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Abstract. We describe an algorithm, IsoRank, for global alignment of
two protein-protein interaction (PPI) networks. IsoRank aims to max-
imize the overall match between the two networks; in contrast, much of
previous work has focused on the local alignment problem— identify-
ing many possible alignments, each corresponding to a local region of
similarity. IsoRank is guided by the intuition that a protein should be
matched with a protein in the other network if and only if the neighbors
of the two proteins can also be well matched. We encode this intuition
as an eigenvalue problem, in a manner analogous to Google’s PageRank
method. We use IsoRank to compute the first known global alignment
between the S. cerevisiae and D. melanogaster PPI networks. The com-
mon subgraph has 1420 edges and describes conserved functional compo-
nents between the two species. Comparisons of our results with those of a
well-known algorithm for local network alignment indicate that the glob-
ally optimized alignment resolves ambiguity introduced by multiple local
alignments. Finally, we interpret the results of global alignment to iden-
tify functional orthologs between yeast and fly; our functional ortholog
prediction method is much simpler than a recently proposed approach
and yet provides results that are more comprehensive.

1 Introduction

A fundamental goal of biology is to understand the cell as a system of interact-
ing components and, in particular, how proteins in the cell interact with each
other. Towards this goal, high-throughput experimental techniques (e.g., yeast
two-hybrid [12, 14] and co-immunoprecipitation [11]) to discover protein-protein
interactions (PPIs) are being used. These techniques have also been supple-
mented by promising new computational approaches [27, 24, 23, 26, 17, 29, 9] to
PPI prediction, resulting in an explosive growth in available PPI data. A power-
ful way of representing and analyzing all this data is the PPI network: a network
where each node corresponds to a protein and an edge indicates a direct physical
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interaction between the proteins. Computational analyses of these networks has
already yielded valuable insights: the scale-free character of these networks and
the disproportionate importance of “hub” proteins [30]; the combination of these
networks with gene expression data to discern some of the dynamic character of
the cell [8]; the use of PPI networks for inferring biological function [20], etc.

As more PPI data becomes available, comparative analysis of PPI networks
(across species) is proving to be a valuable tool. Such analysis is similar in spirit
to traditional sequence-based comparative genomic analyses; it also promises
commensurate insights. Such an analysis can identify conserved functional com-
ponents across species [15]. As a phylogenetic tool, it offers a function-oriented
perspective that complements traditional sequence-based methods. It also facili-
tates annotation transfer between species. Indeed, Bandyopadhyay et al. [3] have
demonstrated that the use of PPI networks in computing orthologs produces or-
thology mappings that better conserve protein function across species.

In this paper, we explore a new approach to comparative analysis of PPI
networks. Specifically, we consider the problem of finding the optimal global
alignment between two PPI networks, aiming to find a correspondence between
nodes and edges of the input networks that maximizes the overall match between
the two networks. For this problem, we propose a novel pairwise global alignment
algorithm, IsoRank.

1.1 Contributions

In this paper, we draw attention to the global network alignment problem and
its biological importance (as distinct from local network alignment, see Sec. 1.2).
We propose IsoRank— an algorithm for pairwise global network alignment of
PPI networks; to the best of our knowledge, it is the first such algorithm of its
kind. It simultaneously uses both PPI network data and sequence similarity data
to compute the alignment, the relative weights of the two data sources being
a free parameter (existing local network alignment algorithms have typically
not provided such direct control over the relative weights). The algorithm is
intuitive: a node i in G1 is mapped to a node j in G2 if the neighborhood
topologies of i and j are similar, i.e., the neighbors of i can be well-mapped to
the neighbors of j. This approach has parallels to Google’s PageRank technique;
like the latter, we formalize our intuition as an eigenvalue problem (see Sec. 3).
IsoRank is, by design, tolerant to errors in the input (e.g., missing or spurious
edges) and takes advantage of edge confidence scores as well as other biological
signals (e.g. sequence similarity scores), when available. We use the algorithm
to compute a global alignment of the S. cerevisiae and D. melanogaster PPI
networks and describe the conserved subgraph (possibly disconnected) between
them. The conserved subgraph immediately suggests functions for some hitherto
unannotated proteins. It also suggests sets of functional orthologs between the
two species; these predictions are consistent with those of Bandyopadhyay et al.
[3], and, in some cases, are more precise and accurate.
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Fig. 1: Cartoon comparing global and local network alignments: The local net-
work alignment between G1 and G2 specifies three different alignments; the mappings
for each are marked by a different kind of line (solid, dashed, dotted). Each alignment
describes a small common subgraph. Local alignments need not be consistent in their
mapping— the points marked with ‘X’ each have ambiguous/inconsistent mappings
under different alignments. In global network alignment, the maximum common sub-
graph is desired and it is required that the mapping for a node be unambiguous. In
both cases, there are ‘gap’ nodes for which no mappings could be predicted (here, the
nodes with no incident black edges are such nodes).

