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Abstract

We say an algorithm onn× n matrices with entries in[−M,M ] (or n-node graphs with edge weights
from [−M,M ]) is truly subcubicif it runs in O(n3−δ · poly(log M)) time for someδ > 0. We define a
notion ofsubcubic reducibility, and show that many important problems on graphs and matrices solvable
in O(n3) time areequivalentunder subcubic reductions. Namely, the following weightedproblems either
all have truly subcubic algorithms, or none of them do:

• The all-pairs shortest paths problem on weighted digraphs (APSP).

• Detecting if a weighted graph has a triangle of negative total edge weight.

• Listing up ton2.99 negative triangles in an edge-weighted graph.

• Finding a minimum weight cycle in a graph of non-negative edge weights.

• The replacement paths problem on weighted digraphs.

• Finding the second shortest simple path between two nodes ina weighted digraph.

• Checking whether a given matrix defines a metric.

• Verifying the correctness of a matrix product over the(min,+)-semiring.

Therefore, if APSP cannot be solved inn3−ε time for anyε > 0, then many other problems also
need essentially cubic time. In fact we show generic equivalences between matrix products over a large
class of algebraic structures used in optimization, verifying a matrix product over the same structure, and
corresponding triangle detection problems over the structure. These equivalences simplify prior work on
subcubic algorithms for all-pairs path problems, since it now suffices to give appropriate subcubic triangle
detection algorithms.

Other consequences of our work are new combinatorial approaches to Boolean matrix multiplication
over the (OR,AND)-semiring (abbreviated as BMM). We show that practical advances in triangle detection
would imply practical BMM algorithms, among other results.Building on our techniques, we give two
new BMM algorithms: a derandomization of the recent combinatorial BMM algorithm of Bansal and
Williams (FOCS’09), and an improved quantum algorithm for BMM.
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1 Introduction

Many computational problems on graphs and matrices have natural cubic time solutions. For example,
n × n matrix multiplication over any algebraic structure can be done inO(n3) operations. For algebraic
structures that arise in optimization, such as the(min, +)-semiring, it is of interest to determine when we
need only a subcubic number of operations.1 The all-pairs shortest paths problem (APSP) also has a cubic-
time algorithm, known for over 40 years [Flo62, War62]. One of the “Holy Grails” of graph algorithms
is to determine whether this cubic complexity is basically inherent, or whether a significant improvement
(say,O(n2.9) time) is possible. (It is known that this question is equivalent to finding a faster algorithm
for (min, +) matrix multiplication. [FM71, Mun71]) Most researchers believe that cubic timeis essentially
necessary: there aren2 pairs of nodes, and in the worst case we should not expect to improve toomuch
on Ω(n) time per pair. (We should note that a long line of work has produced slightly subcubic algorithms
with small poly(log n) improvements in the running time; the current best runs inO(n3 log log3 n/ log2 n)
time [Cha07].)

Related to APSP is thereplacement paths problem(RPP): given nodess and t in a weighted directed
graph and a shortest pathP from s to t, compute the length of the shortest simple path that avoids edgee, for
all edgese onP . This problem is studied extensively [Yen71, Law72, Epp98, KIM82, RZ05, Rod07, Ber10]
for its applications to network reliability. A slightly subcubic time algorithm is not hard to obtain from a
slightly subcubic APSP algorithm, but nothing faster than this is known. It does seem that cubic time may
be inherent, since for all edges in a path (and there may beΩ(n) of them) we need to recompute a shortest
path. A well-studied restriction of RPP is to find thesecondshortest (simple) path between two given nodess
andt. Of course this problem also has a cubic algorithm, but again nothing much faster is known. However,
the cubic complexity does not seem to be as vital: we simply want to find a certain type of path between two
endpoints. Similarly, finding a minimum weight cycle in a graph with non-negativeweights is only known to
be possible in slightly subcubic time.2

An even simpler example is that of finding a triangle in an edge-weighted graphwhere the sum of edge
weights is negative. Exhaustive search of all triples of nodes takesO(n3) time, and applying the best APSP
algorithm makes thisO(n3 log log3 n/ log2 n) time, but we do not know a faster algorithm. Recent work has
suggested that this negative triangle problem might have a faster algorithm, since thenode-weightedversion of
the problem can be solved faster [VW06, VWY06, CL07]. (In fact the node-weighted version of the problem
is no harder than theunweightedtriangle detection problem, which is solvable inO(n2.38) time [IR78].)
Since the cubic algorithm for negative triangle issosimple, and many restrictions of the problem have faster
algorithms, it would appear that cubic complexity is unnecessary for findinga negative triangle.

We give theoretical evidence that these open algorithmic questions may be hard to resolve, by showing
that they and other well-studied problems are all surprisinglyequivalent, in the sense that there is a substan-
tially subcubic algorithm for one of them if and only if all of them have substantially subcubic algorithms.
Compare with the phenomenon ofNP-completeness: one reasonP vs NP looks so hard to resolve is that
many researchers working in different areas have all been working on essentially thesame(NP-complete)
problem with no success. Our situation is entirely analogous: either these problems really need essentially
cubic time, or we are missing a fundamental insight which would make all of them simultaneously easier.

1Note that in the specific case when the structure is aring, it is well known that one can solve the problem much faster thanO(n3)
operations [Str69, CW90]. However it is unknown if this fact can be used to compute the matrix product fast on many other important
structures such as commutative semirings.

2Note that if we allowed negative weights, this problem is immediatelyNP-hard.
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We say that an algorithm onn×n matrices (or ann-node graph) computing a set of values in{−M, . . . , M}
is truly subcubicif it usesO(n3−δ ·poly(log M)) time for someδ > 0. In general, polylog M factors are nat-
ural: the truly subcubic ring matrix multiplication algorithms have polylog M overhead if one counts the bit
complexity of operations. In Appendix F we developsubcubic reductionsbetween many problems, proving:

Theorem 1.1 The following problems eitherall have truly subcubic algorithms, ornoneof them do:

1. The all-pairs shortest paths problem on weighted digraphs (APSP).

2. The all-pairs shortest paths problem on undirected weighted graphs.

3. Detecting if a weighted graph has a triangle of negative total edge weight.

4. Listing up ton2.99 negative triangles in an edge-weighted graph.

5. Verifying the correctness of a matrix product over the(min, +)-semiring.

6. Checking whether a given matrix defines a metric.

7. Finding a minimum weight cycle in a graph of non-negative edge weights.

8. The replacement paths problem on weighted digraphs.

9. Finding thesecondshortest simple path between two nodes in a weighted digraph.

Note the only previously known equivalence in the above was that of (1) and (2).

An explicit definition of our reducibility concept is given in Appendix C. Thetruly subcubic runtimes may
vary depending on the problem: given our reductions, anÕ(n2.9) algorithm for negative triangle implies an
Õ(n2.96) algorithm for APSP. However, asymptotic runtime equivalences hold with respect to polylogarithmic
improvements. That is, for eachc ≥ 2, the above either all haveO( n3

logc n · poly log M) algorithms, or none of

them do. Hence anΩ(n3/ log2 n) lower bound on APSP would imply a similar lower bound on all the above
(within poly log M factors).

Perhaps the most interesting aspect of Theorem 1.1 is that some of the problems aredecisionproblems
and others arefunctions. Hence to prove lower bounds on some decision problems, it suffices to prove them
on analogous multi-output functions. It is counterintuitive that anO(n2.9) algorithm returning one bit can be
used to compute a function onΩ(n2) bits inO(n2.96) time. Nevertheless, it is possible and in retrospect, our
reductions are very natural. See Appendix A for some intuition.

A few equivalences in Theorem 1.1 follow from a more general theorem, which can be used to simplify
prior work on all-pairs path problems. In general we consider(min,⊙) structuresdefined over a setR ⊂ Z

together with an operation⊙ : R×R → Z∪{−∞,∞}.3 We define a type of(min,⊙) structure that we call
extended, which allows for an “identity matrix” and an “all-zeroes matrix” over the structure. (For definitions,
see the Preliminaries.) Almost all structures we consider in this paper are extended, including the Boolean
semiring over OR and AND, the(min, max)-semiring, and the(min, +)-semiring. In Section 3 we prove:

Theorem 1.2 (Informal Statement of Theorems 3.1 and 3.2)LetR̄ be an extended(min,⊙) structure. The
following problems over̄R eitherall have truly subcubic algorithms, ornoneof them do:

• Negative Triangle Detection.Given ann-node graph with weight functionw : V × V → R ∪ Z, find
nodesi, j, k such thatw(i, j) ∈ Z, w(i, k) ∈ R, w(k, j) ∈ R, and(w(i, j) ⊙ w(k, j)) + w(i, j) < 0.

3An analogous treatment is possible for(max,⊙) structures. We omit the details, as they merely involve negations of entries.
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• Matrix Product. Given twon × n matricesA, B with entries fromR, compute the product ofA and
B overR̄.

• Matrix Product Verification. Given threen × n matricesA, B, C with entries fromR, determine if
the product ofA andB overR̄ is C.

The relationship between matrix product verification and the matrix product isparticularly surprising, as
n × n matrix product verificationover ringscan be done inO(n2) randomized time [BK95] but we do not
know how to apply this fast verification to ring matrix multiplication. Spinrad [Spi03] (Open Problem 8.2)
and Alon [Alo09] have asked if the verification problem for various matrix products can be done faster than
the products themselves. Our reductions rely crucially on the fact that the addition operation in a(min,⊙)
structure is aminimum.

In Appendix G, we show how our techniques can also be used to design alternative approaches to matrix
multiplication over OR and AND. First we have as a consequence of Theorem 1.2:

Theorem 1.3 The followingall have truly subcubic combinatorial algorithms, or none of them do:

• Boolean matrix multiplication (BMM).

• Detecting if a graph has a triangle.

• Listing up ton2.99 triangles in a graph.

• Verifying the correctness of a matrix product over the Boolean semiring.

These reductions have low overhead, hence any simple fast triangle algorithm would yield a simple (and
only slightly slower) BMM algorithm. This is a problem that has been investigatedby many researchers,e.g.
([Woe08], Open Problem 4.3(c)) and ([Spi03], Open Problem 8.1). More concretely, Theorem 1.3 can already
yield new BMM algorithms, with a little extra work. First, we can derandomize the recent combinatorial
BMM algorithm of Bansal and Williams [BW09]:

Theorem 1.4 There is a deterministic combinatorialO(n3/ log2.25 n)-time algorithm for BMM.

The BMM algorithm of [BW09] uses randomness in two different ways: it reduces BMM to a graph
theoretic problem, computes a pseudoregular partition of the graph in randomized quadratic time, then it uses
random samples of nodes along with the partition to speed up the solution of the graph problem. We can
avoid the random sampling by giving a triangle algorithm withO(n3/ log2.25 n) running time, and applying
Theorem 1.3. To get a deterministic triangle algorithm, we show (using a new reduction) that in fact any
polynomial timealgorithm for pseudoregularity suffices to get a subcubic triangle algorithm. With this re-
laxed condition, we can replace the randomized quadratic algorithm for pseudoregularity with a deterministic
polynomial time algorithm of Alon and Naor [AN06].

We also obtain an improved quantum algorithm for BMM:

Theorem 1.5 There is anÕ(min{n1.3L17/30, n2 + L47/60n13/15}) quantum algorithm for computing the
product of twon × n Boolean matrices, whereL is the number of ones in the output matrix.

Theorem 1.5 is obtained by simply applying the best known quantum algorithm for triangle [MSS05] to
our reduction, improving the previous best [Bv06] output-sensitive quantum algorithm for BMM.

Remark. We have spent much time simplifying our proofs (contrary to all advice we have received), since
one of our goals is to eventually uncover matrix multiplication algorithms that are more practical than what is
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currently known. Earlier versions of our reductions were extremely technical and gave very little insight; we
hope our simplifications will be useful in future work.

