is in 8SUM. Try to find a newBSUM in the subinstance. Move on to the next
subinstance if the current one does not contain any more solutions.

Assuming that there is af(n?~¢) 3SUM detection algorithm, the running time from this portion of the
reduction becomes asymptotically

(n+2n) - (vn)*~* = O(n*~*/?),

and so All-Ints3SUM can be solved i®(n!® 4 n?~¢/2) time. 0

31

	Introduction
	Preliminaries
	Prior Work

	Equivalences Between Problems on Generic Structures
	Negative Triangle Detection Implies Matrix Product Verification
	Negative Triangle Detection Implies Matrix Multiplication

	Discussion
	Problems Equivalent to All-Pairs Shortest Paths.
	Boolean Matrix Multiplication and Related Problems.
	A Simplified View of All-Pairs Path Problems and Their Matrix Products.
	Extension to 3SUM.

	Conclusion
	A Little Intuition
	Prior work
	Subcubic Reducibility
	Proofs of the generic results on detection, finding, listing
	Proof of Theorem 3.4
	Problems Equivalent to All-Pairs Shortest Paths
	Replacement Paths and Second Shortest Paths

	Boolean Matrix Multiplication and Related Problems
	Output-Sensitive BMM
	Second Shortest Paths and BMM
	Two New BMM Algorithms
	Output-Sensitive Quantum BMM

	Polynomial Preprocessing and Faster Combinatorial BMM

	A Simplified View of All-Pairs Path Problems and Their Matrix Products
	Extension to 3SUM