1.2 Related Work: the Distinction Between Local and Global
Alignment

The network alignment problem has been formulated previously [6, 18, 15], with
some variations. To place our work in that context, we first distinguish between
global and local network alignment.

Each input network can be represented as an undirected graph G = (V,E)
where V is the set of nodes and E is the set of edges. Furthermore, G may
be a weighted graph, i.e., a confidence measure w(e) may be associated with
each edge e in E. In this paper, we consider graphs of arbitrary structure; when
graphs have specific structures (e.g., trees) other efficient methods are available
[13, 28]. The goal in network alignment is to identify one or multiple possible
mappings between the nodes of the input networks and, for each mapping, the
corresponding set of conserved edges. Mappings may be partial, i.e., they need
not be defined for all the nodes in the networks. Each mapping implies a com-
mon subgraph between the two networks: when protein a1 from network G1 is
mapped to protein a2 from network G2, then a1 and a2 refer to the same node
in the common subgraph; the edges in the common subgraph correspond to the
conserved edges. Based on the kind of mapping(s) sought, we distinguish between
the local and global network alignment (in analogy with sequence alignment).

Local Network Alignment (LNA): The goal in LNA is to find local regions of iso-
morphism (i.e. same graph structure) between the input networks, each region
implying a mapping independently of others. Many independent, high-scoring lo-
cal alignments are usually possible between two input networks; in fact, the cor-
responding local alignments need not even be mutually consistent (i.e., a protein



might be mapped differently under each, see Fig 1). This may not be undesirable
(e.g., it may indicate gene duplication); however, in some cases LNA algorithms
offer implausibly numerous matches for a single protein. The motivations be-
hind local sequence alignment and local network alignment are analogous— the
former is often used to find conserved sequence motifs; the latter for finding
conserved functional components (e.g., pathways, complexes, etc.).

Previous work on PPI network alignment has almost exclusively focused on
this problem: the pioneering work of Kelley et al. [6] described how BLAST sim-
ilarity scores and PPI network information could be used to identify conserved
functional motifs. Koyuturk et al. [18] proposed another method, motivated by
biological models of duplication and deletion. Recently, Flannick et al. [15] pro-
posed a new approach, using modules of proteins to infer the alignment. The
approach is efficient and is the first LNA method to align multiple species si-
multaneously. In contrast to these methods, our work targets the global network
alignment problem (see Footnote 3).

Global Network Alignment (GNA): The aim in GNA is to find the best overall
alignment between the input networks. A GNA algorithm must define a single
mapping across all parts of the input (see Fig 1), even if it were locally sub-
optimal in some regions of the networks. In contrast, an LNA algorithm has the
freedom to choose the locally optimal mapping for each local region of similarity,
even if this results in overlapping — and mutually inconsistent — local align-
ment. We avoid this in GNA by requiring that for any global alignment to be
valid the corresponding mapping be comprehensive: each node in an input net-
work is either matched to some node in the other network or explicitly marked
as a gap node (i.e., with no match in the other network). Our goal in GNA
then is to find a comprehensive mapping such that the size of the correspond-
ing common subgraph is maximized. The motivations behind global sequence
alignment and GNA are again analogous: the former is often used for compar-
ing genomic sequences to understand variations between species; the latter may
be used to compare interactomes, and to understand cross-species variations.
Also, the GNA problem is related to the detection of functional orthologs, as we
discuss in Sec. 4.

The GNA problem, as we describe it here, is the focus of this paper. It has
previously received little attention in the literature; much of existing work has
focused on the LNA problem3. One can imagine using results of an LNA to
estimate a global alignment: use LNA methods to compute possible matches for

3 We note that in some previous works on network alignment, the distinction between
“global” and “local” network alignment has centered on the relative input sizes for
each. There, the term “global network alignment” is used when the input consists of
roughly equal-sized networks (e.g., two species-wide networks) while “local network
alignment” is used when one input is a small query network and the other is a large
species-wide network. In both instances, however, the output consists of multiple
local subgraphs (and corresponding local alignments). As such, we believe that both
these instances are best characterized as local network alignments, regardless of input
sizes.



each protein. Then, for each protein select the mapping best supported overall
by the alignment results. Banydopadhyay et al. have used a similar approach for
functional ortholog detection. Unfortunately, this approach is somewhat complex
and, more importantly, ignores inconsistencies across local alignments so that
the node matches in the final alignment might not even be mutually consistent.
Instead, we propose a simpler, yet powerful algorithm.

2 Problem Formulation

The input to the algorithm consists of two PPI networks G1 and G2. Each edge
e may have an associated edge weight w(e) (0 < w(e) ≤ 1). In addition, other
measures of similarity between the nodes may be available. In this paper, we use
BLAST similarity scores, but additional measures (e.g., synteny-based scoring,
functional similarity) can be incorporated.