2 Preliminaries

Unless otherwise noted, all graphs haven vertices. Whenever an algorithm in our paper uses∞ or −∞,
these can be substituted by numbers of suitably large absolute value. We useω to denote the smallest real
number such thatn × n matrix multiplication over an arbitrary ring can be done inO(nω) operations.

Structures and Extended Structures. We give a general definition encompassing all algebraic structures
for which our results apply. LetR be a finite set. A(min,⊙) structure overR is defined by a binary operation
⊙ : R × R → Z ∪ {−∞,∞}. We use the variableR to refer to a(min,⊙) structure. We say a(min,⊙)
structure isextendedif R ⊂ Z andR contains elementsε0 andε1 such that for allx ∈ R, x⊙ε0 = ε0⊙x = ∞
andε1 ⊙ x = x for all x ∈ R. That is,ε0 is a type of annihilator, andε1 is a left identity. We use the variable
R̄ to refer to an extended structure. The elementsε0 andε1 allow us to define (for everyn) ann × n identity
matrix In and an × n zero matrixZn overR̄. More precisely,In[i, j] = ε0 for all i 6= j, In[i, i] = ε1, and
Zn[i, j] = ε0 for all i, j. We shall omit the subscripts ofIn andZn when the dimension is clear.

Examples of extended structuresR̄ are the(OR, AND) (or Boolean) semiring,4 as well as the(min, max)
and(min, +) semirings (also calledsubtropicaland tropical), and the(min,≤) structure used to solveall
pairs earliest arrivals[Vas08]. An example of a structure that isnot extended is the “existence dominance”
structure defined in Appendix H.

Matrix Products Over Structures. Thematrix product of twon × n matrices overR is

(A ⊙ B)[i, j] = min
k∈[n]

(A[i, k] ⊙ B[k, j]).

It is easy to verify that for all matricesA over an extended̄R, I ⊙ A = A andZ ⊙ A = A ⊙ Z = F
whereF [i, j] = ∞ for all i, j. The problem ofmatrix product verificationover an extended structurēR is
to determine whethermink∈[n](A[i, k] ⊙ B[k, j]) = C[i, j] for all i, j ∈ [n], whereA, B, C are givenn × n
matrices with entries fromR. Although it looks like a simpler problem, matrix product verification for the
(min, +) semiring (for instance) is not known to have a truly subcubic algorithm.

Negative Triangles Over Structures. Thenegative triangle problem overR is defined on a weighted tripar-
tite graph with partsI, J, K. Edge weights betweenI andJ are fromZ, and all other edge weights are from
R. The problem is to detect if there arei ∈ I, j ∈ J, k ∈ K so that(w(i, k) ⊙ w(k, j)) + w(i, j) < 0. Note
that if one negates all weights of edges betweenI andJ , the condition becomes(w(i, k)⊙w(k, j)) < w(i, j).
In the special case when⊙ = + andR ⊆ Z ∪ {−∞,∞}, the tripartiteness requirement is unnecessary, and
the negative triangle problem is defined on anarbitrary graph with edge weights fromZ ∪ {−∞,∞}. This
holds for the negative triangle problem over both the(min, +) and Boolean semirings.

2.1 Prior Work

Since our paper covers many popular problems in the literature, there is muchrelevant prior work. Due to
lack of space, we highlight the most relevant sources in Appendix B.

4Observe the Boolean semiring is isomorphic to the structure on elementsε0 = ∞ andε1 = 0, wherex ⊙ y = x + y.
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3 Equivalences Between Problems on Generic Structures

A generic approach to computing fast(min,⊙) matrix products (for an arbitrary binary operation⊙)
would be of major interest. Here we prove truly subcubic equivalences between matrix products, negative
triangles, and matrix product verification for(min,⊙) structures. (For definitions, see the Preliminaries.)

Reminder of Theorems 3.1 and 3.2Let R̄ be an extended(min, +) structure. The following problems over
R̄ eitherall have truly subcubic algorithms, ornoneof them do:

• Negative Triangle Detection.Given ann-node graph with weight functionw : V × V → R ∪ Z, find
nodesi, j, k such thatw(i, j) ∈ Z, w(i, k) ∈ R, w(k, j) ∈ R, and(w(i, j) ⊙ w(k, j)) + w(i, j) < 0.

• Matrix Product. Given twon × n matricesA, B with entries fromR, compute the product ofA and
B overR̄.

• Matrix Product Verification. Given threen × n matricesA, B, C with entries fromR, determine if
the product ofA andB overR̄ is C.

3.1 Negative Triangle Detection Implies Matrix Product Verification

We start by showing that matrix product verification can solve the negativetriangle problem over any
extended structurēR in the same asymptotic runtime. For two problemsA andB, we write A ≤3 B to
express that there is a subcubic reduction fromA to B. (For formal definitions, see Appendix C.)

Theorem 3.1 (Negative Triangle OverR̄ ≤3 Matrix Product Verification Over R̄) Suppose matrix prod-
uct verification overR̄ can be done in timeT (n). Then the negative triangle problem for graphs overR̄ can
be solved inO(T (n)) time.

Proof. From the tripartite graphG = (I ∪ J ∪ K, E) given by the negative triangle problem overR̄,
construct matricesA, B, C as follows. For each edge(i, j) ∈ (I × J) ∩ E setC[i, j] = w(i, j). Similarly,
for each edge(i, k) ∈ (I × K) ∩ E setA[i, k] = w(i, k) and for each edge(k, j) ∈ (K × J) ∩ E set
B[k, j] = w(k, j). When there is no edge in the graph, the corresponding matrix entry inA or B becomesε0

and inC it becomes∞. The problem becomes to determine whether there arei, j, k ∈ [n] so thatA[i, k] ⊙
B[k, j] < C[i, j]. Let A′ be then × 2n matrix obtained by concatenatingA to the left of then × n identity
matrix I. Let B′ be the2n × n matrix obtained by concatenatingB on top ofC. ThenA′ ⊙ B′ is equal to
the componentwise minimum ofA ⊙ B andC. One can completeA′, B′ andC to square2n × 2n matrices
by concatenating an allε0 n× 2n matrix to the bottom ofA′, an allε0 2n× n matrix to the right ofB′ andn
columns of allε0s andn rows of allε0s to the right and bottom ofC respectively.

Run matrix product verification onA′, B′, C. Suppose there are somei, j so thatmink(A
′[i, k]⊙B′[k, j]) 6=

C[i, j]. Then since

min
k

(A′[i, k] ⊙ B′[k, j]) = min{C[i, j], min
k

(A[i, k] ⊙ B[k, j])} ≤ C[i, j],

there must exists ak ∈ [n] so thatA[i, k] ⊙ B[k, j] < C[i, j]. In other words,i, k, j is a negative triangle
overR̄. If on the other hand for alli, j we havemink(A

′[i, k] ⊙ B′[k, j]) = C[i, j], then for alli, j we have
mink(A[i, k] ⊙ B[k, j]) ≥ C[i, j] and there is no negative triangle. 2
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3.2 Negative Triangle Detection Implies Matrix Multiplicati on

Next we show that from negative triangle detection over a(min,⊙) structureR, we can obtain the full
matrix product overR. Specifically, we prove the following.

Theorem 3.2 (Matrix Product Over R ≤3 Negative Triangle OverR) LetT (n) be a function so thatT (n)/n
is nondecreasing. Suppose the negative triangle problem overR in an n-node graph can be solved inT (n)
time. Then the product of twon×n matrices overR can be performed inO(n2 ·T (n1/3) log W ) time, where
W is the absolute value of the largest finite integer in the output.

Before we proceed, let us state some simple but useful relationships between triangle detecting, finding,
and listing. The proofs of the Lemma 3.1 and Theorem 3.3 appear in AppendixD.

Lemma 3.1 (Folklore) LetT (n) be a function so thatT (n)/n is nondecreasing. If there is aT (n) time
algorithm for negative triangle detection overR on a graphG = (I ∪ J ∪ K, E), then there is anO(T (n))
algorithm which returns a negative triangle overR in G if one exists.

It will be useful in our final algorithm to have a method for finding many triangles, given an algorithm
that can detect one. We can extend Lemma 3.1 in a new way, to show that subcubic negative triangle detec-
tion impliessubcubic negative triangle listing, provided that the number of negative triangles to be listed is
subcubic.

Theorem 3.3 (Negative Triangle Listing OverR ≤3 Negative Triangle OverR) Suppose there is a truly
subcubic algorithm for negative triangle detection overR. Then there is a truly subcubic algorithm which
lists ∆ negative triangles overR in any graph with at least∆ negative triangles, for any∆ = O(n3−δ),
δ > 0.

Next we show that fast negative triangle detection overR implies a fast algorithm for finding many edge-
disjoint negative triangles overR. Consider a tripartite graph with partsI, J, K. We say a set of triangles
T ⊆ I × J × K in the graph isIJ-disjoint if for all (i, j, k) ∈ T , (i′, j′, k′) ∈ T , (i, j) 6= (i′, j′).

Lemma 3.2 Let T (n) be a function so thatT (n)/n is nondecreasing. Given aT (n) algorithm for negative
triangle detection overR, there is an algorithmA which outputs a maximal setL of IJ-disjoint negative
triangles overR in a tripartite graph with distinguished parts(I, J, K), in O(T (n1/3)n2) time. Furthermore,
if there is a constantε : 0 < ε < 1 such that for all large enoughn, T (n) ≥ T (21/3n)/(2(1− ε)), then there
is an output-sensitiveO(T (n/|L|1/3)|L|)-time algorithm.5

In particular, Lemma 3.2 implies that given any graph onn nodes, we can determine those pairs of nodes
that lie on a negative triangle inO(T (n1/3)n2) time. The condition required for the output sensitive algorithm
holds for all subcubic polynomials, but it does not necessarily hold for runtimes of the formn3/f(n) with
f(n) = no(1). In the special case whenT (n) is Θ(n3/ logc n) for a constantc, the output sensitive algorithm
only multiplies alog |L| factor to the runtime.

Proof. Algorithm A maintains a global listL of negative triangles overR which is originally empty and
will be the eventual output of the algorithm. Leta be a parameter to be set later. At each point the algorithm
works with a subgraph̃G of the original graph, containing all of the nodes, all of the edges between I andK
and betweenJ andK but only a subset of the edges betweenI andJ . In the beginningG̃ = G and at each
stepA removes an edge from̃G.

5The condition is satisfied for instance whenT (n)/n3−δ is nonincreasing for someδ > 0.
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Algorithm A starts by partitioning each setI, J, K into na parts where each part has at most⌈n(1−a)⌉
nodes each. It iterates through alln3a possible ways to choose a triple of parts(I ′, J ′, K ′) so thatI ′ ⊂ I,
J ′ ⊂ J andK ′ ⊂ K. For each triple(I ′, J ′, K ′) in turn, it considers the subgraphG′ of G̃ induced by
I ′∪J ′∪K ′ and repeatedly uses Lemma 3.1 to return a negative triangle overR. Each time a negative triangle
(i, j, k) is found inG′, the algorithm adds(i, j, k) to L, removes edge(i, j) from G̃ and attempts to find a new
negative triangle inG′. This process repeats untilG′ contains no negative triangles, in which case algorithm
A moves on to the next triple of parts.

Now, let us analyze the running time ofA. For a triple of parts(I ′, J ′, K ′) let eI′J ′K′ be the number of
edges(i, j) in I ′×J ′ that are found in the set ofI ′J ′-disjoint negative triangles when(I ′, J ′, K ′) is processed
by A. Let T (n) be the complexity of negative triangle detection overR. Then the runtime can be bounded
from above as:

O





∑

all n3a triplesI′,J ′,K′

(

eI′J ′K′ · T (n1−a) + T (n1−a)
)



 . (1)

Note that the sum of alleI′J ′K′ is at mostn2, since if edge(i, j) ∈ I ′ × J ′ is reported to be in a negative
triangle, then it is removed from the graph. Hence there is a constantc > 0 such that (1) is upper bounded by:

c · T (n1−a) ·
∑

all n3a triplesI′,J ′,K′

(eI′J ′K′ + 1) ≤ c · T (n1−a) ·



n3a +
∑

all n3a triplesI′,J ′,K′

eI′J ′K′





≤ c · T (n1−a) · (n3a + n2).