The desired output, given only PPI network data, is the maximum common
subgraph (MCS) between G1 and G2 (i.e., the largest graph that is isomorphic
to subgraphs of both) and the corresponding node-mapping such that each node
is mapped to at most one node in the other network. Nodes not mapped to
any other node are referred to as gap nodes. MCS is an NP-complete problem
and thus approximate solutions, especially for the large-sized PPI networks, are
essential. Also, when incorporating sequence data, the global alignment problem
is no longer a pure MCS problem. To address these issues, we formulate an
eigenvalue problem that approximates the desired objective.

The “at most one match per node” constraint is motivated by analogy with
two-way global sequence alignment where any position in a sequence can be
matched to at most one position in the other sequence. When performing LNA,
Kelley et al. [6] have imposed a similar constraint. The benefits of imposing this
constraint are: (1) we simplify the alignment problem, and (2) we can unambigu-
ously identify the closest functional equivalent of a protein in the other species;
this is related to the discovery of functional orthologs (see Sec. 4). On the other
hand, in instances of gene duplication across species this constraint requires that
a protein cannot be matched to multiple proteins in another species. In future
work, we plan to relax this constraint.

3 Algorithm: IsoRank

The key problem that our algorithm (IsoRank) targets is identifying the node
mappings between the input networks; given such a mapping, the set of con-
served edges can be easily computed. The algorithm works in two stages. It first
associates a score with each possible match between nodes of the two networks.
Let Rij be the score for the protein pair (i, j) where i is from network G1 and
j is from network G2. Given network and sequence data, we construct an eigen-
value problem and solve it to compute R (the vector of all Rijs). The second
stage constructs the mapping for the GNA by extracting from R high-scoring,
pairwise, mutually-consistent matches.
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Fig. 2: Intuition behind the algorithm: Here we show, for a pair of small, isomorphic
graphs how the vector of pairwise scores (R) is computed. For each possible pairing
(i, j) between nodes of the two graphs, we compute the score Rij . The scores are
constrained to depend on the scores from the neighborhood as described by Eqn. 1.
Only a partial set of constraints is shown here. The scores Rij are computed by starting
with random values for Rij and using the methods described below to find values that
satisfy these constraints; here we show the vector R reshaped as a table for ease of
viewing (empty cells indicate a value of zero). The second stage of our algorithm uses R

to extract likely matches. One strategy could: choose the highest-scoring pair, output it,
remove the corresponding row and column from the table, and repeat. This strategy will
return the correct mapping: {(c, c′), (b, b′), (a, a′), (d, d′), (e, e′)}. The {d, e} → {d′, e′}
mapping is ambiguous; using sequence information, such ambiguities can be resolved.

Computing R (setting up the constraints): To compute Rij we pursue the
intuition that (i, j) is a good match if i and j’s respective neighbors also match
well with each other. More precisely, we require the following equality to hold
for all possible pairs (i, j):

Rij =
∑

u∈N(i)

∑

v∈N(j)

1

|N(u)||N(v)|
Ruv i ∈ V1, j ∈ V2 (1)

where N(a) is the set of neighbors of node a; |N(a)| is the size of this set; and
V1 and V2 are the sets of nodes in networks G1 and G2, respectively.

These equations require that the score Rij for any match (i, j) be equal to the
total support provided to it by each of the |N(i)||N(j)| possible matches between
the neighbors of i and j. In return, each match (u, v) must distribute back its
entire score Ruv equally among the |N(u)||N(v)| possible matches between its
neighbors. We note that these equations also capture non-local influences on
Rij : the score Rij depends on the score of neighbors of i and j and the latter,
in turn, depend on the neighbors of the neighbors and so on. The extension to
the weighted-graph case is intuitive: the support offered to neighbors is now in



proportion to the edge weights:

Rij =
∑

u∈N(i)

∑

v∈N(j)

w(i, u)w(j, v)
∑

r∈N(u) w(r, u)
∑

q∈N(v) w(q, v)
Ruv i ∈ V1, j ∈ V2 (2)

Clearly, Eqn. 1 is a special case of Eqn. 2 when all the edge weights are 1. We
can rewrite Eqn. 1 in matrix form (Eqn. 2 can be similarly rewritten):

R = AR

A[i, j][u, v] =

{ 1
|N(u)||N(v)| if (i, u) ∈ E1 and (j, v) ∈ E2

0 otherwise

(3)

where A is a |V1||V2| × |V1||V2| matrix and A[i, j][u, v] refers to the entry at the
row (i, j) and column (u, v) (the row and column are doubly-indexed).

Another interpretation of the above equations is that they describe a random
walk on the product graph of G1 = (V1, E1) and G2 = (V2, E2). We define G∗ =
(V ∗, E∗) where V ∗ = V1×V2 and E∗ = {( (i, j), (u, v) ) | (i, u) ∈ E1, (j, v) ∈ E2}.
Also, if G1 and G2 are weighted, so is G∗: w( (i, j), (u, v) ) = w(i, u)w(j, v). We
now specify a random walk among the nodes of G∗: from any node we can move
to one of its neighbors, with a probability proportional to the edge weight:

P (st = (i, j) | st−1 = (u, v)) =
w(i, u)w(j, v)

∑

r∈N(u) w(r, u)
∑

q∈N(v) w(q, v)
(4)

where st is the node occupied at time t. Eqns. 1, 2 and 3 can now be interpreted as
defining R to be the stationary distribution of this random walk (its transition
matrix is A). Thus, a high Rij implies that the node (i, j) of G∗ has a high
probability of being occupied in the stationary distribution.

The vector R is determined by finding a non-trivial solution to these equa-
tions (a trivial solution is to set all Rijs to zero). In Fig 3, we illustrate, on a pair
of small graphs, how the equations capture the graph topology; their solution
also confirms our intuition: node pairs that match well have higher Rij scores.
Computing R (solving the constraints): In general, to solve the above equa-
tions, we observe that these equations describe an eigenvalue problem (see Eqn.
3). The value of R we are interested in is the principal eigenvector of A. Note
that A is a stochastic matrix (i.e., each of its columns sums to 1) so that the
principal eigenvalue is 1. Also, for numerical stability purposes we require that
R be normalized, i.e., |R|1 = 1. In the case of biological networks, A is typically
a very large matrix (about 108 × 108 for fly-vs.-yeast GNA); however, A and R
are both very sparse, so R can be efficiently computed by iterative techniques.
We use the power method [16], an iterative technique often used for large eigen-
value problems. The power method repeatedly updates R as per the update rule:
R(k + 1)← AR(k)/|AR(k)|, where R(k) is the value of the vector R in the k-th
iteration and has unit norm. In case of a stochastic matrix (like A), the power
method will provably converge to the principal eigenvector; the convergence can
be sped up significantly by a judicious choice of the initial value R(0) [16]. As
we describe shortly, a good initial value R(0) is often available in our case.



The incorporation of other information, e.g. BLAST scores, into this model
is straightforward. Let Bij denote the score between i and j; for instance, Bij

can be the Bit-Score of the BLAST alignment between sequences i and j. Bijs
need not even be numeric— they can be binary. Let B be the vector of Bijs. We
first normalize B: E = B/|B|. The eigenvalue equation is then modified to

R = αAR + (1− α)E where 0 ≤ α ≤ 1. (5)

Eqn. 5 is solved by similar techniques as Eqn. 3. Also, node matches based
purely on sequence similarity are an approximation to the node mappings de-
sired; hence, the vector E is a good choice for the initial value R(0) in the power
method. We emphasize that this choice of starting value does not change the
final value of R— it just speeds up the computation.

In this computation, α controls the weight of the network data (relative to
sequence data), e.g., α = 0 implies no network data will be used, while α = 1
indicates only network data will be used. Tuning α allows us to analyze the
relative importance of PPI data in finding the optimal alignment.
Extracting the mapping from R: Once R has been computed, we extract the
node mappings from it. An appealing approach is to extract the set of mutually-
consistent, pairwise matches (p, q) such that the sum of their scores is maximized.
The optimal solution can thus be found efficiently by interpreting R as encoding a
bipartite graph and finding the maximum-weight bipartite matching [22] for this
graph. Each side of the bipartite graph contains all the nodes from one network.
The weight of the edge (i, j) is then set to Rij . We compute the maximum-weight
matching in this bipartite graph and output the paired nodes. Any remaining
unpaired nodes are designated as gap nodes. This algorithm guarantees the set
of matches that satisfy our criterion.

While this principled algorithm does give good results, in practice we found
that the following greedy algorithm sometimes performs even better: identify the
highest score Rpq and output the pairing (p, q). Then, remove all scores involving
p or q. We then repeat this process until the list is empty. In the bipartite graph,
this strategy corresponds to removing, at each step, the maximum weight edge
and the incident nodes. In future work, we plan to investigate whether this
heuristic’s better performance is related to the structure of R.

Once a comprehensive alignment has been computed, the corresponding sub-
graph in the GNA can be identified relatively easily. For example, if a1 is aligned
to a2, and b1 is aligned to b2, the output subgraph should contain an edge between
(a1, a2) and (b1, b2) if and only if both the input networks contain supporting
edges (i.e., (a1, b1) in G1 and (a2, b2) in G2). When edges also have associated
weights, formalizing the intuition depends on how the edge weights are being
interpreted; for example, we could require that the combined weight be higher
than a threshold or that the minimum of the two be greater than a threshold.