Settinga = 2/3, the runtime becomesO(n2T (n1/3)).

To get an output-sensitive algorithmA′, we make the following modification. For alli = 1, . . . , 2 log n,
run algorithmA with a := i/(3 log n), and stop when the listL contains at least2i edges. If|L| = |Li−1|
then returnL; otherwise setLi := L and continue with stagei + 1.

The runtime ofA′ is

log |L|
∑

i=1

T (n1−i/(3 log n)) ·



n3i/(3 log n) +
∑

all n3i/(3 log n) triplesI′,J ′,K′

(eI′J ′K′)



 ≤

log |L|
∑

i=1

(

ni/ log n + 2i
)

· T (n1−i/(3 log n)) = 2

log |L|
∑

i=1

2iT (2log n−i/3) = 2

log |L|
∑

i=1

2iT (n/2i/3).

Since there is a constantε < 1 so that for alln, T (n) ≥ T (21/3n)/(2(1−ε)), then for alli, 2iT (n/2i/3) ≤
2i+1(1 − ε)T (n/2(i+1)/3) and hence the runtime is bounded by

O



T (n/|L|1/3)|L|
log |L|
∑

i=0

(1 − ε)i



 = O(T (n/|L|1/3)|L|).

2
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We are now ready to prove Theorem 3.2, via a simultaneous binary searchon entries of the matrix product.
The “oracle” used for binary search is our algorithm forIJ-disjoint triangles.

Proof of Theorem 3.2. Let A andB be the givenn × n matrices. Suppose the integers in the output
A ⊙ B lie in [−W, W ] ∪ {∞,−∞}. We will binary search on[−W, W ] for the finite entries.

We maintain twon × n matricesS andH so that originallyS[i, j] = −W andH[i, j] = W + 1 for all
i, j ∈ [n]. The algorithm proceeds in iterations. In each iteration a complete tripartite graph G is created on
partitionsI, J andK. The edges ofG have weightsw(·) so that fori ∈ I, j ∈ J andk ∈ K, w(i, k) = A[i, k],
w(k, j) = B[k, j] andw(i, j) = ⌈(S[i, j] + H[i, j])/2⌉. After this, using the algorithm from Lemma 3.2,
generate a listL of IJ-disjoint negative triangles overR for G in O(T (n)) time. Now, modifyS andH as
follows. If (i, j) appears in a triangle inL for i ∈ I, j ∈ J , thenH[i, j] = w(i, j), otherwiseS[i, j] = w(i, j).
Continue iterating until for alli, j, H[i, j] ≤ S[i, j] + 1.

Finally, create the result matrixC. To compute the entries ofC, set up a complete tripartite graphG on
partitionsI, J andK. The edges ofG have weightsw(·) so that fori ∈ I, j ∈ J andk ∈ K, w(i, k) = A[i, k],
w(k, j) = B[k, j] and w(i, j) = S[i, j]. Use the algorithm from Lemma 3.2 to obtain a listL of IJ-
disjoint negative triangles inO(T (n)) time. For alli ∈ I, j ∈ J so that(i, j) appears in a triangle inL, set
C[i, j] = S[i, j]; otherwise, setC[i, j] = H[i, j]. 2

Corollary 3.1 Suppose the negative triangle problem overR is in O(n3/ logc n) time for some constantc.
Then the product ofn × n matrices overR can be done inO((log W )n3/ logc n) time.

An important special case of matrix multiplication is that of multiplying rectangular matrices. Negative
triangle detection can also give a speedup in this case as well.

Theorem 3.4 Suppose the negative triangle problem overR is inT (n) time. Then two matrices of dimensions
m × n andn × p can be multiplied overR in O(mp · T (n1/3) log W ) time, where the entries in the output
lie in [−W, W ] ∪ {−∞,∞}.

If T (n) = nc the runtime isO(mp(n)c/3). Notice that ifc < 3 and if p = n(3−c)/3, then the runtime
would beO(mn). That is, for anyc < 3, there is somep ≥ nε such that multiplication ofm × n and
n × p matrices overR can be doneoptimally. Similar to Lemma 3.2, for most functionsT (n), the result can
be modified to give an output-sensitiveO(ℓ · T ((mnp/ℓ)1/3))-time algorithm form × n andn × p matrix
product overR, whereℓ is the number of ones in the product matrix. The proof of Theorem 3.4 appears in
Appendix E.

4 Discussion

In this conference submission, we can only include a few of our results within the first ten pages. The
remaining results appear in appendices. (The full appendix-free version will be available on the authors’
webpages.) Here we summarize the results contained in these appendices for convenience.

4.1 Problems Equivalent to All-Pairs Shortest Paths.

In Appendix F, we prove Theorem 1.1, which is a series of subcubic equivalences between the All-Pairs
Shortest Paths (APSP) problem, Negative Edge-Weight Triangle, and other related problems. Most of the
equivalences follow from Theorem 1.2 in the special case where the structureR̄ is the(min, +)-semiring,
or by reweighting tricks. However, the equivalences concerning the Replacement Paths and Second Shortest
Simple Path problems require new reductions. We show that they are equivalent to the others by showing that
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they can be used to detect a negative triangle. (It is known that they can be reduced to APSP.)

4.2 Boolean Matrix Multiplication and Related Problems.

In Appendix G, we show how our techniques can be used to provide alternative algorithms for BMM. It
follows from Theorem 1.2 that triangle detection in an unweighted graph, Boolean matrix multiplication, and
verifying the Boolean product of two matrices have fast and practical reductions between each other, so that
any fast practical algorithm for one would entail similar algorithms for the other two.

Roditty and Zwick [RZ05] give a combinatorial algorithm for the second shortest simple path problem
in unweighted directed graphs that runs inO(m

√
n log n). We show that a polylog improvement on their

algorithm would imply a new subcubic algorithm for BMM.

Theorem 4.1 Suppose there exist nondecreasing functionsf(n) andm(n) with m(n) ≥ n, and a combina-
torial algorithm which runs inO(m(n)

√
n/f(n)) time and computes the second shortest simple path in any

given unweighted directed graph withn nodes andm(n) edges. Then there is a combinatorial algorithm for
triangle detection running inO(n3/f(n)) time. Iff(n) = nε for someε > 0, then there is a truly subcubic
combinatorial algorithm for BMM.

We also give two new BMM algorithms. First, we can derandomize Bansal and Williams’ recent com-
binatorial BMM algorithm [BW09], which was the first to asympotically improve on the old Four Russians
algorithm [ADKF70]. One step is to show that for the problem of preprocessing a graph to answer indepen-
dent set queries fast, anypolynomial timeprocessing suffices to get faster BMM:

Theorem 4.2 Suppose there arek, c > 0 such that everyn-node graph can be preprocessed inO(nk)
time so that all subsequent batches ofO(log n) independent set queriesS1, . . . , Slog n can be answered
in O(n2/ logc n) time. Then triangle detection (and hence Boolean matrix multiplication) is solvable in
O(n3/ logc+1 n) time.

Generalizing Theorem 4.2, we can identify a natural query problem on weighted graphs whose solution
would give faster APSP algorithms. On a graph with an edge weight functionc : E → Z, define aprice query
to be an assignment of node weightsp : V → Z, where a query answer isyesif and only if there is an edge
(u, v) ∈ E such thatp(u) + p(v) > c(u, v). Intuitively, think of p(v) as a price on nodev, the edge weight
c(u, v) as the cost of producing bothu andv, and we wish to find for a given list of prices if there is any edge
we are willing to “sell” at those prices.

Theorem 4.3 Suppose there arek, c > 0 such that everyn-node edge-weighted graph can be preprocessed in
O(nk) time so that any price query can be answered inO(n2/ logc n) time. Then negative triangle detection
is solvable inO(n3/ logc n) time (and hence APSP is solvable inO(n3 log W/ logc n) time.

The contrapositive of Theorem 4.3 is interesting: assuming that APSP needsΩ(n3/poly log n) time, there
is asuper-polynomial timelower bound on the preprocessing needed for efficiently answering price queries.

Our second BMM algorithm is a faster quantum BMM algorithm, obtained by a reduction to quantum
triangle detection.

4.3 A Simplified View of All-Pairs Path Problems and Their Matri x Products.

In Appendix H we show how our equivalences can be used to simplify the constructions of subcubic
algorithms for several special matrix products and all-pairs path problems inthe literature: theexistence-
dominanceproduct, node-weighted APSP, all-pairs nondecreasing paths, and all-pairs bottleneck paths. The
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first two reduce to a special triangle detection problem, and the last two reduce to another type of triangle
detection. We show that both triangle problems have simple subcubic algorithms.

4.4 Extension to 3SUM.

Using the ideas of the paper, in Appendix I we show a subquadratic equivalence between the 3SUM
problem and All-Ints 3SUM. In the 3SUM problem, one is given three listsA, B, C of integers, and the goal
is to determine if there area ∈ A, b ∈ B, c ∈ C such thata + b + c = 0. An O(n2) algorithm is well-known
and it is a celebrated open problem in computational geometry to find a much faster algorithm. The All-Ints
3SUM problem is a function version of the3SUM problem: given the same listsA, B, C, now the goal is to
determineall integersa ∈ A such that there existb ∈ B, c ∈ C with a + b + c = 0. Although this function
version looks much harder, we prove that anO(n2−ε) algorithm for 3SUM implies anO(n2−ε′) algorithm for
All-Ints 3SUM. This may be seen as further evidence that the 3SUM problemis hard to solve substantially
faster than quadratic time.

5 Conclusion

We have explored a new notion of reducibility which preserves truly subcubic runtimes. Our main con-
tributions aresubcubic reductionsfrom important function problems (such as all-pairs paths and matrix prod-
ucts) to important decision problems (such as triangle detection and productverification), showing that sub-
cubic algorithms for the latter entail subcubic algorithms for the former. We have shown that these reductions
and the ideas behind them have many interesting consequences.

We conclude with three open questions arising from this work:

1. DoesO(n3−δ) negative triangle detection implyO(n3−δ) matrix product (over anyR)? Note we can
currently show thatO(n3−δ) negative triangle impliesO(n3−δ/3) matrix product.

2. Does a truly subquadratic algorithm for3SUM imply truly subcubic APSP?We believe truly sub-
quadratic 3SUM should imply truly subcubic negative triangle, which would answer the question.

3. Is there a truly subcubic algorithm for minimum edge-weight triangle?Although it has been asked in
prior work, clearly this question takes on a much stronger importance, now that we know it is equivalent
to asking for a truly subcubic APSP algorithm.
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A A Little Intuition

One of our key observations is the counterintuitive result that subcubic algorithms for certain triangle
detection problems can be used to obtain subcubic matrix products in many forms, including products that are
not known to be subcubic. Let us first review some intuition for why fast triangle detection shouldnot imply
fast matrix multiplication, then discuss how our approach circumvents it. For simplicity, let us focus on the
case of Boolean matrix multiplication (BMM) over OR and AND.

First, note that triangle detection returns one bit, while BMM returnsn2 bits. This seems to indicate
thatO(n2.99) triangle detection would be useless for subcubic BMM, as the algorithm wouldneed to be run
Ω(n2) times. Furthermore, BMM can determinefor all edgesif there is a triangle using the edge, while
triangle detection only determines ifsome edgeis in a triangle. Given our intuitions about quantifiers, it looks
unlikely that the universally quantified problem could be efficiently reduced to the existentially quantified
problem. So there appears to be strong intuition for why such a reduction would not be possible.