4 Results: GNA of Yeast and Fly PPI Networks

We now describe the results of two-way global alignment of the S. cerevisiae and
D. melanogaster PPI networks, the two species with the most available network
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Fig. 3: Largest connected component of the yeast-fly Global Network Align-
ment: The node labels indicate the corresponding “yeast/fly” proteins (the two sep-
arated by a “/”). The proteins in this graph span a variety of functions: metabolic,
signaling, transcription etc. For a discussion of this subgraph’s size, see text.

data. The PPI network data for the species was retrieved from the GRID [4] and
DIP [7] databases, and the sequence data was retrieved from Ensembl [2]. The
edges in the PPI networks did not have associated weights. We applied IsoRank

to this pair of networks, using it to identify the common subgraph.
The common subgraph corresponding to the global alignment between the

yeast and fly PPI networks has 1420 edges (where α = 0.6; the criterion for
choosing α is described later in this section). While this indicates a relatively
low overlap between the yeast and fly networks (both the networks have more
than 25000 edges each), it is not surprising: firstly, currently available PPI data is
known to contain many false-positives, and the number of true interactions in the
current networks is expected to be significantly lower [27, 25]. Secondly, current
PPI data is far from comprehensive; e.g., the fly network has no known PPIs for
about 6500 proteins (almost 50% of the genome). As these issues get resolved,
we expect the size of the global alignment to grow substantially. Nevertheless,
the current global alignment already provides many valuable insights.

The alignment subgraph consists of many disconnected components, with
the largest component having 35 edges (Fig. 3). The component’s size may seem
low but is directly related to the poor connectivity of the alignment subgraph.
The poor connectivity is, we believe, because of the poor quality and coverage
of current PPI networks; as the datasets improve, so will the connectivity. Even
now, however, the subgraph in Fig. 3 is significantly larger than any common
subgraph we could identify using Pathblast [6], a LNA method. The longest
pathway-like component identified by the latter had 4 nodes, and the largest
complex-like component had 16 nodes. Also, the components of the global align-
ment span various topologies, from linear pathways (Fig. 4(a)) to components
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Fig. 4: Selected subgraphs of the yeast-fly GNA: The node labels indicate the
corresponding “yeast/fly” proteins (the two separated by a “/”). The subgraphs span
a variety of topologies and are often enriched in specific functions (c) and (d). In (d),
the nodes for which at least one of the corresponding proteins is known to be involved
in ubiquitin ligase activity are shaded.

corresponding to protein complexes (Fig 4(d)); in contrast, some of the local
network alignment methods [6, 18] are tailored to search only for specific topolo-
gies. We emphasize that our components were discovered simultaneously— they
are just subgraphs of the larger alignment graph. Many of our discovered com-
ponents are de-facto functional modules (though not in the sense Flannick et al.
[15] use the term): they are enriched in proteins involved in a single biological
process (e.g., see Fig 4(d)). These functions range from various signaling cascades
(Fig. 4(b)) to core cellular functions like ribosomal synthesis and function (Fig.
4(c)), DNA transcription and translation, cell division etc. The preponderance
of core cellular functions in the conserved subgraph is not too surprising— it is
exactly these mechanisms that are likely to be highly conserved across species.

The global alignment may be used to predict protein function. For example,
Fig 4(d) shows a subgraph of the global alignment, most of the proteins in which
are involved in SCF ubiquitin ligase activity. Hence, we predict the function of
two hitherto-unannotated fly proteins CG7148 and CG13213 as being involved
in ubiquitin protein ligase activity. In support of this, we note that the FlyBase
database [5] indicates that the involvement of these proteins in ubiquitin ligase
activity has been postulated before in the literature. Of course, more sophisti-
cated methods to transfer annotation may perform even better at elucidating
function of such proteins [20].

Evaluating the algorithm’s error tolerance: Our simulations indicate that
the algorithm is tolerant to error in the input (Fig 5(a)); this is valuable since
PPI networks have high false positive and false negative rates. To evaluate the
algorithm’s error-tolerance, we first extracted a 200-node subgraph of the yeast
PPI network. We then randomized a fraction p of its edges using the Maslov-
Sneppen trick that preserves node degrees [19]: we randomly choose two edges
(a, b) and (c, d), remove them, and introduce new edges (a, d) and (c, b). We
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Fig. 5: (a) Effect of error on algorithm’s performance: We believe the solid (red)
curve slightly overestimates the algorithm’s performance, while the dashed (blue) curve
grossly underestimates it. See the discussion in text below. (b) Impact of α on the
size of the alignment graph.

then computed a GNA between these two graphs, with α = 1 and α = 1− 10−6.
For each choice of p, we created 5 such randomized graphs and computed the
average fraction of nodes that are mapped to themselves in the original graph
after a GNA. Using α = 1 results in a significant underestimate because there
often are multiple possible isomorphism-preserving mappings between two iso-
morphic graphs (e.g., see Fig 3) and our algorithm— even if working correctly—
might choose a mapping that does not preserve node labels. Adding a very small
amount of sequence information (α = 1−10−6) helps avoid this, but also results
in a slight overestimate. We believe the true curve (for Fig 5(a)) is closer to the
top curve than the bottom one. Clearly, the algorithm makes very few mistakes
when the error rate p is low and even for fairly high error rates (20-50%), its
performance degrades smoothly and very slowly. When computing the yeast-fly
GNA, we assigned a significant weight to sequence information (α = 0.6); these
simulations suggest our results are quite robust to errors in PPI data.

Evaluating the influence of α: As α increases, so does the importance of
network data in the alignment process, for both the greedy strategy and the
maximum weight bipartite matching strategy (Fig 5(b)). In line with our ex-
pectations, the size of the common subgraph depends on this parameter: α = 0
results in a graph with 266 edges, while α = 0.9 results in 1544 edges (for the
greedy strategy). Intriguingly, as α gets very close to 1, the common graph’s
size decreases. We believe that this discrepancy is an artifact of the current PPI
data sets being noisy and covering the interactome only partially, resulting in a
relatively small overlap between the yeast and fly PPI networks. Consequently,
in absence of any other information a random mapping of nodes between the two
networks might satisfy Eqn.1 better than the one corresponding to the “true”
alignment. The use of sequence-based scores helps mitigate this, by directing the
algorithm towards the true alignment.

When choosing the most appropriate value of the free parameter α, we re-
jected the choice corresponding to the largest common subgraph size— the input



networks are noisy and conserved edges may be simply due to noise; thus, the
α leading to the largest-size subgraph may not be a biologically appropriate
choice. Instead, for each choice of α, we compared the resulting node mappings
to sequence-based ortholog predictions from the Inparanoid database [21] and
chose the α (= 0.6) that resulted in the greatest overlap with these. While this
approach is conservative and might undervalue the network component during
the alignment, it also lowers the adverse impact of noise in the PPI data.

The differences between the node pairings found by our algorithm and those
from Inparanoid broadly fall into two categories: (1) those corresponding to low
Rij values indicating low confidence of our approach in that mapping, and (2)
functional orthologs where the use of network data genuinely changes the node
mapping. We discuss the latter in more detail later in this section.

Comparing global and local alignment results: Our global alignment re-
sults compare favorably to the those of NetworkBlast [1] (an implementation
of PathBlast) and sequence-only approaches. We compared the aggregate set of
local alignments from NetworkBlast with our global alignment. Each local align-
ment defines one-to-one matches between some yeast and fly proteins. Many of
the matches from our global alignment are seen in these local alignments: of the
701 matched protein-pairs in the former that consist of proteins seen in at least
one local alignment, 83% (582) of the pairs are also observed in one or more local
alignments. However, there are many overlapping local alignments, resulting in
ambiguity and inconsistency: averaged across the entire set of local alignments, a
yeast protein is aligned to 5.36 different fly proteins. Sometimes, such ambiguity
may be biologically meaningful, e.g., in instances of gene duplication. However,
the degree of ambiguity in some of the PathBlast results is clearly implausi-
ble. For example, the yeast protein SNF1, a Serine-Threonine Kinase (STK), is
matched to 71 different fly proteins. In fact, PathBlast results for many of the
yeast STKs are very ambiguous– over the set of 72 yeast proteins annotated
as STKs, the average number of matching fly proteins per yeast STK is 29.3.
STKs are part of many important signaling pathways, e.g, the MAPK, JNK and
AKT cascades. Sequence-only approaches. (e.g. Inparanoid) too have performed
poorly at ascertaining the correspondence between yeast and fly STKs: Inpara-
noid does not predict any fly orthologs for 58 of the 72 yeast STKs. Thus the
use of GNA to resolve this ambiguity in correspondence is particularly valuable.

GNA and functional orthologs: In analogy with sequence-based compara-
tive genomics methods [10], we apply IsoRank to the detection of functional
orthologs (i.e., sets of proteins that perform the same function in two or more
species) by exploiting the strong connection between these two problems: pro-
teins that are aligned together in the global alignment should have similar in-
teraction patterns in their respective species and are thus likely to be functional
orthologs. There has been a lot of recent interest in the discovery of functional
orthologs (FO). In particular, Bandyopadhyay et al. [3] took a fairly complex
approach to FO detection between yeast and fly through local network alignment



(LNA): first, possible FOs for a protein are short-listed using a sequence-only ap-
proach; then, using a probabilistic technique (based on Markov Random Fields)
and the results of a LNA of the yeast and fly networks (performed using Path-
Blast), the probability of each short-listed pair of proteins being true FOs is
computed.

The results of IsoRank compare favorably with Bandyopadhyay et al.’s.
Our method has the advantage that it guarantees the predicted sets of FOs
will be mutually consistent and achieves higher genome coverage— PathBlast’s
yeast-vs.-fly local alignments cover only 20.56% of the genes covered by our
global alignment. In many cases the FO predictions between the two methods are
partially or fully consistent (see Table 1), i.e, FOs predicted by our method are
also the likely FOs predicted by their method. Furthermore, their method often
proposes multiple FOs for a protein, and our method resolves the ambiguity
in their results. In a few other cases, predictions of the two methods differ.
At least in some such cases, our method’s predictions are better supported by
evidence. For example, our method predicts Bic (in fly) as the FO of Egd (in
yeast). Bandyopadhyay et al.’s method is ambiguous here as Bcd, its predicted
FO of Egd, is also predicted as a FO of Btt1. Furthermore, there is experimental
evidence that both Egd and Bic are components of the Nascent Polypeptide-
Associated Complex (NAC) in their respective species, lending support to our
prediction; in contrast, Bcd does not seem to be involved in NAC.