However, there is an advantage to be found in calling triangle detection on small graphs corresponding to
small submatrices. LetA andB ben × n matrices over{0, 1}. Observe that triangle detection can tell us if
A · B contains any entry with a1: Set up a tripartite graph with partsS1, S2 andS3, each containingn nodes
which we identify with[n]. The edge relation forS1 × S2 is defined byA, and the edge relation forS2 × S3

is defined byB (in the natural way). A path of length two fromi ∈ S1 to j ∈ S3 corresponds to a1 in the
entry(A · B)[i, j]. Putting all possible edges betweenS1 andS3, there is a triangle in this graph if and only
if A · B contains a1-entry. (Note we are already relying on the fact that our addition operation is OR.)

The above reasoning can also be applied tosubmatricesA′ andB′, to determine ifA′ · B′ contributes a
1-entry to the matrix product. More generally, triangle detection can tell us if a product of two submatrices
contains a1-entry,among just those entries of the product that we have not already computed. That is, we
only need to put edges betweenS1 andS3 that correspond to undetermined entries of the product. That is,
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triangle detection can tell us if submatricesA′ andB′ have any new1-entries to contribute to the current
matrix product so far.

On the one hand, if all possible pairs of submatrices fromA andB do not result in finding a triangle,
then we have computed all the1-entries and the rest must be zeroes. On the other hand, when we detecta
triangle, we determine at least one new1-entry(i, j) in A · B, and we can keep latter triangle detection calls
from recomputing this entry by removing the edge(i, j) betweenS1 andS3. By balancing the number of
triangle detection subproblems we generate with the number of1-entries inA · B, we get a subcubic runtime
for matrix multiplication provided that the triangle algorithm was also subcubic. (In fact we get anoutput
sensitivealgorithm.) With additional technical effort and a simultaneous binary searchmethod, the above
ideas can be generalized to any matrix product where “addition” is a minimum operator.

B Prior work

Matrix Products and Path Problems. Matrix multiplication is fundamental to computer science. The case
of multiplying over a ring is well known to admit surprisingly faster algorithms using the magic of subtraction,
beginning with the famous algorithm of Strassen [Str69] showing that it is inO(nlog2 7) time. After many
improvements on Strassen’s original result, the current best upper bound on ring matrix multiplication is
O(n2.376) by Coppersmith and Winograd [CW90].

Over algebraic structures without subtraction, there has been little progress in the search for truly subcubic
algorithms. These “exotic” matrix products are extremely useful in graph algorithms and optimization. For
example, matrix multiplication over the(max, min)-semiring, withmax andmin operators in place of plus
and times (respectively), can be used to solve theall pairs bottleneck paths problem(APBP) on arbitrary
weighted graphs, where we wish to find a maximum capacity path froms to t for all pairs of nodess andt.
Recent work [VWY07, DP09] has shown that fast matrix multiplication over rings can be applied to obtain a
truly subcubic algorithm over the(max, min)-semiring, yielding truly subcubic APBP. Matrix multiplication
over the(min, +)-semiring (also known as thedistance product) can be used to solveall pairs shortest paths
(APSP) in arbitrary weighted graphs [FM71]. That is, truly subcubic distance product would imply truly
subcubic APSP, one of the “Holy Grails” of graph algorithms. The fastestknown algorithms for distance
product are theO(n3 log log3 n/ log2 n) solution due to Chan [Cha05], and̃O(Mnω) whereM is the largest
weight in the matrices due to Alon, Galil and Margalit [AGM97] (following Yuval [Yuv76]). Unfortunately,
the latter ispseudopolynomial(exponential in the bit complexity), and can only be used to efficiently solve
APSP in special cases [SZ99].

Many over the years have asked if APSP can be solved faster than cubictime. For an explicit reference,
Shoshan and Zwick [SZ99] asked if the distance product of twon × n matrices with entries in{1, . . . , M}
can be computed inO(n3−δ log M) for someδ > 0. (Note an APSP algorithm of similar runtime would
follow from such an algorithm.)

Triangles and Matrix Products. Itai and Rodeh [IR78] were the first to show that triangle detection can be
done with Boolean matrix multiplication.

The trilinear decomposition of Pan [Pan78, Pan80] implies that any bilinear circuit for computing the trace
of the cube of a matrixA (i.e., tr(A3)) over any ring can be used to compute matrix products over any ring.
So in a sense, algebraic circuits that cancount the number of trianglesin a graph can be turned into matrix
multiplication circuits. Note, this correspondence relies heavily on the algebraic circuit model: it is non-black
box in an extreme way. (Our reductions are all black box.)
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The k Shortest Paths and Replacement Paths Problems.A natural generalization of thes, t-shortest
path problem is that of returning the firstk of the shortest paths betweens and t. In the early 1970s,
Yen [Yen71] and Lawler [Law72] presented an algorithm which solved this problem for directed graphs
with m edges,n nodes and nonnegative edge weights; with Fibonacci heaps [FT87] their algorithm runs in
O(k(mn + n2 log n)) time. Eppstein [Epp98] showed that if the paths can have cycles, then the problem
can be solved inO(k + m + n log n) time. When the input graph is undirected, even thek shortestsimple
paths problem is solvable inO(k(m + n log n)) time [KIM82]. For directed unweighted graphs, the best
known algorithm for the problem is thẽO(km

√
n) time randomized combinatorial algorithm of Roditty and

Zwick [RZ05]. Roditty [Rod07] noticed that thek shortest simple paths can be approximated fast, culmi-
nating in Bernstein’s [Ber10] amazing̃O(km/ε) running time for a(1 + ε)-approximation. When the paths
are to be computed exactly, however, the best running time is still theO(k(mn + n2 log n)) time of Yen and
Lawler’s algorithm.

Roditty and Zwick [RZ05] showed that thek shortest simple paths can be reduced tok computations
of the second shortest simple path, and so anyT (m, n) time algorithm for the second shortest simple path
implies anO(kT (m, n)) algorithm for thek shortest simple paths. The second shortest simple path always
has the following form: take a prefix of the shortest pathP to some nodex, then take a path to some nodey
onP using only edges that are not onP (this part is called a detour), then take the remaining portion ofP to
t. The problem then reduces to finding a good detour.

A related problem is the so calledreplacement pathsproblem in which one is required to find for every
edgee on the shortest path froms to t in G, the shortest path betweens andt in G \ {e}. The replacement
paths problem is at least as hard as the second shortest simple path problem, and so the best known algorithms
for it in directed graphs also takeO(mn + n2 log n) time.

Verifying a Metric. In themetricity problem, we are given ann× n matrix and want to determine whether
it defines a metric on[n]. The metricity problem is a special case of the metric nearness problem (MNP):
given a matrixD, find aclosestmatrix D′ such thatD dominatesD′ andD′ satisfies the triangle inequality.
Brickell et. al [BDST08] show that MNP is equivalent to APSP and ask whether the metricityproblem is
equivalent to MNP. Theorem 3.2 partially answers their question in the sense that subcubic metricity implies
subcubic MNP.

Prior reductions of APSP to other problems. Roditty and Zwick [RZ04] consider the incremental and
decremental versions of the single source shortest path problem in weighted and unweighted directed graphs.
They show that either APSP has a truly subcubic algorithm, or any data structure for the decremental/incremental
single source shortest paths problem must either have been initialized in cubic time, or its updates must take
amortizedΩ(n2) time, or its query time must beΩ(n). They also give a similar relationship between the
problem for unweighted directed graphs and combinatorial algorithms for BMM.

C Subcubic Reducibility

Here we formally define the notion of subcubic reducibility used in this paper,and prove a few conse-
quences of it. Recall that analgorithm with oracle access toB has special workspace in memory reserved for
oracle calls, and at any step in the algorithm, it can callB on the content of the special workspace in one unit
of time and receive a solution toB in the workspace.

Let Σ be an underlying alphabet. We define asize measureto be any functionm : Σ⋆ → N. In this
paper, the size measure on weighted graphs with weights from[−M, M ] (or square matrices with entries
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from [−M, M ]) is taken to be the number of nodes in the given graph timeslog M (or the matrix dimension
timeslog M ).

Definition C.1 Let A andB be computational problems with a common size measurem on inputs. We say
that there is asubcubic reductionfrom A to B if there is an algorithmA with oracle access toB, such that
for everyε > 0 there is aδ > 0 satisfying three properties:

• For every instancex of A, A(x) solves the problemA onx.

• A runs inO(m3−δ) time on instances of sizem.

• For every instancex of A of sizem, let mi be the size of theith oracle call toB in A(x). Then
∑

i m
3−ε
i ≤ m3−δ.

We use the notationA ≤3 B to denote the existence of a subcubic reduction fromA to B, andA ≡3 B as
shorthand forA ≤3 B andB ≤3 A. In such a case we say thatA andB aresubcubic-equivalent.

There is a natural extension of the concept toO(nq) running times, for any constantq ≥ 1, by replacing
all occurrences of3 in the above definition withq. For such reductions we denote their existence byA ≤q B,
and say there is asub-q reductionfrom A to B, for values ofq such as “quadratic”, “cubic”, “quartic”, etc.

First let us observe that the reducibility relation is transitive.

Proposition 1 LetA, B, C be problems so thatA ≤q B andB ≤q C. ThenA ≤q C.

Proof. By definition, we have:

1. For everyε > 0 there exists aδ > 0 so that for large enoughn there exist{ni} with
∑

i n
q−ε
i ≤ nq−δ

and an algorithmPA,ε for A which on instances of sizen runs inO(nq−δ) time and makes oracle calls
to B with sizesni.

2. For everyε′ > 0 there exists aδ′ > 0 so that for all large enoughni there exist{nij} with
∑

j nq−ε′

ij ≤
nq−δ′

i and an algorithmPB,ε′ for B which on instances of sizeni runs inO(nq−δ′

i ) time and makes
oracle calls toC with sizesnij .

We will show that:

3. For everyε′ > 0 there exists aδ′′ > 0 so that for all large enoughn there exist{nij} with
∑

ij nq−ε′

ij ≤
nq−δ′′ and an algorithmPε′ for A which on instances of sizen runs inO(nq−δ′′) time and makes oracle
calls toC with sizesnij .

Let ε′ > 0 be given. ConsiderPB,ε′ and letδ′ > 0 be the value corresponding toε′, as in 2. Pickε = δ′.
Consider algorithmPA,ε and letδ > 0 be the value corresponding toε, as in 1. Replace each oracle call from
algorithmPA,ε for sizeni with a call toPB,ε′ .

Now, the new algorithmPε′ makes oracle calls toC of sizesnij and runs in time

O(nq−δ +
∑

i

nq−δ′

i ).

As we pickedε = δ′,
∑

i n
q−δ′

i =
∑

i n
q−ε
i ≤ nq−δ (from 1) , and the runtime ofPε′ is O(nq−δ).
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Consider the oracle calls. They are of sizes{nij} so that, as in 2, for eachi,
∑

j nq−ε′

ij ≤ nq−δ′

i . Hence

∑

ij

nq−ε′

ij ≤
∑

i

nq−δ′

i =
∑

i

nq−ε
i ≤ nq−δ,

where the last inequality is from 1. We can setδ′′ = δ and soA ≤q C. 2

Now let us verify that the definition gives us the property we want. In the following, let A andB be
computational problems onn × n matrices with entries in[−M, M ] (or equivalently, weighted graphs onn
nodes).

Proposition 2 If A ≤3 B then a truly subcubic algorithm forB implies a truly subcubic algorithm forA.

Proof. If there is anO(n3−εpoly log M) algorithm forB then the algorithm forA in the reduction runs
in

∑

i n
3−ε
i poly log M ≤ n3−δpoly log M time. 2

Strongly Subcubic Reductions. All subcubic equivalences proved in this paper have one additional prop-
erty in their reductions: the number of oracle calls and the sizes of oracle calls dependonly on the input, and
not on the parameterε. (In some other reductions, such as the example below, this is not the case.)Let us
define a reduction with this property to be astrongly subcubic reduction. These stronger reductions have the
nice quality that, with respect to polylogarithmic improvements, running times are preserved.

Theorem C.1 If there is a strongly subcubic reduction fromA to B, then

• For all c > 0, an O(n3(log M)d/ logc n) algorithm for B implies anO(n3(log M)3d/ logc n) algo-
rithm for A, and anO(n3/ logc n) algorithm forB implies anO(n3/ logc n) algorithm forA.

• For all γ > 0, ann3/2Ω(logγ n) algorithm forB implies ann3/2Ω(logγ n) algorithm forA.

Proof. For simplicity letn be the input size measure. First, we show that

∑

i

n3
i ≤ n3. (2)

A strongly subcubic reduction gives us a fixed algorithm such that for allsizesn, the number of oracle calls
and the sizes of oracle calls{ni} depend only on the input. Then, for allε > 0, there is aδ > 0 satisfying

∑

i

n3−ε
i ≤ n3−δ < n3.

Since{ni} andn are independent ofε, this means that for every fixed set{ni} andn, we can take the limit
on both sides of the above inequality asε → 0. We obtain that for everyn and every set of oracle call sizes
{ni} on an input of sizen,

∑

i n
3
i ≤ n3.

Now consider an algorithm forB that runs inO(n3/ logc n) time. Then an algorithm forA that uses the
reduction callingB as an oracle would run inO(n3−δ +

∑

i n
3
i / logc ni) time for someδ > 0. Let a < δ/3.

Then
∑

i

n3
i / logc ni =

∑

i : ni<na

n3
i / logc ni +

∑

i : ni≥na

n3
i / logc ni,
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which is at most

O



n3−δ · n3a +
∑

i : ni≥na

n3
i / logc n



 ,

since the number of oracle calls is at mostO(n3−δ). The first term isn3−ε′ for someε′ > 0, by our choice of
a. By (2), we have

O



n3−ε′ +
∑

i : ni≥na

n3
i / logc n



 ≤ O(n3/ logc n).

The proof of the second item is analogous. 2

It can be shown that strongly subcubic reductions arenecessaryfor Theorem C.1 to hold. If the sizes
of oracle calls or their number depend onε, one can find cases where polylog factors are diminished in the
algorithm forA. (In fact, the reduction below of Matoušek is one example.)

These kinds of reductions were implicit in prior work, but have not been studied systematically. For
one example, Matoǔsek [Mat91] showed that computing dominances inR

n between pairs ofn vectors can
be done inO(n(3+t)/2) time, whereO(nt) is an upper bound onn × n integer matrix multiplication. The
algorithm works by makingO(n3/2/nt/2) calls ton × n integer matrix multiplication. (Note this isnot a
strongly subcubic reduction, since the number of calls depends ont.) Notice that for anyt < 3, the running
timeO(n(3+t)/2) is truly subcubic. Hence we can say:

Dominances inRn ≤3 Integer Matrix Multiplication.

Another example is that of3SUM-hardnessin computational geometry. Gajentaan and Overmars [GO95]
showed that for many problemsΠ solvable in quadratic time, one can reduce 3SUM toΠ in such a way that
a subquadratic algorithm forΠ implies one for 3SUM. Hence under the conjecture that the 3SUM problem
is hard to solve faster, many otherΠ are also hard.6 Proofs of 3SUM-hardness imply 3SUM≤2 Π, but the
notion of reduction used in [GO95] is weaker than ours. (They only allowO(1) calls to the oracle forΠ.)

D Proofs of the generic results on detection, finding, listing

Reminder of Lemma 3.1(Folklore) LetT (n) be a function so thatT (n)/n is nondecreasing. If there is a
T (n) time algorithm for negative triangle detection overR on a graphG = (I ∪ J ∪ K, E), then there is an
O(T (n)) algorithm which returns a negative triangle overR in G if one exists.

Proof of Lemma 3.1. The algorithm is recursive: it proceeds by first splittingI, J andK each into
two roughly equal partsI1 andI2, J1 andJ2, andK1 andK2. Then it runs the detection algorithm on all
8 induced subinstances(Ii, Jj , Kk), i, j, k ∈ {1, 2}. If none of these return ’yes’, then there is no negative
triangle inG. Otherwise, the algorithm recurses on exactly one subinstance on which the detection algorithm
returns ’yes’. The base case is when|I| = |J | = |K| = 1 and then one just checks whether the three nodes
form a triangle inO(1) time. The running time becomes

T ′(n) = 8T (n) + T ′(n/2), T ′(1) = 1.

6SometimesΠ is definedto be 3SUM-hard if “Π is in subquadratic time implies 3SUM is in subquadratic time”. This definition
leaves something to be desired: if 3SUM turned out to be in subquadratic timethen all problems are 3SUM-hard, and if 3SUM is not
in subquadratic time then no subquadratic problem is 3SUM-hard. Hence the 3SUM-hardness of some problems would be contingent
on the complexity of 3SUM itself. Note this isnot the definition of [GO95], which is a reducibility notion like ours.
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If T (n) = nf(n) for some nondecreasing functionf(n), thenT (n) = 2n
2 f(n) ≥ 2n

2 f(n/2) = 2T (n/2).
Hence the recurrence above solves toT ′(n) = O(T (n)). 2

Reminder of Theorem 3.3Suppose there is a truly subcubic algorithm for negative triangle detection over
R. Then there is a truly subcubic algorithm which lists∆ negative triangles overR in any graph with at least
∆ negative triangles, for any∆ = O(n3−δ), δ > 0.

Proof of Theorem 3.3. Let P be anO(n3−ε logc M) algorithm for negative triangle overR for ε > 0.
Let ∆ = O(n3−δ) for δ > 0. Given an3n-node tripartite graphG = (I ∪ J ∪K, E) with at least∆ negative
triangles overR we provide a procedure to list∆ negative triangles overR.

We partition the nodes inI, J, K into ∆1/3 parts, each of sizeO(n/∆1/3). For all∆ triplesI ′ ⊂ I, J ′ ⊂
J, K ′ ⊂ K of parts, runP in O(∆(n/∆1/3)3−ε logc M) time overall to determine all triples which contain
negative triangles overR.

On the triples which contain negative triangles, we run a recursive procedure. LetI ′ ⊂ I, J ′ ⊂ J, K ′ ⊂ K
be a triple which is reported to contain a negative triangle overR. Split I ′, J ′ andK ′ each into two roughly
equal halves. On each of the8 possible triples of halves, runP and recurse on the triples of halves which
contain negative triangles, with the following provision. For each leveli of recursion (wherei ranges from0
to log n

∆1/3 ), we maintain a global counterci of the number of recursive calls that have been executed at that
level. Onceci > ∆ then we do not recurse on any more triples at recursion leveli. Once a triple only contains
3 nodes, we output it if it forms a negative triangle. Notice that all listed triangles are distinct.

Level i of the recursion examines triples which containO
(

n
2i∆1/3

)

nodes. At each leveli, at most∆

triples containing negative triangles are examined, due to the global counters. Therefore the runtime at level

i is at mostO
(

∆ · ( n
2i∆1/3 )3−ε logc M

)

. Sinceε < 3, the overall runtime becomes asymptotically

∆
( n

∆1/3

)3−ε
logc M ·

∑

i

(

1

23−ε

)i

= O
(

∆ε/3n3−ε logc M
)

.

When∆ ≤ O(n3−δ), the runtime is

O(n3−ε+3ε/3−δε/3 logc M) = O(n3−δε/3 logc M),

which is truly subcubic for anyε, δ > 0. 2

E Proof of Theorem 3.4

Theorem 3.4 follows from a more general lemma:

Lemma E.1 LetT (n) be a function so thatT (n)/n is nondecreasing. Suppose there is aT (n) time algorithm
for negative triangle detection overR in ann node graph. Then:

• There is an algorithm that computesℓ entries of the product overR of anm × n matrix by ann × p
matrix inO(ℓ·T ((mnp/ℓ)1/3) log W ) time, where the entries in the output lie in[−W, W ]∪{−∞,∞}.

• If there is a constantε : 0 < ε < 1 such that for all large enoughn, T (n) ≥ T (21/3n)/(2(1 − ε)),
then there is anO(ℓ · T ((mnp/ℓ)1/3))-time algorithm for computing the product overR of anm × n
by ann × p matrix, whereℓ is the number of ones in the product matrix.
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Proof. Following the ideas from Theorem 3.2,ℓ IJ-disjoint negative triangles overR can be found in

O((ℓ + a3) · T ((mnp)1/3/a))

time, wherea is a bucketting parameter. We seta = ℓ1/3 and we get a runtime ofO(ℓ · T ((mnp/ℓ)1/3)).
We setℓ = mp and apply binary search on top of this to obtain a matrix product algorithm. To get an
output-sensitive algorithm, for eachi = 1, . . . , log mp, we seta = 2i/3; the runtime is now

log mp
∑

i=1

2i · T ((mnp/2i)1/3).

Since there is a constantε < 1 so that for alln, T (n) ≥ T (21/3n)/(2(1−ε)), then for alli, 2iT ((mnp)1/3/2i/3) ≤
2i+1(1− ε)T ((mnp)1/3/2(i+1)/3) and hence the runtime isO(ℓ · T ((mnp/ℓ)1/3)), whereℓ is the number of
ones in the output. 2

F Problems Equivalent to All-Pairs Shortest Paths

The goal of this section is to prove Theorem 1.1 from the Introduction.

Reminder of Theorem 1.1 The following weighted problems eitherall have truly subcubic algorithms, or
none of them do:

1. The all-pairs shortest paths problem on weighted digraphs (APSP).

2. Detecting if a weighted graph has a triangle of negative total edge weight.

3. Listing up ton2.99 negative triangles in an edge-weighted graph.

4. Verifying the correctness of a matrix product over the(min, +)-semiring.

5. The all-pairs shortest paths problem on undirected weighted graphs.

6. Checking whether a given matrix defines a metric.

7. Finding a minimum weight cycle in a graph of non-negative edge weights.

8. The replacement paths problem on weighted digraphs.

9. Finding thesecondshortest simple path between two nodes in a weighted digraph.

The subcubic equivalence of1, 2, 3, and4 directly follow from Theorems 3.1, 3.2, and 3.3. The rest of the
equivalences are proved in the following. Most of our equivalences use the negative triangle problem, since it
is so easy to reason about.

The equivalence between1 and5 is probably folklore, but we have not seen it in the literature so we
include it for completeness.

Theorem F.1 (Undirected APSP≡3 Directed APSP) Let δ, c > 0 be any constants. APSP in undirected
graphs with weights in[−M, M ] is in Õ(n3−δ logc M) time iff APSP in directed graphs with weights in
[−M, M ] is in Õ(n3−δ logc M) time.

Proof of Theorem F.1. Clearly, undirected APSP is a special case of directed APSP. We show that a
truly subcubic algorithm for undirected APSP can be used to compute the(min, +) product of two matrices
in truly subcubic time, and hence directed APSP is in truly subcubic time.
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Suppose that there is a truly subcubic algorithmP for undirected APSP. LetA andB be then×n matrices
whose(min, +) product we want to compute. Suppose the entries ofA andB are in[−M, M ]7. Consider
the edge-weighted undirected tripartite graphG with n-node partitionsI, J, K such that there are no edges
betweenI andK, and for alli ∈ I, j ∈ J, k ∈ K, (i, j) and(j, k) are edges withw(i, j) = A[i, j] + 6M and
w(j, k) = B[j, k] + 6M . UsingP , compute APSP inG.