5 Conclusion

In this paper, we focus on the global network alignment problem, and describe an
intuitive yet powerful algorithm for computing the global alignment of two PPI
networks; in contrast, much of the previous work has been focused on the local
alignment problem. Our algorithm, IsoRank, simultaneously uses network and
sequence information and is tolerant of noise in the inputs; furthermore, it is easy
to control the relative weights of the network and sequence information in the
alignment. We use IsoRank to compute a global alignment of the S. cerevisiae
and D. melanogaster PPI networks. The results provide valuable insights about
the conserved functional components between the two species. They also allow
us to predict functional orthologs between the fly and yeast; the quality of our
predictions compare favorably with previous work.

Our algorithm is similar— in spirit— to Google’s PageRank algorithm, which
ranks web-pages in the order of their “authoritativeness”. The intuition behind
the two algorithms has a similar flavor: in PageRank, a page has a high score
if many pages with high scores link to it. The intuitions are also formalized
similarly– by constructing an eigenvalue problem. Our actual algorithm is quite
distinct from PageRank: in our case the input is a pair of undirected, weighted
graphs and the output is an alignment; PageRank’s input is a directed, un-
weighted graph (where the nodes indicate web-pages and directed edges, hyper-
text links), and it outputs node rankings.



Protein Predicted Related Predictions Remarks
(species) Functional from

Ortholog (Bandyopadhyay et al.)
by Our
Method Yeast/Fly pair Prob.

Gid8 (yeast) CG6617 Gid8/CG6617 76.51% Our predictions consistent
Gid8/CG18467 - with Bandyopadhyay et al.1

Tpm2 (yeast) Tm1 Tpm2/Tm1 - Consistent predictions.1

Tpm1 (yeast) Tm2 Tpm1/Tm2 43.98% Consistent predictions.1

Gpa1 (yeast) G-oα47a Gpa1/G-oα47a 41.53% Consistent predictions.1

Gpa1/G-ia65a -

Rpl12 (fly) Rpl12a Rpl12a/Rpl12 48.39% Consistent predictions.1

Rpl12b/Rpl12 -

Btt1 (yeast) CG11835 Btt1/CG11835 70.5% Consistent predictions.1

Btt1/Bcd 40.86%

CG18617 (fly) Vph1 Vph1/CG18617 43.53% Consistent predictions.1

Stv1/CG18617 38.44%

Kap104 (fly) Trn Kap104/Trn 40.64% Partially consistent
Kap104/CG8219 46.78% predictions.2

Act1 (yeast) Act5c Act1/Act5c 39.56% Partially consistent
Act1/Act42a 39.24% predictions.2

Act1/Act87e 43.53%
Act1/Act88f 40.17%
Act/CG10067 38.20%

Kel2 (yeast) CG12081 Kel2/CG12081 - Partially consistent
Kel1/CG12081 45.41% predictions.2

Cmd1 (yeast) Cam Cmd1/Cam 35.90% Partially consistent
Cmd1/And 44.39% predictions.2

Hsc70-4 (fly) Ssa3 Hsc70-4/Ssa3 - Partially consistent
predictions.2

Table 1: Interpreting two-way global alignment results as functional or-
thologs (FOs): Comparison of our results with Bandyopadhyay et al.’s results [3].
Our method is often consistent with their results and, moreover, often resolves the
ambiguity in their predictions. 1Our predicted FO for the protein matches Bandyopad-
hyay et al.’s predicted FO, or the most likely FO if their method predicted multiple
FOs.2Our predicted FO for the protein is one of the likely FOs predicted by Bandy-
opadhyay et al. (but not the most likely one).

We have already extended IsoRank to perform global alignment of multi-
ple networks, but this is beyond the scope of this paper. In future work, we
plan to improve the algorithm, better characterize its theoretical behavior, and
identify other applications for it. Since PPI data is noisy, it might be useful to
generate multiple near-optimal alignments and rank them by their significance.
Also, the algorithm can be applied to other biological and non-biological data.
It might also be possible to extend such an eigenvalue approach to perform local
network alignment; as noted before, the use of an eigenvalue approach removes



the restriction of being able to find subgraphs with only certain topologies– a
limitation of some of the existing local network alignment methods.

References

1. http://chianti.ucsd.edu/NetworkBlast.
2. http://www.ensembl.org.
3. S. Bandyopadhyay, R. Sharan, and T. Ideker. Systematic identification of func-

tional orthologs based on protein network comparison. Genome Res, 16(3):428–35,
2006.