Any path on at least3 edges inG has weight at least15M , and any path on at most2 edges has weight at
most2 × 7M < 15M . HenceP will find for every two nodesi ∈ I, k ∈ K, the shortest path betweeni and
k usingexactly2 edges, thus computing the(min, +) product ofA andB. 2

Theorem F.2 (Metricity ≡3 Negative Triangle) Let T (n, M) be nondecreasing. Then there is anO(n2) +
T (O(n), O(M)) algorithm for negative triangle inn node graphs with weights in[−M, M ] if and only if
there is anO(n2) + T (O(n), O(M)) algorithm for the metricity problem on[n] such that all distances are in
[−M, M ].

Proof of Theorem F.2. Given an instanceD of the metricity problem, consider a complete tripartite
graphG on 3n nodesn nodes in each of the partitionsI, J, K. For anyi ∈ I, j ∈ J, k ∈ K, define the edge
weights to bew(i, j) = D[i, j], w(j, k) = D[j, k] andw(i, k) = −D[i, k]. A negative triangle inG gives
i ∈ I, j ∈ J, k ∈ K so thatD[i, j] +D[j, k]−D[i, k] < 0, i.e. D[i, j] +D[j, k] < D[i, k]. HenceD satisfies
the triangle inequality iff there are no negative triangles inG. Checking the other properties for a metric takes
O(n2) time.

Let G be a given a graph with edge weightsw : E → Z which is an instance of negative triangle so that
for all e ∈ E, w(e) ∈ [−M, M ] for someM > 0. Build a tripartite graph withn node partitionsI, J, K and
edge weightsw′(·) so that for anyi ∈ I, j ∈ J, k ∈ K, w′(i, j) = 2M + w(i, j), w′(j, k) = 2M + w(j, k)
andw′(i, k) = 4M − w(i, k). For all pairs of distinct nodesa, b so thata, b are in the same partition, let
w′(a, b) = 2M . Finally, letw′(x, x) = 0 for all x. Clearly,w′ satisfies all requirements for a metric except
possibly the triangle inequality. For any three verticesx, y, z in the same partitionw′(x, y) + w′(y, z) =
4M > 2M = w′(x, z). Consider triplesx, y, z of vertices so thatx andy are in the same partition andz is in
a different partition. We have:w′(x, z) + w′(z, y) ≥ M + M = 2M = w′(x, y) andw′(x, z) − w′(y, z) ≤
2M = w′(x, y). Furthermore, ifi ∈ I, j ∈ J, k ∈ K, w′(i, k) + w′(k, j) ≥ M + 3M ≥ w(i, j) and
w′(i, j) + w′(j, k) ≥ M + 3M ≥ w(i, k). Hence the only possible triples which could violate the triangle
inequality are triples withi ∈ I, j ∈ J, k ∈ K, andw′ is not a metric iff there existi ∈ I, j ∈ J, k ∈ K such
thatw′(i, j) + w′(j, k) < w′(i, k), i.e. w(i, j) + w(j, k) + w(i, k) < 0 andi, j, k is a negative triangle inG.
2

Theorem F.3 (Minimum Cycle≡3 Negative Triangle) If there is aT (n, M) algorithm for finding a min-
imum weight cycle in graphs onn nodes and weights in[1, M ] then there is aT (n, O(M)) algorithm for
finding a minimum weight triangle inn-node graphs with weights in[−M, M ].

Since any algorithm for APSP can find a minimum cycle in a graph with nonnegative weights in the same
running time, we get that APSP and Minimum-Cycle are equivalent w.r.t. subcubic algorithms.

Proof. Let G = (V, E) be given withw : E → [−M, M ]. Consider graphG′ which is justG with
weightsw′ : E → [7M, 9M ] defined asw′(e) = w(e) + 8M . For anyk and any cycleC in G with k
edges,w′(C) = 8Mk + w(C), and hence7Mk ≤ w′(C) ≤ 9Mk. Hence, all cyclesC with ≥ 4 edges have
w′(C) ≥ 28M and all triangles havew′ weight≤ 27M < 28M . That is, the minimum weight cycle inG′ is
exactly the minimum weight triangle inG. 2

7Infinite edge weights can be replaced with suitably large finite values, WLOG.
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It remains to show the equivalences of 8 and 9 with the other problems.

F.1 Replacement Paths and Second Shortest Paths

The replacement paths and second shortest simple path problems have been known to be closely related
to APSP in an informal sense. For instance, any algorithm for APSP can solve the two problems in asymp-
totically the same time: remove all edges from the shortest pathP betweens andt and compute APSP in the
remaining graph. This computes the minimum weight detour for all pairs of nodes onP , and so in additional
O(n2) time one can solve both the replacement paths problem, and the second shortest simple path problem. It
was not clear however that the two problems cannot be solved faster thanAPSP. For instance, Roditty [Rod07]
took his fast approximation algorithms as evidence that the two problems might beeasier than APSP. In an
attempt to explain why it has been so hard to find fast algorithms, Hershberger et al. [HSB07] showed that
in the path comparison model of Karger et al. [KKP93] the replacement paths problem needsΩ(m

√
n) time.

This bound does not apply to second shortest path, and is the only knownlower bound for these problems.

Here we present a reduction which shows that if the second shortest simplepath in a directed graph with
n nodes can be found in time which is truly subcubic inn, then APSP is in truly subcubic time. Thus, the
two problems are equivalent w.r.t. subcubic algorithms, for dense graphs. Since the second shortest simple
path problem is a special case of the replacement paths problem, our result implies that for dense graphs the
replacement paths problem is equivalent to APSP, w.r.t. subcubic algorithms.

In the next section we modify the reduction to show that if for somem(n) and nondecreasingf(n)
there is a combinatorial algorithm which runs inO(m(n)

√
n/f(n)) time and computes the second shortest

simple path in unweighted directed graphs, then there is anO(n3/f(n)) combinatorial algorithm for triangle
detection, and hence a corresponding subcubic combinatorial algorithm for BMM. This implies that if there
is no truly subcubic combinatorial algorithm for BMM, then in order to improve on the algorithm of Roditty
and Zwick [RZ05], one would need to use algebraic techniques.

Theorem F.4 (Minimum Triangle ≡3 Second Shortest Simple Path)Suppose there is aT (n) time algo-
rithm for computing the second shortest simple path in a weighted directed graph with n nodes. Then
there is aT (O(n)) time algorithm for finding a minimum weight triangle in ann node graph, and hence
anO(n2T (O(n1/3)) log W ) time algorithm for APSP inn node graphs with weights in[−W, W ].

Proof. Let G be an instance of Minimum Triangle. WLOGG has3 partsU, V, T with no edges within
them, and the edges going fromU to V , fromV to T and fromT to U . Furthermore, WLOG all edge weights
are positive (otherwise add a sufficiently large numberY to all edges, so that now the min weight triangle has
weight3Y + its original weight). WLOG alsoG contains edges between every two nodesui ∈ U, vj ∈ V ,
between any two nodesvj ∈ V andtk ∈ T and between any two nodestk ∈ T andui ∈ U (if some edge
isn’t there, add it with weight3W ′′ + 1 whereW ′′ is the max edge weight inG). Note that all of these
transformations increased the max weight by at most a constant factor.

Now we will reduce any instance of minimum weight triangle to one of finding the second shortest path.
First, create a path onn + 1 nodes,P = p0 → p1 → . . . → pn. For every edge(pi, pi+1) in P , let it have
weight0. All other edges in the graph we will construct will be positive and henceP will be the shortest path
betweenp0 andpn.

Create three parts withn nodes each,A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cn} so that
for eachi, j ∈ [n] there’s an edge(ai, bj) with weightw(ui, vj) (the weight inG), and an edge(bi, cj) with
weightw(vi, tj); that is, we have created a copy ofG except that the edges betweenT andU are removed (no
edges betweenC andA).
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Let W ′ be the maximum weight inG and letW = 3W ′ + 1.

Now, for everyj > 0, add an edge fromcj to pj with weightjW .

For everyi < n and anyr ∈ [n], add an edge frompi to ar with weight (n − i − 1)W + w(ci+1, ar).
The second shortest path must have the formp0 → . . . → ps followed by a path of length two from someai

through a node inB to a nodect in C with t > s, followed by an edge(ct, pt) and thenpt → . . . → pn: we
are looking for the shortest detour between a nodeps and a nodept onP with t > s.

The weight of a detour betweenps andpt going through nodesai, bj , ct is

(n − s − 1)W + w(cs+1, ai) + w(ai, bj) + w(bj , ct) + tW.

Claim 1 In the graph we have constructed, any optimal detour must havet = s + 1.

Proof of claim: Clearlyt > s. If t ≥ s + 2, then the weight of the detour is at least

(n − s − 1 + s + 2)W + w(cs+1, ai) + w(ai, bj) + w(bj , ct) > (n + 1)W.

Consider any detour betweenps andps+1, say going throughai, bj , cs+1. Its weight is

(n − s − 1 + s + 1)W + w(cs+1, ai) + w(ai, bj) + w(bj , cs+1) ≤ nW + W = (n + 1)W,

sinceW is greater than3times the largest weight in the graph. 2

Now, the detours betweenps andps+1 have weightnW + w(ai, bj) + w(bj , cs+1) + w(cs+1, ai). In
particular, the shortest detour betweenps andps+1 has weightnW+ the minimum weight triangle containing
cs+1. The second shortest path hence has weight exactlynW+ the minimum weight of a triangle inG. 2

Since the second shortest path problem is a special case of the replacement paths problem, we have:

Corollary F.1 If the replacement paths problem is inT (n) time then APSP is inO(n2T (O(n1/3)) log M)
time.

Corollary F.2 Replacement Paths≡3 APSP.

G Boolean Matrix Multiplication and Related Problems

In this section, we describe several applications of our techniques to the problem of finding fast practical
Boolean matrix multiplication algorithms, a longstanding challenge in graph algorithms. (For more back-
ground on this problem, see the Preliminaries.)

As a direct consequence of Theorems 3.2, 3.1 and 3.3 we obtain:

Theorem G.1 The following eitherall have truly subcubic combinatorial algorithms, or none of them do:

1. Boolean matrix multiplication (BMM).

2. Detecting if a graph has a triangle.

3. Listing up ton2.99 triangles in a graph.

4. Verifying the correctness of a matrix product over the Boolean semiring.
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Theorem G.2 For any constantc the problems listed in Theorem G.1 eitherall have combinatorial algorithms
running inO(n3/ logc n) time, or none of them do.

Another immediate corollary of Theorem 3.3 is an efficient triangle listing algorithm:

Corollary G.1 There is an algorithm that, given∆ and a graphG on n nodes, lists up to∆ triangles from
G in timeO(∆1−ω/3nω) ≤ O(∆0.21n2.38).

Note when∆ = n3, one recovers the obviousO(n3) algorithm for listing all triangles, and when∆ =
O(1), the runtime is the same as that of triangle detection.

G.1 Output-Sensitive BMM

Lemma E.1 can be applied to show that in the special case of BMM, there is an improved randomized
output-sensitive algorithm:

Theorem G.3 Let T (n) be a function so thatT (n)/n is nondecreasing. LetL ≥ n log n. Suppose there is
a T (n) time algorithm for triangle detection in ann node graph. Then there is a randomized algorithmR
running in time

Õ(n2 + L · T (n2/3/L1/6)),

so thatR computes the Boolean productC of two givenn × n matrices with high probability, provided that
C contains at mostL nonzero entries. WhenT (n) = O(n∆) for some2 ≤ ∆ ≤ 3, the runtime becomes
Õ(n2∆/3L1−∆/6).

Proof. The algorithm uses ideas from a paper by Lingas [Lin09]. Lingas showed how to reduce,
in O(n2 log n) time, computing the Boolean matrix product of twon × n matrices to computingO(log n)
Boolean matrix products of anO(

√
L) × n by ann × O(

√
L) matrix and2 output-sensitive Boolean matrix

products of anO(
√

L) × n by ann × n matrix.

Using Lemma E.1 we get an asymptotic runtime of

n2 log n + log n · L · T (n1/3) + L · T (n2/3/L1/6).

SinceT (n) is nondecreasing and sinceL ≤ n2, we get thatT (n2/3/L1/6) ≥ T (n1/3) and hence we can
bound the runtime byO((n2 + L · T (n2/3/L1/6)) log n).

If T (n) = O(n∆) for some2 ≤ ∆ ≤ 3 andL ≥ n we haveL · (n2/3/L1/6)∆ ≥ n2. Hence the runtime
is justÕ(n2∆/3L1−∆/6). 2

G.2 Second Shortest Paths and BMM

Similar to the case of APSP, we can prove a close relationship between BMM and finding the second
simple shortest path between two given nodes in anunweighteddirected graph. The relationship naturally
extends to a relationship between BMM and RPP in unweighted directed graphs. The theorem below shows
that in the realm of combinatorial algorithms, Roditty and Zwick’s [RZ05] algorithm for the second shortest
simple path problem in unweighted directed graphs would be optimal, unless there is a truly subcubic combi-
natorial algorithm for BMM. Furthermore, any practical improvement of their algorithm would be interesting
as it would imply a new practical BMM algorithm.

Theorem G.4 Suppose there exist nondecreasing functionsf(n) andm(n) with m(n) ≥ n, and a combina-
torial algorithm which runs inO(m(n)

√
n/f(n)) time and computes the second shortest simple path in any
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given unweighted directed graph withn nodes andm(n) edges. Then there is a combinatorial algorithm for
triangle detection running inO(n3/f(n)) time. Iff(n) = nε for someε > 0, then there is a truly subcubic
combinatorial algorithm for BMM.

Proof. Suppose we are given an instance of triangle detectionG = (V, E) whereV is identified with[n].
Let L be a parameter. PartitionV into n/L bucketsVb = {bL + 1, . . . , bL + L} of sizeL.

We will createn/L instances of the second shortest simple path problem. In instanceb (for b ∈ {0, . . . , n/L−
1), we will be able to check whether there is a triangle going through a node in bucketVb.

Fix someb. First, create a path onL + 1 nodes,P = p0 → p1 → . . . → pL.

In our construction we will make sure thatP is the shortest path fromp0 to pL. The second shortest path
would have to go fromp0 to someps usingP , then take a detour (say of lengthd) to pt with t > s, and then
takeP from pt to pL. The length of the second shortest path would then be

L − t + s + d = L + d + (s − t).

Create three parts,A = {a1, . . . , an}, B = {b1, . . . , bn}, C = {c1, . . . , cL} so that for eachi, j ∈ [n]
there is an edge(ai, bj) iff (i, j) ∈ E and for everyi ∈ [n], j ∈ [L], there is an edge(bi, cj) iff (i, bL+j) ∈ E.

Now, for everyj > 0, add a pathRj of length2j from cj to pj , adding2j new nodes.

For everyi < L add a pathQi of length2(2L − i), ending at some nodeqi (thus adding4L − 2i new
nodes). The overall number of new nodes is at most4L(L + 1).

For everyr ∈ [n] andi < L, add an edge fromqi to ar iff (bL + i + 1, r) ∈ E.

Now, any simple path fromp0 to pL which uses nodes fromA, B or C must go through one of the paths
Qi, and hence has length at least2(2L − L + 1) = 2(L + 1) > L + 1. HenceP is the shortest path between
p0 andpL.

The second shortest path must have the formp0 → . . . → ps followed by a detour topt for t > s, followed
by pt → . . . → pL. The detours betweenps andpt look like this: take pathQs from ps to qs, then a path of
length3 through someai through a node inB to a nodect in C with t > s, and then taking pathRt to pt. The
length of the detour is

dst = 2(2L − s) + 3 + 2t = 4L + 3 + 2(t − s).

The length of the full path is
L + dst + (s − t) = 5L + 3 + (t − s).

Hence the closers andt are, the shorter the path.

Now, G has a triangle(i, j, bL + s) going throughVb iff there is a path with detour betweenps−1 andps

going throughQs−1, ai, bj , cs, Rs. Its length is5L + 4. For anys, t with t ≥ s + 2, the length of the path
with detour betweenps andpt is at least5L + 3 + 2 > 5L + 4. Hence the shortest that a second shortest path
can be is5L + 4. It is exactly of this length (and goes between someps andps+1) iff there is a triangle going
throughVb. Computing the length of the second shortest simple path then will tell us whetherthe original
graph has a triangle going throughVb.

Each of then/L graphs (for each setting ofb) hasO(n + L2) nodes andO(n2) edges. ForL = Ω(
√

n)
the graph hasO(L2) nodes andO(n2) edges.

Suppose that for some nondecreasingm(N) andf(N) there is anO(m(N)
√

N/f(N)) combinatorial
algorithm for the second shortest simple path in directed unweighted graphs. Then, letL be such thatm(n +
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4L(L + 1)) = O(n2). One can find a triangle using a combinatorial algorithm in time

O(n/L · (n2L)/f(L2)) = O(n3/f(L2)) ≤ O(n3/f(n)).

If f(n) is a polynomial, then there is a truly subcubic combinatorial algorithm for BMM. 2

G.3 Two New BMM Algorithms

Our results allow us to provide two new algorithms for BMM, relying on the relationship between BMM
and triangle detection.

G.3.1 Output-Sensitive Quantum BMM

In the theory of quantum computing there are many fantastic results. One of these is that a triangle
in a graph onn nodes can be found using onlỹO(n1.3) operations [MSS05]. Recently, Buhrman and
Spalek [Bv06] studied the problem of verifying and computing matrix products using a quantum algo-
rithm. Among other nice results, their paper showed anÕ(n1.5

√
L) output-sensitive algorithm for computing

the Boolean matrix product of twon × n matrices, whereL is the number of ones in the output matrix.
Lemma 3.2 is a black box reduction which implies an improved algorithm by plugging inMagniez, Santha
and Szegedy’s [MSS05] triangle algorithm.

Lemma G.1 There is anÕ(n1.3L17/30) quantum algorithm for computing the Boolean matrix product of two
n × n matrices, whereL is the number of ones in the output matrix.

Notice that sinceL ≤ n2, we always haven1.3L17/30 << Õ(n1.5
√

L).

Proof of Lemma G.1. Let A andB be the given Boolean matrices. Consider a tripartite graph with
partitionsI, J, K so that fori ∈ I, j ∈ J (i, j) is an edge iffA[i, j] = 1, for j ∈ J, k ∈ K, (j, k) is an edge
iff B[j, k] = 1 and(i, k) is an edge for alli ∈ I, k ∈ K. The graph does not need to be created explicitly –
whenever the algorithm has a query whether(a, b) is an edge in the graph, it can just queryA andB, and any
output it has already produced. Then, in the output-sensitive part of the proof of Lemma 3.2, we can just use
T (n) = Õ(n1.3) given by the algorithm of [MSS05]. Notice that the condition of the lemma is satisfied for
T (n) = Õ(n1.3). Hence we get an algorithm with quantum complexityÕ(n1.3L1−1.3/3) = Õ(n1.3L17/30).
2

Using the improved output-sensitive algorithm from Theorem G.3 the above runtime can be modified to
beÕ(n2 + L47/60n13/15) which is better than the result above for allL ≥ Ω(n1.24). We prove Theorem 1.5.

Reminder of Theorem 1.5 There is anÕ(min{n1.3L17/30, n2 + L47/60n13/15}) quantum algorithm for
computing the Boolean matrix product of twon × n matrices, whereL is the number of ones in the output
matrix.

G.4 Polynomial Preprocessing and Faster Combinatorial BMM

The divide-and-conquer ideas in our theorems are admittedly quite simple, butthey are also powerful.
It is evident that these ideas are useful for solving function problems viaalgorithms for related decision
problems. These ideas can also be applied to greatly relax the conditions needed to achieve faster algorithms
for the decision problems themselves. Williams [Wil07] showed that it is possible topreprocess a graph
in O(n2+ε) time (for all ε > 0) such that queries of the formis S an independent set?can be answered
in O(n2/ log2 n) time. This data structure can be easily used to solve triangle detection inO(n3/ log2 n),
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by simply querying the neighborhoods of each vertex. Bansal and Williams [BW09] show that every graph
can be (randomly) preprocessed inO(n2+ε) time so that any batch ofO(log n) independent set queries can
be answered inO(n2/ log1.25 n) (deterministic) time. This implies anO(n3/ log2.25 n) randomized triangle
detection algorithm. A major limitation in this approach to fast triangle detection is that the preprocessing
time apparently must be subcubic. In fact, this subcubic requirement is the only reason why Bansal and
Williams’ preprocessing algorithm needs randomization. It turns out that in fact anypolynomialamount of
preprocessing suffices:

Reminder of Theorem 4.2 Suppose there arek, c > 0 such that everyn-node graph can be preprocessed in
O(nk) time so that all subsequent batches ofO(log n) independent set queriesS1, . . . , Slog n can be answered
in O(n2/ logc n) time. Then triangle detection (and hence Boolean matrix multiplication) is solvable in
O(n3/ logc+1 n) time.

That is, in order to attain better combinatorial algorithms for BMM, it suffices toanswer independent set
queries quickly with anypolynomialamount of preprocessing. Theorem 4.2 holds for both randomized and
deterministic algorithms: a deterministic preprocessing and query algorithm results in a deterministic BMM
algorithm.

Proof of Theorem 4.2. Let a = 1/(2k). Divide then nodes of the graph inton1−a parts, each part
having at most2na nodes each. For each pairi, j of parts, letGi,j = (Vi,j , Ei,j) be the subgraph ofG
restricted to the nodes in partsi andj. PreprocessGi,j for independent set queries inO(nak) time. This stage
takesO(n2(1−a)+ak) ≤ n2−1/k+1/2 ≤ O(n2.5) time.

To determine ifG has a triangle, partition the set of nodes ofG into n/ log n groups ofO(log n)
nodes earch. For each groupv1, . . . , vlog n and all pairs of indicesi, j = 1, . . . , n1−a, and queryN(v1) ∩
Vi,j , . . . , N(vlog n)∩Vi,j for independence. If any query answers “no” then report that there is a triangle;if all
queries answer “yes” over all nodes then report that there is no triangle. This stage takesO(n/ log n ·n2(1−a) ·
n2a/(a logc n)) ≤ O(n3/ logc+1 n) time. 2

Theorem 4.2 makes it easy to give derandomized versions of Bansal andWilliams’ algorithms, since there
are deterministicpolynomial timealgorithms for the problems they need to solve, just not subcubic ones.

Reminder of Theorem 1.4There is a deterministic combinatorial algorithm for BMM running inO(n3/ log2.25 n)
time.

Proof of Theorem 1.4. We will show that there is a deterministic combinatorialO(n3/ log2.25 n) time
algorithm for triangle finding. By Corollary 3.1 this also gives a deterministic combinatorialO(n3/ log2.25 n)
time algorithm for BMM.

The preprocessing algorithm of Bansal and Williams (Theorem5.1 in [BW09]) proceeds by finding anε-
pseudoregular partition in the sense of [FK99] inO(n2) randomized time. The resulting independent set query
algorithm answersO(log n) independent set queries inO(n2/ log1.25 n) time and is completely deterministic.
Alon and Naor [AN06] give a deterministic polynomial time algorithm for computingan ε-pseudoregular
partition, which works for allε ≤ c/

√
log n for a fixed constantc > 0. By replacing the randomized

preprocessing with the algorithm of Alon and Naor and applying Theorem 4.2, we obtain the result. 2

Using the connection between negative triangle and APSP, we can identify anatural query problem on
weighted graphs whose solution would give faster APSP algorithms. On a graph with an edge weight function
c : E → Z, define aprice queryto be an assignment of node weightsp : V → Z, where the answer to a query
is yesif and only if there is an edge(u, v) ∈ E such thatp(u) + p(v) > c(u, v). Intuitively, think ofp(v) as
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a price on nodev, the edge weightc(u, v) as the cost of producing bothu andv, and we wish to find for a
given list of prices if there is any edge we are willing to “sell” at those prices.