4. B.J. Breitkreutz, C. Stark, and M. Tyers. The GRID: the general repository for
interaction datasets. Genome Biology, 4(3):R23, 2003.

5. FlyBase Consortium. The FlyBase database of the drosophila genome projects
and community literature. Nucleic Acids Res, 31(1):172–175, 2003.

6. B.P. Kelley et al. Pathblast: a tool for alignment of protein interaction networks.
Nucleic Acids Res, 32(Web Server issue):W83–8, 2004.

7. I. Xenarios et al. DIP, the database of interacting proteins: a research tool for
studying cellular networks of protein interactions. Nucleic Acids Res, 30(1):303–
305, 2002.

8. J.D. Han et al. Evidence for dynamically organized modularity in the yeast protein-
protein interaction network. Nature, 430(6995):88–93, 2004.

9. J.P. Miller et al. Large-scale identification of yeast integral membrane protein
interactions. Proc Natl Acad Sci USA, 102(34):12123–12128, 2005.

10. M. Kellis et al. Methods in comparative genomics: genome correspondence, gene
identification and regulatory motif discovery. J of Computational Biology, 11(2-
3):319–355, 2004.

11. N.J. Krogan et al. Global landscape of protein complexes in the yeast saccha-
romyces cerevisiae. Nature, 440(7084):637–43, 2006.

12. P. Uetz et al. A comprehensive analysis of protein-protein interactions in saccha-
romyces cerevisiae. Nature, 403(6770):623–7, 2000.

13. R.Y. Pinter et al. Alignment of metabolic pathways. Bioinformatics, 21(16):3401–
3408, 2005.

14. T. Ito et al. A comprehensive two-hybrid analysis to explore the yeast protein
interactome. Proc Natl Acad Sci USA, 98(8):4569–74, 2001.

15. J. Flannick, A. Novak, B.S. Srinivasan, H.H. McAdams, and S. Batzoglou. Graem-
lin: general and robust alignment of multiple large interaction networks. Genome
Res, 16(9):1169–81, 2006.

16. G.H. Golub and C. Van Loan. Matrix computations. Johns Hopkins University
Press), 2006.

17. I. Gat-Viks, A. Tanay, D. Raijman, and R. Shamir. A probabilistic methodology for
integrating knowledge and experiments on biological networks. J of Computational
Biology, 13(2):165–181, 2006.

18. M. Koyuturk, A. Grama, and W. Szpankowski. Pairwise local alignment of protein
interaction networks guided by models of evolution. Proc of the 9th International
Conference on Research in Computational Molecular Biology (RECOMB), 2005.

19. S. Maslov and K. Sneppen. Specificity and stability in topology of protein networks.
Science, 296(5569):910–913, 2002.

20. E. Nabieva, K. Jim, A. Agarwal, B. Chazelle, and M. Singh. Whole-proteome
prediction of protein function via graph-theoretic analysis of interaction maps.
Bioinformatics, 21 Suppl 1:i302–10, 2005.



21. K.P. O’Brien, M. Remm, and E.L. Sonnhammer. Inparanoid: a comprehensive
database of eukaryotic orthologs. Nucleic Acids Res, 33(Database issue):D476–80,
2005.

22. C. Papadimitriou and K. Steiglitz. Combinatorial optimization: algorithms and
complexity. Dover), 1998.

23. Y. Qi, J. Klein-Seetharaman, and Z. Bar-Joseph. Random forest similarity for
protein-protein interaction prediction from multiple sources. Proc of the Pacific
Symposium on Biocomputation, 2005.

24. R. Singh, J. Xu, and B. Berger. Struct2net: Integrating structure into protein-
protein interaction prediction. Proceedings of the Pacific Symposium on Biocom-
putation, 2006.

25. D. Sontag, R. Singh, and B. Berger. Probabilistic modeling of systematic errors in
yeast two-hybrid experiments. To Appear. Proceedings of the Pacific Symposium
on Biocomputation, 2007.

26. B.S. Srinivasan, A. Novak, J. Flannick, S. Batzoglou, and H. McAdams. Inte-
grated protein interaction networks for 11 microbes. Proc of the 10th International
Conference on Research in Computational Molecular Biology(RECOMB), 2006.

27. C. von Mering et al. Comparative assessment of large-scale data sets of protein-
protein interactions. Nature, 417(6887):399–403, 2002.

28. M.Y. Yao, T.W. Lam, and H.F. Ting. An even faster and more unifying algorithm
for comparing trees via unbalanced bipartite matchings. J of Algorithms, 40:212,
2006.

29. C.H. Yeang and M. Vingron. A joint model of regulatory and metabolic networks.
BMC Bioinformatics, 7:332, 2006.

30. S.H. Yook, Z.N. Oltvai, and A.L. Barabasi. Functional and topological character-
ization of protein interaction networks. Proteomics, 4(4):928–42, 2004.