Reminder of Theorem 4.3 Suppose there arek, c > 0 such that everyn-node edge-weighted graph can be
preprocessed inO(nk) time so that any price query can be answered inO(n2/ logc n) time. Then negative
triangle detection is solvable inO(n3/ logc n) time (and hence APSP is solvable inO(n3 log W/ logc n) time.

To some, the contrapositive of Theorem 4.3 may be more interesting: assumingthat APSP needsΩ(n3/poly log n)
time, there is asuper-polynomiallower bound on the preprocessing time for efficiently answering price
queries.

H A Simplified View of All-Pairs Path Problems and Their Matrix Products

In this section we consider various algebraic structures other than the(min, +) and Boolean semirings.
We relate their matrix products and respective triangle problems, showing how several prior results in the area
can be simplified in a uniform way.

Existence-Dominance. The dominance product of two integer matricesA andB is the integer matrixC
such thatC[i, j] is the number of indicesk such thatA[i, k] ≤ B[k, j]. The dominance product was first
studied by Matoǔsek [Mat91] who showed that forn × n matrices it is computable inO(n(3+ω)/2). The
existence-dominance product of two integer matricesA andB is the Boolean matrixC such thatC[i, j] = 0
iff there exists ak such thatA[i, k] ≤ B[k, j]. This product was used in the design of the first truly subcubic
algorithm for the minimum node-weighted triangle problem [VW06]. Although the existence-dominance
product seems easier than the dominance product, the best known algorithm for it actually computes the
dominance product.

The existence-dominance product is defined over the(min,⊙) structure for whichR = Z ∪ {−∞,∞}
and a ⊙ b = 0 if a ≤ b and a ⊙ b = 1 otherwise. The corresponding negative triangle problem, the
dominance triangleproblem, is defined on a tripartite graph with partsI, J, K. The edges betweenI and
J are unweighted, and the rest of the edges in the graph have real weights. The goal is to find a triangle
i, j, k ∈ I × J × K such thatw(i, k) ≤ w(k, j).

Minimum Edge Witness. The minimum edge witness product is defined over a restriction of the(min,⊙)
structure overR = Z ∪ {∞,−∞}, where⊙ = × is integer multiplication. For an integer matrixA and a
{0, 1} matrixB, the(i, j) entry of the minimum edge witness productC of A andB is equal tomink(A[i, k]×
B[k, j]). This product is important as it is in truly subcubic time iff APSP on node-weighted graphs is in truly
subcubic time. Chan [Cha07] used this relation to obtain the first truly subcubic runtime for node-weighted
APSP.

The negative triangle problem corresponding to the minimum edge witness product is again the domi-
nance triangle problem. Hence, by Theorem 3.2 we can conclude that a truly subcubic algorithm for the
dominance triangle problem (such as Matoušek’s algorithm for the dominance product) implies truly sub-
cubic node-weighted APSP. That is, we get an alternative subcubic algorithm for node-weighted APSP as a
byproduct, although it is a bit slower than the best known. To obtain his algorithm for node-weighted APSP,
Chan [Cha07] gave a completely new algorithm for minimum edge witness product with exactly the same
runtime as Matoǔsek’s dominance product algorithm.
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(Min-≤). The (min,≤) structure is defined overR = Z ∪ {∞,−∞}, where the binary operation≤ on
input a, b returnsb if a ≤ b and∞ otherwise. The first author showed [Vas08] that the(min,≤) matrix
product is in truly subcubic time iff the all pairs minimum nondecreasing paths problem (also calledearliest
arrivals) is in truly subcubic time. The first truly subcubic runtime for the product,O(n2+ω/3), was obtained
by the present authors and R. Yuster [VWY07]. The techniques of Duan and Pettie [DP09] also imply an
O(n(3+ω)/2) algorithm.

The negative triangle problem over(min,≤) is the followingnondecreasing triangleproblem: given a
tripartite graph with partitionsI, J, K and real edge weights, find a trianglei ∈ I, j ∈ J, k ∈ K such that
w(i, k) ≤ w(k, j) ≤ w(i, j).

Both known algorithms for this problem follow from the algorithms for(min,≤)-product [VWY07,
DP09] and are somewhat involved. Below we give a simplerO(n3/2

√

T (n)) algorithm, whereT (n) is
the best runtime for finding a triangle in anunweightedgraph. If matrix multiplication is used, the runtime
is the same as in Duan-Pettie’s algorithm,O(n(3+ω)/2). Furthermore, the algorithm can actually be applied
O(log n) times to obtain another̃O(n(3+ω)/2) algorithm for the(min,≤)-product.

Theorem H.1 (Nondecreasing Triangle≤3 Triangle) If a triangle in an unweighted graph can be found in
T (n) time, then a nondecreasing triangle can be found inO(n3/2

√

T (O(n))) time, and(min,≤) product is
in O(n3/2

√

T (O(n)) log n) time.

Proof. We are given a weighted tripartite graph with partitionsI, J , K and are looking for a triangle
i ∈ I, j ∈ J, k ∈ K such thatw(i, k) ≤ w(k, j) ≤ w(i, j).

Begin by sorting all the edges in the graph, breaking ties in the following way:edges fromI × J are
considered bigger than edges fromK × J of the same weight which are considered bigger than edges from
I × K of the same weight; withinI × J or J × K or I × K equal edges are arranged arbitrarily.

Let t be a parameter. For every vertexv in J or K, consider the sorted order of edges incident tov and
partition it into at mostn/t buckets oft consecutive edges each and at most one bucket with≤ t; let Bvb

denote theb-th bucket for nodev. For each edge(x, v) such thatv is in J or K and (x, v) is in Bvb, go
through all edges(v, y) in Bvb and check whetherx, v, y forms a nondecreasing triangle. This takesO(n2t)
time.

Partition the edges of the graph by takingO(n/t) consecutive groups of≤ nt edges in the sorted order
of all edges. LetGg denote theg-th such group. For eachg, consider all bucketsBvb of verticesv in J or
K such that there is some edge(v, x) ∈ Bvb ∩ Gg. There can be at most4n such buckets: there are at most
n + nt/t = 2n buckets completely contained inGg and at most2n straddlingGg– at most one per vertex per
group boundary.

Create a tripartite graphHg for eachg as follows.Hg has partitionsHI
g , HJ

g andHK
g . HI

g has a node for
eachi ∈ I. ForS ∈ {J, K} HS

g has a node for each node bucketBvb such thatBvb ∩ Gg 6= ∅ andv ∈ S.
ThereforeHg has≤ 9n nodes.

The edges ofHg are as follows. For allBjb ∈ HJ
g andBkb′ ∈ HK

g , (Bjb, Bkb′) is an edge if(j, k) is an
edge and it is inBjb ∩ Bkb′ . For i ∈ HI

g andBjb ∈ HJ
g , (i, Bjb) is an edge inHg iff (i, j) ∈ E and there is a

bucketb′ < b such that(i, j) ∈ Bjb′ . For i ∈ HI
g andBkb ∈ HK

g , (i, Bkb) is an edge inHg iff (i, k) ∈ E and
there is a bucketb′ > b such that(i, k) ∈ Bkb′ .

Any trianglei, Bjb, Bk,b′ in Hg corresponds to a nondecreasing trianglei, j, k in G. If a nondecreasing
trianglei, j, k of G is not contained in anyHg, then for someb either both(i, j) and(j, k) are inBjb or both
(i, k) and(j, k) are inBkb, both cases of which are already handled.
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The runtime isO(n2t + T (9n) · n/t). Settingt =
√

T (9n)/n, the time becomesO(n3/2
√

T (9n)). 2

Min-Max. The subtropical semiring(min, max) is defined overR = Z ∪ {∞,−∞}. The (min, max)
matrix product was used by the present authors and R. Yuster [VWY07]to show that the all pairs bottleneck
paths problem is in truly subcubic time. The current best algorithm for the problem runs inO(n(3+ω)/2) time
by Duan and Pettie [DP09]. The(min, max) product is an important operation in fuzzy logic, where it is
known as thecomposition of relations([DP80], pp.73).

The negative triangle problem over(min, max) is the followingIJ-bounded triangleproblem. Given a
tripartite graph with partitionsI, J, K and real weights on the edges, find a trianglei ∈ I, j ∈ J, k ∈ K
such that bothw(i, k) ≤ w(i, j) and w(j, k) ≤ w(i, j), i.e. the largest triangle edge is inI × J . We
note that any algorithm for the nondecreasing triangle problem also solvestheIJ-bounded triangle problem:
anyIJ-bounded triangle appears as a nondecreasing triangle either in the given graph, or in the graph with
partitionsJ andK swapped. Hence a corollary to Theorem H.1 is that anIJ-bounded triangle can be found
in O(n3/2

√

T (n)) time, whereT (n) is the runtime of a triangle detection algorithm for unweighted graphs.

I Extension to 3SUM

Finally, we describe an application of the ideas in this paper to the 3SUM problem. We show that the
3SUM problem has a trulysubquadraticalgorithm if and only if the All-Ints-3SUM problem does. In both
problems, one is given a listA of n integers each. In All-Numbers-3SUM one needs to returnall integersc in
A such that there area, b ∈ A with a + b + c = 0, and for3SUM one merely has to detect whether one such
c exists.

The All-Ints 3SUM problem is a generalization of the3SUM problem: given three listsA,B,C of n
integers each, one wants to determineall integersa ∈ A such that there existb ∈ B, c ∈ C with a+b+c = 0.
We show that our techniques can be used to show the theorem below.

Theorem I.1 (All-Ints 3SUM ≡2 3SUM) All-Ints 3SUM is in truly subquadratic time iff3SUM is in truly
subquadratic time.

Proof. We first use a hashing scheme given by Dietzfelbinger [Die96] and usedby Baran, Demaine and
Patrascu [BDP08] which maps each distinct integer independently to one of

√
n buckets8. For eachi ∈ [

√
n],

let Ai, Bi, andCi be the sets containing the elements hashed to bucketi. The hashing scheme has two nice
properties:

1. for every pair of bucketsAi andBj there are two bucketsCkij0 andCkij1 (which can be located inO(1)
time giveni, j) such that ifa ∈ Ai andb ∈ Bj , then ifa + b ∈ C thena + b is in eitherCkij0 or Ckij1 ,

2. the number of elements which are mapped to buckets with at least3
√

n elements isO(
√

n) in expecta-
tion.

After the hashing we process all elements that get mapped to large buckets (size> 3
√

n). Supposea ∈ A is
such an element (WLOG it is inA). Then go through all elementsb of B and check whethera + b ∈ C. This
takesO(n1.5) time overall in expectation.

8The scheme performs multiplications with a random number and some bit shifts hence we require that these operations are not
too costly. We can ensure this by first mapping the numbers down toO(log n) bits, e.g. by computing modulo some sufficiently large
Θ(log n) bit prime.
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Now the bucketsAi, Bi, Ci for all i ∈ [
√

n] containO(
√

n) elements each. In particular, we have reduced
the problem to2n subinstances of3SUM ((Ai, Bj , Ckijb

) for b = 0, 1). For every one of these2n subin-
stances, in turn: Call the detection algorithm. We can assume that the detection algorithm actually returns
a triple a ∈ Ai, b ∈ Bj , c ∈ Ckijb

which is a3SUM (by a self-reduction, halving argument). Removea
from Ai, recording that it is in a3SUM. Try to find a new3SUM in the subinstance. Move on to the next
subinstance if the current one does not contain any more solutions.

Assuming that there is anO(n2−ε) 3SUM detection algorithm, the running time from this portion of the
reduction becomes asymptotically

(n + 2n) · (√n)2−ε = O(n2−ε/2),

and so All-Ints-3SUM can be solved inO(n1.5 + n2−ε/2) time. 2
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